REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1298, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. **REPORT DATE (DD-MM-YYYY)**

2. **REPORT TYPE**
 Technical Paper

3. **DATES COVERED (From - To)**

4. **TITLE AND SUBTITLE**

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**
 2303

5e. **TASK NUMBER**
 M1A3

5f. **WORK UNIT NUMBER**
 346127

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

8. **PERFORMING ORGANIZATION REPORT**

9. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR'S ACRONYM(S)**

11. **SPONSOR/MONITOR'S NUMBER(S)**

12. **DISTRIBUTION / AVAILABILITY STATEMENT**

 Approved for public release; distribution unlimited.

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**

 - a. REPORT Unclassified
 - b. ABSTRACT Unclassified
 - c. THIS PAGE Unclassified

17. **LIMITATION OF ABSTRACT**
 A

18. **NUMBER OF PAGES**

19a. **NAME OF RESPONSIBLE PERSON**
 Leilani Richardson

19b. **TELEPHONE NUMBER (include area code)**
 (661) 275-5015

20030127 197

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (In-House Contractor Publication)

FROM: PROI (STINFO) 08 May 2002

Tim Haddad (ERC) and Brent Viers (PRSM), “Organic Polymers Modified with Inorganic Polyhedra”

Canadian Society for Chemistry
(2-5 June 2002, Vancouver, Canada) (Deadline: 31 May 2002)
ORGANIC POLYMERS MODIFIED WITH INORGANIC POLYHEDRA.

Timothy S. Haddad and Brent D. Viers
ERC Inc., Air Force Research Lab,
10 E Saturn Boulevard
Edwards Air Force Base, CA 93524

Nanostructured composites of thermoplastics and inorganic clusters have been developed by incorporating polyhedral oligomeric silsesquioxane (POSS) macromers into organic polymers. These hybrid inorganic/organic thermoplastics based on styrenes, acrylates, imides, norbornenes or siloxanes, are reinforced by covalently linking monodisperse inorganic POSS clusters to the polymer backbone. A typical POSS-macromer, $R_3P(SiO_{1.5})$, is a well-defined octomeric polyhedron containing a single "P" functionality for polymerization and seven "R" groups to solubilize and compatibilize the inorganic filler with the organic matrix. A nanoreinforcement effect from the POSS groups is strongly influenced by the seven "R" groups (cyclopentyl, cyclohexyl, isobutyl or phenyl). Covalently attached POSS groups result in significant change to the observed characteristic relaxation time of the polymer; rheological measurements on molten polymer indicate that interactions between the POSS groups generate a reversible network material with rubbery properties. TEM images show that the inorganic POSS moieties associate to form a nanoscale network within the polymer matrix.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
ORGANIC POLYMERS MODIFIED WITH INORGANIC POLYHEDRA

Tim Haddad and Brent Viers
ERC Inc., Air Force Research Lab
Hybrid plastics can bridge the differences between ceramics and polymers.
Anatomy of a POSS Macromer

Nonreactive organic (R) groups for solubilization and compatibilization.

Nanoscopic in size with an Si-Si distance of 0.5 nm and a R-R distance of 1.5 nm.

May possess one or more functional groups suitable for polymerization or grafting.

Thermally and chemically robust hybrid (organic-inorganic) framework.

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.

R-Groups
- cyclohexyl
- phenyl
- cyclopentyl
- isobutyl
POSS Silanol Synthesis

\[
\text{SiCl}_3 + \text{H}_2\text{O} / \text{Acetone} \rightarrow \text{R} = \text{Cyclohexyl}
\]

\[
\text{SiCl}_3 + \text{H}_2\text{O} / \text{Acetone} \rightarrow \text{R} = \text{Cyclohexyl, Cyclopentyl, Cycloheptyl}
\]

Feher et al: JACS, 1989, p 1741;
Organometallics, 1991, p 2526
POSS Macromers For Nanocomposites

R-Groups
- cyclohexyl
- phenyl
- cyclopentyl
- isobutyl

Halides Nitriles Silanes Styryls
Alcohols Amines Silanols α-olefins
Esters Isocyanates Silylchlorides Acrylics
Bisphenols Epoxides Norbornenyls

POSS-based macromers are now available through either Geleste or Aldrich
POSS technology is commercialized by Hybrid Plastics in Fountain Valley CA
Why POSS and Why Nano?

<table>
<thead>
<tr>
<th>Field</th>
<th>Property</th>
<th>Critical Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>Tunneling</td>
<td>1-100 nm</td>
</tr>
<tr>
<td>Optical</td>
<td>Quantum Well</td>
<td>1-100 nm</td>
</tr>
<tr>
<td></td>
<td>Wave Decay</td>
<td>10-1000 nm</td>
</tr>
<tr>
<td>Polymers</td>
<td>Primary Structure</td>
<td>0.1-10 nm</td>
</tr>
<tr>
<td></td>
<td>Secondary Structure</td>
<td>10-1000 nm</td>
</tr>
<tr>
<td>Mechanics</td>
<td>Dislocation Interaction</td>
<td>1-1000 nm</td>
</tr>
<tr>
<td></td>
<td>Crack Tip Radius</td>
<td>1-100 nm</td>
</tr>
<tr>
<td></td>
<td>Entanglement Rad.</td>
<td>10-50 nm</td>
</tr>
<tr>
<td>Therm-Mech.</td>
<td>Chain Motion</td>
<td>0.5-50 nm</td>
</tr>
<tr>
<td>Nucleation</td>
<td>Defect</td>
<td>0.1-10 nm</td>
</tr>
<tr>
<td></td>
<td>Critical Nucleus Size</td>
<td>1-10 nm</td>
</tr>
<tr>
<td></td>
<td>Surface Corrugation</td>
<td>1-10 nm</td>
</tr>
<tr>
<td>Catalysis</td>
<td>Surface Topology</td>
<td>1-10 nm</td>
</tr>
<tr>
<td>Biology</td>
<td>Cell Walls</td>
<td>1-100 nm</td>
</tr>
<tr>
<td>Membranes</td>
<td>Porosity Control</td>
<td>0.1-5 nm</td>
</tr>
</tbody>
</table>

