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Abstract- A two-compartment fusion system designed to reduce 
high rates of false alarm (FAR) in single channel monitoring sys-
tems was tested with physiological data from pilots exposed to 
high +Gz forces on a human centrifuge. The first compartment 
expands input signals into time-frequency domain, where tran-
sient changes are captured by wavelet coefficients in frequency 
ranges of interest. The second compartment optimally combines 
local decisions of various statistics using a unifying operation 
rule regardless of individual subject physiology and channel fea-
tures. Three channels were used to measure respiration, blood 
pressure, and electroencephalogram under various high per-
formance aircraft maneuver profiles: rapid onset run (ROR) to 
a fixed plateau, gradual onset run (GOR) at 0.1 Gz per second 
onset, and simulated aerial combat (SACM) profiles. Pilots 
sometimes perform anti-G straining maneuvers (AGSM) against 
the blood pressure drop at head level for greater tolerance. Sig-
nals were simultaneously processed to decide the presence of 
such AGSM. Significant reductions of FAR when detecting 
AGSM by signal fusion were achieved in our experiment 
(10~38% during ROR /GOR, 25~35% during SACM, and 
21~36% overall), when compared to single channel monitoring. 
This implies that our approach is very promising and system 
performance can be enhanced even with poor quality signals. 
Keywords– Physiological monitoring, wavelet transform,  
                   data fusion, G force 
 

I. INTRODUCTION 
 
   The assessment and evaluation of the physiological state of 
patients and human experimental volunteer subjects is of 
great importance and interest to physicians and scientific in-
vestigators. For example, this is especially important in 
monitoring levels of anesthesia in the operating room or the 
state of consciousness of human volunteers in experiments 
involving very high accelerative forces [1, 2]. 
   The evaluation of physiological state is generally based on 
the results from a single data channel such as blood pressure 
or electroencephalogram. These are either monitored visually 
or the physician or researcher relies on an automatic alarm 
triggered by a parameter value that is out of the normal ex-
pected range. A significant problem with such methods is 
that there is often a high false alarm rate (FAR) due to such 
things as sensor movement, physiological parameter variabil-
ity, and electrical signal noise [2]. 
   In order to overcome these difficulties we have used multi-
ple sensors measuring different physiological parameters, 
each of which can be used to detect the event of interest. We 
evaluate the physiological state measured by each sensor and 
then fuse these measurements to generate a single result 
whose FAR is much smaller than that encountered from the 
individual channels [3-6]. 

   In such a system the individual sensors generate data that is 
processed and yields a “local” result with relatively high 
FAR. These “local” results are then combined using an opti-
mal unifying rule that then gives a “global” evaluation of the 
human’s physiological state with reduced FAR. Such a data 
fusion system generally relies on identical sensor characteris-
tics, identical parameter statistics, linear system characteris-
tics, and stationary signals. The difficulties arising in deter-
mining an optimal unifying rule for a data fusion system for 
different physiological data channels include: different types 
of physiological sensors have different physical characteris-
tics, physiological signals are typically non-stationary, differ-
ent physiological signals have different statistical characteris-
tics.  
   In this paper, we designed a two-compartment data fusion 
system for physiological signals which gives “global” results 
with greatly reduced FAR when compared with “local” re-
sults. This was accomplished by modifying conventional data 
fusion methods based on a unifying operation rule to accom-
modate the behaviors of complex biological signals. 
 

II. DATA FUSION SYSTEM 
 

A two-compartment data fusion system is shown in Fig. 1.   
The first compartment contains discrete wavelet transforms 
(DWT) to capture the complex behaviors in the input signals, 
Si. Here, transient and irregular features are efficiently cap-
tured. The second compartment is the data fusion center 
(DFC) where wavelet-based local decisions, Di are combined 
by a unifying optimal operation rule regardless of individual 
physiology and channel features. 
   Wavelet transforms decompose signals into time-frequency 
domain, where frequency characteristics and temporal loca-
tions of particular features can be highlighted [7].  
  

 
 
 
 
 
 
 
 

 
Fig. 1. Block diagram of data fusion algorithm; Si : input 
channel data, Di : local decisions, and  f : global decision 
 
  The wavelet transform of input signal s(t) is defined as the 
inner product of s(t) and the mother wavelet ψj,k(t): 

DWT  
 
DFC 

S1

S2

S3

S4

D1 

D2 

D3 

D4 

DWT

DWT

DWT

f



Report Documentation Page

Report Date 
25OCT2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Two Compartment Fusion System Designed for Physiological
State Monitoring

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
School of Biomedical Engineering, Science and Health Systems
and Department of Electrical and Computer Engineering Drexel
University, Philadelphia, USA

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from the 23rd Annual International Conference of the IEEE ENgineering in Medicine and Biology Society,
October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original
document contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



