Please see attached

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC)</td>
</tr>
<tr>
<td>AFRL/PRS</td>
</tr>
<tr>
<td>5 Pollux Drive</td>
</tr>
<tr>
<td>Edwards AFB CA 93524-7048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see attached</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.

14. ABSTRACT

20030129 196

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

A

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Leilani Richardson

19b. TELEPHONE NUMBER (include area code)

(661) 275-5015

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO) 11 Oct 2001

C.T. Liu, "Estimating the Initial Crack Size in a Particulate Composite Material: An Analytical and Experimental Approach" (VIEWGRAPHS)

ASME Winter Meeting
(New York, NY, 11-16 Nov 2001) (Deadline: 02 Nov 2001) (Statement A)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

Signature ___________________________ Date ___________________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.
Comments:

Signature ___________________________ Date ___________________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required
Comments:

Signature ___________________________ Date ___________________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability
Comments:

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL Date
Technical Advisor
Space and Missile Propulsion Division
Title: Estimating the Initial Crack Size in a Particulate Composite Material: An Analytical and Experimental Approach

Slides 1-3: Self Explanatory

Slide 4: K_{th} is the threshold value of the stress intensity factor below which the crack will not grow. From Fig (a) and for a given K_{th}, we can determine t^*, which is the time corresponding to K_{th}. From Fig. (b), for a given t^* we can determine a^*, which is the threshold crack length.

Slide 5-8 are plots of statistical distribution functions based on test data.

Slide 9 shows the values of the distribution parameters for four different statistical functions.

Slide 10 shows the values of the predicted inherent initial critical crack length, a_0, for the onset of crack growth, a^* and t^*, defined in slide 4, and the measured final critical crack length, a_c, for the unstable crack growth.

Slide 11 shows a plot of the maximum stress versus the corresponding time for different crack lengths. By shifting the un-precracked specimen data vertically downward until they superpose upon those of the pre-cracked specimen, we can obtain an estimate for the inherent initial critical crack length in the un-precracked specimen. The dash line in the figure represent the vertically shifted curves. According to the figure, the inherent initial critical length is approximately equal to 0.1 in., which compares well with the predicted value of 0.12 in.

Slide 12 shows the x-ray images at different stretches. It shows the inhomogeneity of the macrostructure as a function of the applied stretch.

Slide 13 shows the specimens with different crack sizes at different times. The two large black dots are pen markers, and they are not cracks.

Slide 14 is self explanatory.
Estimating the Initial Crack Size in a Particulate Composite Material: An Analytical and Experimental Approach

C.T. Liu
Principal Research Engineer
PRSM
Air Force Research Laboratory
Objectives

- Determine the Inherent Critical Initial Crack Size in a Particulate Composite Material.
- Determine the Statistical Distribution Function of the Inherent Critical Crack Size.
- Normal Distribution
- Two Parameter Lognormal Distribution
- Two Parameter Weibull Distribution
- Second Asymptotic Distribution of Maximum Value
Specimen Geometry

1 in.

\(a_0 \)

3 in.

\[a_0 = 0.0 \text{ in.} = 0.1 \text{ in.} = 0.2 \text{ in.} = 0.3 \text{ in.} \]
Stress Intensity Factor Versus Time for Specimen Mm 5-1 (b)

a

Stress Intensity Factor Versus Time for Specimen Mm 5-1 (b)

b

Crack Growth Curve for Specimen Mm 5-1 (b)
Normal Distribution Plot for a_0

![Graph showing the normal distribution plot for a_0.]
Log normal Distribution Plot for a_0
Weibull Distribution Plot for a_o
Second Asymptotic Distribution Plot for a_0
<table>
<thead>
<tr>
<th>a_c</th>
<th>a</th>
<th>a_0</th>
<th>μ</th>
<th>S</th>
<th>μ*</th>
<th>σ*</th>
<th>α</th>
<th>β</th>
<th>K</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1462</td>
<td>0.13344</td>
<td>0.1308</td>
<td>0.0092</td>
<td>-2.037</td>
<td>0.07021</td>
<td>17.5546</td>
<td>0.1348</td>
<td>13.2524</td>
<td>0.1258</td>
<td></td>
</tr>
<tr>
<td>0.0079</td>
<td>0.0090</td>
<td>-2.0092</td>
<td>0.06692</td>
<td>18.4513</td>
<td>0.1383</td>
<td>13.8081</td>
<td>0.2195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.9242</td>
<td>0.053961</td>
<td>23.0450</td>
<td>0.1497</td>
<td>17.1205</td>
<td>0.1419</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_o \ (\text{in.})$</td>
<td>$a^* \ (\text{in.})$</td>
<td>$t^* \ (\text{min.})$</td>
<td>$a_c \ (\text{in.})$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1221</td>
<td>0.1263</td>
<td>3.0755</td>
<td>0.1415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- For the material studied, the estimated inherent critical crack size is 0.12 in., which compares well with experimental value.
- The inherent critical crack size follows the second asymptotic distribution of the maximum value.