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Abstract-A signal feature with low computational burden 
is presented as an efficient tool for seizure onset 
detection.  The feature was evaluated over a total of 
1,215 hours of intracranial EEG signal from 10 patients. 
Results confirmed this feature as being useful for seizure 
onset detection yielding an average delay of 4.1 seconds, 
0.051 false positives per hour, and one false negative on a 
subclinical seizure out of 111 seizures analyzed of which 
23 were subclinical. 
Keywords – seizure detection, fractal dimension. 
 
 

I. INTRODUCTION 
 

There is a lot of undergoing research on seizure onset 
detection. Osorio and Frei [1], Qu and Gotman [2], 
introduced some of the many features proposed for seizure 
onset detection. The first authors developed a feature based 
on a wavelet FIR filter. They selected the wavelet scale 
corresponding to approximately 5-40 Hz, squared it and 
median filtered the output, and finally compared it with a 
background signal.  Their system accomplished zero false 
positives, zero false negatives, and 2.1 seconds of 
electrographic onset detection delay on evaluation over 55.5 
hours of intracranial EEG data. The second ones designed 
an intelligent system that extracts six features from the time 
and frequency domains, three features based on half waves 
of the input data (average half wave duration, amplitude, 
and coefficient of variation of the wave duration), a 
dominant frequency, an average power, and feature 
containing spatial information.  They fed these features into 
a modified nearest-neighbor classifier, and obtained a 100% 
detection rate with an onset detection delay of 9.35 seconds, 
and an average of 0.02 false positives per hour over a total 
of approximately 32 hours of data analyzed.  Many of their 
features were “features of features” or historical features as 
denoted in [3].  

Among the large number of features proposed for seizure 
onset detection, we are proposing the line length as an 
efficient feature for seizure onset detection. This feature was 
originally introduced by Olsen [4], and later referred to as 
curve length in [3]. This feature can be derived from the 
fractal dimension by Katz [5] studied in [6]-[7]; however, 
unlike fractal dimension is computationally more efficient 
and more accurate for seizure onset detection.  

II. FROM KATZ’S FRACTAL DIMENSION TO  
LINE LENGTH 

 
The fractal dimension as defined by Katz [3], [5]-[6] 

before the normalization is given by, 
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where L is the total length of the curve or sum of distances 
between successive points, computed as 
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and d is the diameter estimated as the distance between the 
first point of the sequence and the point of the sequence that 
provides the farthest distance.  

Using the normalization that Katz defined in [4] leads 
expression (1) to 
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where N is the number of points within the window or window 
length. Using the running window method described in [6] a 
sequence of  fractal dimension  values can  be generated as a  
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Figure 1: Variation of the fractal dimension by Katz’s 
method as the parameter d is changed  
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sliding window moves through the intracranial EEG (IEEG) 
data. For each window L and d are computed to obtain a 
value of D.  However, analyzing the variation of (1) and/or 
(3) with respect to parameters d, L, and N, it can be shown 
that within the broad range of possible values for these 
parameters, there are combinations of them where Katz 
definition leads to inconsistencies such as the singularity 
illustrated in Fig. 1 when plotting (3) as a function of d.  
Similarly, signals that lead to these fractal dimension 
inconsistencies can be constructed such as the one shown in 
Fig. 2, that can be generated with the sequence 

22 )100(200  2 )1()( −−−= nnx n , and whose fractal 

dimension is –16.97 when using (3). 
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Figure 2: Sequence 22 )100(200  2 )1( −−− nn , whose   

fractal dimension yields a negative value 
 
The results presented in [7] with simulated and 

experimental IEEG data were within the range of values for 
which the fractal dimension by Katz works well. Aimed at 
overcoming this problem and making an algorithm 
computationally more efficient, we observed that the 
logarithm functions in (1) and/or (3) could be dropped 
without affecting the detection capabilities and producing a 
more efficient feature, in the sense that it becomes faster and 
numerically more stable.  After eliminating the logarithms 
in the numerator and denominator of (1) and (3), they 
become L/d. The variable d can be considered as a 
normalization factor that is updated with every shifting of 
the sliding window.  We have experimentally observed that 
the value of d does not change much over time and decided 
to change it into a normalization constant K, that is the 
number of window shiftings that fit into the sliding window 
length. This is equivalent to stating that K is the number of 
times the feature is updated during a time span equal to the 
running window length (N). Therefore K will make sense 
only when the sliding window shifting is lower or equal to 
the sliding window length N.  This is the feature defined as 
line length, where L is the same defined in (2). The 

sequence of values generated with (2) as the sliding window 
moves through the data can be represented as in [4] by, 
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where LL(n) is the normalized line length value at discrete 
time index  n, L(n) is the running sum of distances between 
successive points within the sliding window of size N, x[k]  
is the data sequence value at the kth

 sample, K is the 
normalization constant, N is the sliding window length, and 
abs  stands for absolute value.  
 

The summation indexes in (4) were changed with respect to 
the ones of the curve length in [5] to have a causal 
expression, and the normalization constant K has been 
added.  Note that the line length grows as the data sequence 
magnitude or frequency increases; in this sense the line 
length can operate as an amplitude and frequency 
demodulator. We verified perfect demodulation using test 
sinusoids with constant and linear chirp frequencies.  This 
seems to be a good property of any useful feature for seizure 
detection, Osorio and Frei feature in [1] combined time and 
frequency information, and similarly Gotman’s half wave 
algorithm [2] considers the amplitude and frequency of the 
data signal.   