               2 of 4  

 
Ws(j,k) = <s(t), ψj,k(t)>        (1) 

 
where j is the scale, k is translation parameter, and 
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   This transform yields a set of wavelet coefficients Ws(j,k) 
by focusing on specific locations on the signal containing 
peaks and transients in the signal. The powers of wavelet 
coefficients are then computed at each frequency scale and 
combined into a single value of power  
   Scales showing salient features were combined with prede-
termined weights. The combined powers are used to make lo-
cal decisions (+1, -1) at each input channel. Local system per-
formance at a threshold (τi) is determined by the graph of 
false alarm (PFi) vs. detection probability (PDi) and is called 
the receiver operating characteristic (ROC).  
    Conventional data fusion systems use detection and 
estimation theory [3,4] to: 1) reduce the volume of data, 2) 
determine optimal thresholds for local sensors, 3) combine 
local decisions for optimal global decisions, and 4) couple 
optimal local thresholds with optimal fusion algorithms. 
These methods are based on significant constraints that 
include the following assumptions: identical signal statistics, 
identical detection thresholds, equal numbers of observations 
for each channel, and identical sensor characteristics. 
   Our primary goal is to optimally operate the data fusion 
system with a fixed fusion rule and to circumvent the above 
assumptions that do not fit a multi-channel physiological 
monitoring system. Thus, in this study, a minimum error cri-
terion (MEC) defined as log-likelihood ratio test is employed 
to determine a fixed fusion rule, [8]: 
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where optimum weights (ωi) for N local sensors are defined 
as a function of local decisions and local performance indices 
(PFi and PDi), and global decision f is made by comparing 
global thresholds;  
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where:   iD = ±1, )(PP iii τFF = , and )(PP iii τDD = . 

   When the global threshold is greater than zero, the global 
decision of  +1 (Yes) is made, otherwise we made -1 (No) 
decision (Since we assume P(H0) is equal to P(H1), ω0=0). 
The system performance at each local detector is directly re-
lated to that of the DFC. Therefore optimal couplings of local 
thresholds  needs to be found along with the strategy for op-
timal operation of the DFC. 
     

III. APPLICATION 
 

Experimental Protocols  
   Physiological signals were acquired from human centrifuge 
experiments conducted at the Naval Air Warfare Center in 
Warminster, PA. Human subjects were exposed to +Gz 
(head-to-toe) forces in the form of: gradual onset rates of ac-
celeration (GOR) that increased at 0.1 +Gz/sec., rapid onset 
rates of acceleration (ROR) to a fixed high +Gz plateau level 
for 15 sec., and simulated aerial combat maneuvering profiles 
(SACM) that approximated actual combat flying scenarios. 
Subjects were asked to determine how their visual field was 
effected by monitoring LED’s placed in the centrifuge gon-
dola at 15o increments from a central LED. If a subject’s vis-
ual field was reduced to 60o or they had greater than 75% 
overall loss of vision, subjects were asked to initiate an anti-
G straining maneuvering (AGSM) against the head level 
blood pressure drop to increase their peripheral vision. Dur-
ing these experiments the subject’s respiration pattern (R), 
blood pressure (BP), and electroencephalogram (EEG) were 
recorded. The object of our study was to automatically de-
termine when subjects were performing the AGSM. 
   Figure 2 shows a set of recordings from one experiment. 
The +6 Gz ROR acceleration profile is shown in the first row 
of Fig. 2 as a source of stimulation. The second, third, and 
fourth rows are the physiological responses R, BP and EEG. 
Pilots initiate the AGSM just before the onset of +6 Gz by 
quick inspiration, general muscular tensing, and breath hold-
ing. This is repeated every 3 seconds in order to elevate the 
BP until the G stress goes off.  These effects can be seen 

 
 

Fig. 2. Stimulating +Gz force and physiological responses 
with anti-G straining maneuver (AGSM): respiration (R), 
blood pressure (BP), and electroencephalogram (EEG). 
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in both the respiratory signal, blood pressure, and EEG. Six 
human volunteers performed a total of 103 respiratory strain-
ing maneuvers under high G stress. The presence of AGSM 
was monitored by video tape, and scored by research person-
nel. 

Multi-Sensor Signal Processing 
   The three physiological data channels were input to the first 
compartment of the data fusion system. The time-frequency 
behavior of the signals was determined by the DWT blocks. 
Figure 3 shows 4 repetitions of ROR acceleration stimuli dur-
ing which the subject performed an AGSM. The AGSM’s  
were detected in each of the physiological data channels to a 
lesser or greater degree by the increase in wavelet coefficient 
powers. 
   Local decisions are made on the basis of thresholds, which 
will give optimal system performance at the DFC. Since the 
statistics at local sensors are different from each other, the 
following operation rules were used to determine local 
thresholds: 1) probability of detection equal to 1.0 regardless 
of false alarm at local sensors, 2) thresholds coupling is cho-
sen to minimize false alarms with 100 % detection probabil-
ity. This rule was applied to each sensor and from it the sys-
tem performance at the data fusion center was evaluated 
when global decision was made as compared to fusion 
thresholds. 
   Local and global decisions under both ROR and GOR stress 
are illustrated in Fig. 4. The first row shows a series of 4 
ROR stimuli followed by a GOR stimulus. Local decisions at 
the output of the first compartment are shown in the next 
three rows. These results are inserted into the second com-
partment, where global decisions (f) are made by decision fu-
sion as shown in the fifth row. The global threshold (GT) is 
shown in the last row. It is clearly seen that false alarms at lo-
cal detectors are greatly reduced by the fusion method, and 
thus enhance the system reliability. Statistical evaluations 
have been made to validate the data fusion system perform-
ance. 
 

