1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE Technical Paper

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S) Please see attached

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Leilani Richardson

19b. TELEPHONE NUMBER (include area code)

(661) 275-5015

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 299.18
MEMORANDUM FOR PRS (In-House Contractor Publication)

FROM: PROI (STINFO) 19 March 2002

Ghanshyam L. Vaghjiani (ERC), “CO-Chemiluminescence in the CH + O Gas Phase Reaction”

17th International Symposium on Gas Kinetics
(Univ. of Essen, Germany, 24-29 August 2002) (Statement A)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

Signature ____________________________ Date ____________________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.
Comments:

Signature ____________________________ Date ____________________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required
Comments:

Signature ____________________________ Date ____________________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability
Comments:

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL Date
Technical Advisor
Space and Missile Propulsion Division
CO-Chemiluminescence in the CH + O Gas Phase Reaction

Ghanshyam L. Vaghjiani

ERC, Inc.
Air Force Research Laboratory
AFRL/PRSA
10 E Saturn Blvd
Edwards AFB, CA 93524
Tel: 661 275 5657
Fax: 661 275 6245
Email: ghanshyam.vaghjiani@edwards.af.mil

The methylidyne (CH) radical is known to be an important reaction intermediate during the oxidation of hydrocarbon fuels. Its reactivity with combustion species such as O₂, O-atoms, CO₂, N₂, N₂O, NO, NO₂, NH₃ and numerous other hydrogenous, carbonaceous and sulfurous species is well reviewed¹,² and compiled in the literature.³ However, the nature of product branching, energy disposal and its theoretical treatment has been examined in only a few of these reactions; (CH + NO) and (CH + N₂) reactions by far being the most studied systems. Particularly lacking in the literature is information on the production of electronically excited state species. The Air Force Research Laboratory is interested in the methylidyne and the methylene (CH₂) radical reactions with O₂ and O-atoms since they are thought to play an important role in the production of ultraviolet/visible chemiluminescence when rocket plumes interact with the earth’s ambient atmosphere.⁴

Production of CO vis-uv-chemiluminescence has been observed for the first time in the gas phase reaction of the methylidyne radicals with atomic oxygen. A trace amount of CHBr₃ vapor was photo-decomposed in a fast discharge-flow tube/pulsed-photolysis reactor using a 248-nm laser under multi-photon-dissociation conditions to produce the CH(X₂Π) radicals in an excess of O-atoms in diluent helium carrier gas at 2.0 torr and 298 K. The time resolved chemiluminescence traces due to characteristic CO(A-X), CO(a-X) and CO(d-a) vibronic emissions were recorded at several band positions. 144.8 nm was the shortest wavelength at which CO emission was recordable. The integrated intensities of the CO emissions showed a quadratic dependence on the photolysis fluence employed. The dependence of the CO chemiluminescence on [O-atom] was studied to obtain the rate coefficient(s) for the chemiluminescent reaction(s). The data is best interpreted by postulating that CH(v"≥0) reactions with O-atoms lead to the observed CO-emissions.

Approved for public release, distribution unlimited

(3) 17. NIST Chemical Kinetics Database: Version 2Q98 (Standard Reference Data Program National Institute of Standards and Technology, Gaithersburg, MD 1998) and references therein.