This study built on the idea in [5] of computing a feature 
for two different window lengths, a short-term window and 
a long-term window, such that when the short-term feature 
goes above or below the adaptive threshold obtained from 
the long-term feature the detection can be declared. 
Following this approach, a line length trend is defined as a 
trend window consisting of sampled intervals whose length 
is a multiple of the shifting time. Figure 2 indicates how this 
line length long term window or trend is defined for a 
portion of IEEG data. Note that instead of using all the 
points within the long term window, only the regions 
denoted as data segments in Fig. 2 are the ones considered 
for the line length trend. This is equivalent to sample the 
long term window instead of using all of it, yielding 
computational savings in time and memory. The line length 
feature as stated in (4) is computed for each data segment of 
length N within the long term window, and then, the average 
of all these line length values from every data segment is 
calculated and defined as the trend value.  Figure 3 
illustrates how the trend is determined. In this figure, the 
long term window consists of four sample intervals. Note 
that the number of sample intervals within the long term 
window is a patient-specific tunable parameter. In the 
present study the length of the data segments within the long 
term window was identical to the length of the running short 
term line length window defined in (4). 
 

 
Figure 3: Line length trend window 
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Seizure onset detection is declared when the running short 
term line length reaches or goes above a threshold defined 
as the trend value plus a fixed or percent offset. This offset 
is another parameter that is tuned to each patient. 

 
III. METHODS 

 
The IEEG data used in the analysis is part of a Georgia 

Tech - Emory Univ. - Univ. of Pennsylvania database, 
acquired from epileptic patients that underwent a pre-
surgical evaluation and whose IEEG signals were recorded 
during that evaluation with simultaneous video-taping of the 
patient activity for a period of approximately 4 to 11 net 
days (5 to 23 days in the hospital). The IEEG data was 12 
bit acquired at 200Hz, but since this study was conducted as 
part of a validation for an implantable device under 
development [8], in order to follow closely the operating 
conditions of the device, the IEEG was reformatted to 10  
bits and 250Hz.  

Two classes are defined in this study, the seizure-onset 
class and the non-seizure-onset class. Among the line length 
parameters, the line length threshold offset (threshold = 
trend value + offset) was tuned to each patient. To 
accomplish this, an interactive Matlab toolbox was 
developed and a training set was established including IEEG 
from the two classes defined.  The Matlab toolbox 
comprises a library with the line length feature and related 
codes, a system simulation interface that presents graphs 
with the input data, line length feature, line length trend, 
detection output, and performance metrics regarding point 
basis statistics of the detection output and block basis 
statistics depending on the class the IEEG segment belongs 
to. The metrics provided by the system are the FPs, FNs, 
correct positives, correct negatives, detection delay for each 
seizure, and average detection delay for a patient group of 
seizure. On this training set a manual tuning was performed 
to determine the threshold that yielded the best results. A 
desired goal was pre-established as no more than 10% of 
false negatives (FNs) and less than two false positives (FPs) 
per day (0.0833 FPh). The training records were defined as 
3-minute segments clipped from the database. Training 
records from the seizure-onset class were clipped such that 
there were available two-minutes of preictal period and 1-
minute of ictal. The number of seizure-onset records within 
the training sets of each patient varied between zero and 
nineteen. Patient j used 19 seizure-onset training records; 
she had a total of 31 seizures available including 22 
subclinical seizures. Patient e used zero records because 
before starting the manual tuning his training set worked at 
the very first try with the set of parameters used in patient 
b’s parameters used as default, therefore no tuning was 
necessary for this patient. The number of non-seizure-onset 
records within the training sets varied between 1 and 15. A 
total of 68 seizure-onset and 86 no seizure-onset records 
were used for training leaving for testing a total of 43 
seizures and 1205.15 hours of non-seizure-onset class. The 
testing set of each patient was not used during the patient 

tuning of line length p, it was only utilized at the end to 
validate the proposed feature.  After the manual tuning of 
the threshold offset in each patient, the line length detection 
tool was run over the entire hospitalization stage available 
for each patient.  
 

IV. RESULTS 
 

Table 1 presents the results obtained after computing the 
line length feature over 1,215 hours of intracranial EEG 
available from 10 patients analyzed.  
 

Table No. 1: Line length detection results 

 
FPh: False positives per hour. 
FNs: False negatives 
ADEO Delay: delay of the detection time with respect to the 
unequivocal electrographic onset in seconds. 
CO Delay: Clinical onset time with respect to the detection 
time in seconds.  
 

V. DISCUSSION AND CONCLUSIONS 
 

Considering the fact that only one feature was used in this 
study, the results are very encouraging.  If other efficient 
features of different nature, are added into the system, then 
better performance is expected due to the complementary 
effect obtained when efficient features are combined 
together [2],[3],[9]. In addition this feature is suitable to be 
used in any other areas were the primary goal is detection of 
a signal event.  Further research in underway to study the 
performance of this feature in combination with others.  
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