 
Fig. 3. Linearly combined powers of wavelet coefficients at 
local sensors under rapid onset +Gz run (ROR) 
 
    

 

 
Fig. 4. Local decision and fusion decision (f) at the DFC with 

global threshold (GT) 
 
   In addition, the system performance at individual channels 
and fusion center is described the ROC curve as illustrated in 
Fig. 5. The area under this curve indicates the system per-
formance. It is clear that the fusion system shows better per-
formance, when compared the local system performance. 
 

 
Fig. 5. Receiver operating characteristics (ROC) at local de-
tectors and fusion center under +Gz stress 

 
IV. RESULTS AND DISCUSSION 

 
   False alarm rates for detecting AGSM are shown in TABLE 
I for each of the three local detectors and for the DFC.  FAR 
for the BP sensor was 41.69 %, for the R sensor 31.66 % and 
for the EEG sensor 27.01 %, whereas the FAR for the DFC 
was only 5.85 %. The DFC decreased the FAR over the BP 
sensor by 35.84 %, over the R sensor by 25.81 % and over 
the EEG sensor by 21.16 %, thus showing greatly improved 
system performance.  
 

TABLE I 
FALSE ALARM RATES AT LOCAL DETECTORS AND AT DATA FU-

SION CENTER (DFC) 
BP  R   EEG DFC 

41.69 % 31.66 % 27.01 % 5.85 % 
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    The case of defective sensors was also investigated by re-
moving one sensor at a time. We found that MEC operates as 
an OR function when one of the sensors is performing poorly 
(low detection probability), while it operates as an AND 
function when all sensors are operating properly. 
   Of the individual sensors, the EEG signal showed the best 
performance and the BP signal showed the worst. However, 
adding more poor sensors does not degrade the performance 
of the fusion system, (i.e., the poor BP signal adds marginally 
to the global results). The tradeoff between the number of 
sensors required and acceptable system performance is a 
function of the particular application. 

V. CONCLUSION 

   A two-compartment data fusion system applicable to 
physiological monitoring was designed and tested with hu-
man data obtained from human centrifuge experiments. Ex-
perimental results showed significant reduction of false alarm 
rates when using the data fusion system compared to using 
the results of individual sensors. This data fusion system has 
the ability to evaluate non-stationary and transitory biological 
signal patterns. A simple unifying operation rule combined 
with a conventional fixed fusion rule is necessary to reliably 
apply data fusion to physiological systems. 
 

ACKNOWLEDGMENT 
 

This project was supported in part by U.S. Navy, contract no. 
N62269-96-C-0081. 
 

REFERENCES 
 
[1] A. Guez and I. Nevo, “Neural networks and fuzzy logic 
in clinical laboratory   computing with application to in-
tegrated monitoring,” Clinica Chimica Acta, Vol. 248, pp. 
73-90, 1996. 
[2] K.C. Mylrea, J.A. Orr, and D.R. Westenskow, “Integrat-
ing of monitoring for intelligent alarms in anesthesia: Neural 
networks – can they help ?” J. Clin. Monit., vol. 9, no. 1, pp. 
31-37, 1993. 
[3] P.K. Varshney, Distributed detection and data fusion, 
Springer, 1996 
[4] Z. Korona and M.M. Kokar, “Model based Fusion for 
Multisensor Target Recognition,” SPIE, Vol. 2755, pp. 178-
189, 1997 
[5] H.C. Ryoo, “Multi-sensor fusion system using wavelet 
based detection algorithm applied to physiological monitor-
ing under high G environme-nt,”  Ph. D. Thesis, Drexel Uni-
versity, June 2000.  
[6] H.C. Ryoo, L. Hrebien, and H.H. Sun, “Application of 
wavelet based fusion techniques to physiological monitor-
ing,” Proc. 20th Southern Bio. Med. Eng. Conf., pp. 37, Bir-
mingham, AL, February 2001  
[7] C.S. Burrus, R.A. Gopinath, and H. Guo, Introduction to 
wavelets and wavelet transforms: A primer, Prentice Hall, 
1998 

[8] Z. Chair and P.K. Varshney, “Optimal data fusion in mul-
tiple sensor detection  systems,” IEEE Trans. Aerospace 
and Electronic Systems, Vol. AES-22, No. 1, pp. 98-101, 
1986  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