- 1 mm: Sewing Needle, Razor Blade Thickness
- 100 µm: Human Hair, Most Cells & Fibers
- 10 µm: Bacteria, Fillers & Polymer Morphology
- 1 µm: Viruses & Nanofillers, POSS® Building Blocks, Macromolecules
- 1.0 nm: Atoms / Small Molecules
- 0.1 nm: Atoms / Small Molecules
- Maximizing property enhancements through changes at the nano level
- Polymer miscibility vs. POSS/POSS interactions
POSS Polymer Incorporation

POSS Bead

POSS Pendent

POSS Crosslinking

POSS Blending

Size & Shape
50 Wt % POSS Blends in 2 Million MW Polystyrene

Vi_8T_8

$\text{Phenethyl}_8\text{T}_8$

Nanodispersion!!
DMA of 10 Wt % POSS in isotactic Polypropylene
The POSS/Siloxane copolymers with four or more Si-O repeat units in the siloxane segment have softening temperatures well below the decomposition temperatures.
TMA of Pendent POSS-Siloxanes

![Graph showing dimension change vs. temperature for different values of Z and Y.]

- Z = 2.0
- Z = 1.5
- Z = 1.0
- Z = 0, Y = 9.3
- Z = 0, Y = 0

![Chemical structure of POSS-Siloxanes with labels for Z and Y.]
Hydrosilation to High MW PDMS

Used 5 weight % POSS

There are about 7 POSS-macromers per PDMS chain
Comparison of Three T8-POSS Macromers

PDMS + 5 wt % POSS
Blue = cyclopentyl
Red = cyclohexyl
Purple = isobutyl

Loss Modulus G'' (Pa)

Temperature °C

$\tan(\delta)$

Chemical structures:
- Blue: Cyclopentyl
- Red: Cyclohexyl
- Purple: Isobutyl
Comparison of Two POSS Polyhedra

PDMS + 5 wt %
CyclohexylPOSS
Red = T8-POSS
Blue = T7-POSS

Loss Modulus G'' (Pa)

Temperature °C
DMA of 30 wt % POSS Polystyrenes

- Comparison of isobutyl, cyclopentyl & cyclohexyl
- Bulk polymerized samples
TMA Plot Comparison For POSS-Styryl and POSS-EthylStyryl Polymers
(R = Cyclohexyl and Cyclopentyl)
Both block and random copolymers were synthesized. The wt. % POSS was varied from 0 to 50 wt. % POSS. An ideal polymerization would yield polymers with 500 monomer units.

0 wt % POSS, 0 mole % POSS: $x = 500$, $y = 0$
10 wt % POSS, 1 mole % POSS: $x = 495$, $y = 5$
50 wt % POSS, 8 mole % POSS: $x = 460$, $y = 40$
Storage Modulus and Loss Tangent

Cyclohexyl Relaxation: 14.7 kcal/mol

Various Wt.% Cyclohexyl POSS/Polynorbornene Random Copolymers
TEM of Random POSS Norbornenes

50CyPOSS/PN

"Coarse" Cylinder Nanostructure (Diameter ~ 12nm)

50CpPOSS/PN

"Fine" Cylinder Nanodstructure (Diameter ~ 6nm)

CyclohexylPOSS-rich domains may entrain more unoriented polynorbornene chains than CyclopentylPOSS-rich domains.
O-Atom Etching Experiment

8.47 x 10^{20} \text{ atoms cm}^{-2}

Kapton 10 wt\% POSS
Average etch depth: 2.2 \mu m

Kapton H Standard
Average etch depth: 25.4 \mu m
Summary

- The successful incorporation of nano-sized inorganic clusters (POSS) into a wide variety of polymers has been demonstrated.

- These POSS clusters have a remarkable effect on the thermal transitions and mechanical properties of the polymers they are copolymerized into.

- The POSS effect on the properties of analogous polymers shows a dependency on the type of alkyl group on the POSS cluster.

- TEM images of randomly copolymerized polymers illustrate this dependency, as the size of the POSS domains are alkyl-group dependent.

- Rheology of high molecular weight PDMS grafted with small amounts of POSS illustrates a dependence on both the POSS-alkyl-group and POSS shape.
Acknowledgement:

Dr. Brent Viers
Mr. Brian Moore
Mr. Justin Leland
Mr. Pat Ruth
Capt. Rene Gonzalez
Dr. Rusty Blanski
Dr. Shawn Phillips
Dr. Sandra Tomczak

Prof. Pat Mather UCONN
Prof. Andre Lee MSU
Prof. Ben Hsiao SUNY
Prof. Frank Feher UCI
Prof. Gar Hoflund UF
Prof. Tim Mitten MSU

Hybrid Plastics Inc.

Acknowledgement: We gratefully acknowledge the Air Force Office of Scientific Research, Directorate of Chemistry and Life Sciences, and the Air Force Research Laboratory, Propulsion Directorate for their financial support.