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ABSTRACT

A parallel-cascade system identification technique was
used to examine the intrinsic and reflex contributions to
overall ankle stiffness in normal (control) and spastic spinal
cord injured (SCI) subjects as a function of voluntary
contraction level. Intrinsic dynamics were modeled as a
linear, 2nd-order system relating intrinsic torque to joint
position. Reflex dynamics were described by a linear, 3rd-
order system relating half-wave rectified velocity and reflex-
torque. Intrinsic stiffness was similar in magnitude in both
groups and increased with voluntary contraction at similar
rates. In contrast, reflex stiffness dynamics behaved
differently in the two groups: (1) reflex stiffness gain was
significantly greater in SCI than control subjects at all
contraction levels, (2) the modulation of reflex gain with
voluntary contraction was abnormal, and (3) the reflex
frequency parameter was lower in SCIs and decreased with
contraction level while it increased in controls. These
differences were significant across a wide range of
contraction levels with the gain difference being largest at
low levels of contraction and the frequency difference being
largest at high levels of contraction.

INTRODUCTIOIN

Spasticity is a motor disorder associated with lesions at
different levels of the nervous system due to spinal cord or
brain injury, multiple sclerosis, cerebral palsy, or stroke [1].
Common clinical symptoms in SCIs include hypertonia,
autonomic hyperreflexia, flexor or adductor spasms, clonus,
and weakness of voluntary contraction [2]. Nevertheless,
hypertonia, an abnormal increase in muscle tone, is regarded
as the defining feature of spasticity [3] that has both
diagnostic and therapeutic significance [2]. In our previous
studies, we used a parallel-cascaded system identification
technique to quantify muscle tone in terms of ankle dynamic
stiffness [4, 5]. Our findings demonstrated that reflex
stiffness gain was significantly increased in SCIs [5]. We
argued that this abnormality could be due, at least partially,
to the inappropriate recruitment of larger motor units at low
levels of contraction (0-10% MVC) where only small motor
units are recruited in normal subjects. This argument was
supported by our finding that reflex latency was shorter in
SCIs than controls [6], consistent with faster conduction by
larger motor axons.

Based on these findings we hypothesized that
inappropriate recruitment of motoneurons could result in

abnormal modulation of reflex stiffness with voluntary
contraction in spastic. We designed this study to test this
hypothesis by examining dynamic stiffness and reflex
function of the ankle joint as a function of voluntary
activation level in SCIs and controls.

EXPERIMENTAL PROTOCOL

Eight control subjects (4 females, 4 males) and nine SCI
subjects (3 females, 6 males) with different degrees of
spasticity were examined. Subjects lay supine with their foot
attached to the pedal of a stiff, position controlled, electro-
hydraulic actuator by a custom fitted fiber-glass boot. Joint
position and torque were measured by transducers in the
actuator. Electromyograms from the tibialis anterior and
gastrocnemius muscles were recorded using bipolar surface
electrodes.

A series of pseudorandom binary sequences with an
amplitude of 0.03 rad and a switching-interval of 150 ms
were used to perturb the ankle at neutral position (90o). PRBS
trials were then recorded at tonic contractions ranging from 0
to 50% of the PF MVC, with the ankle at the neutral position.
Trials were done at 3 Nm intervals up to –24 Nm. The
different levels were examined in a different random order
for each subject. Subjects had difficulty maintaining stable
contractions at high torque levels. Consequently, only
contractions less than 50% MVC and -24 Nm were included
in the analysis. Plantarflexion is considered negative by
convention.

ANALYSIS METHODS

Parallel-cascade Identification Technique

Intrinsic and reflex contributions to the ankle stiffness
dynamics were separated using a parallel-cascade
identification method [7], shown in Figure 1.

Intrinsic stiffness dynamics were estimated by
determining the impulse response function ( PTQIRF )

between position and torque.
Reflex dynamics were modeled as a differentiator, in

series with a delay, a static nonlinear element (a half-wave
rectifier) and then a dynamic linear element. Reflex stiffness
dynamics were estimated by determining the impulse
response function (VTQIRF ), between half-wave rectified

velocity as the input and the reflex-torque as the output, using
Hammerstein identification methods [7]. The non-linearity
was found to be a half-wave rectifier, and thus the overall
reflex gain was measured from the linear dynamic element.
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Figure 1: The parallel cascade model

Parametric Model

Parametric estimates of the intrinsic stiffness
dynamics were obtained by fitting a linear, second-order
model to the compliance IRF, ( TQPIRF

, the inverse of

PTQIRF
) using non-linear least squares methods. Compliance

transfer functions were considered as the second-order
system:
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where I=inertia, B=viscous and K=elastic parameters.

Similar methods were used to fit a parametric model to
the non-parametric VTQIRF

. The linear, dynamics of the

reflex stiffness were well described by a third order system:
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where g=reflex gain, ξ =damping, ωn =natural frequency,

p = the other frequency, and T =delay.

RESULTS

Intrinsic Stiffness vs Voluntary Torque (Group Results)

Figure 2 shows the group-means and standard errors of
intrinsic stiffness parameters as a function of voluntary
contraction. Intrinsic stiffness gain (K, Fig. 2A) and viscosity
(B, Fig. 2B) were similar in both SCI and control groups;
both increased as contraction levels increased. Inertial

parameter (I, Fig. 2C) was also similar in both groups and
independent of voluntary contraction.
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Figure 2: Intrinsic stiffness gain vs voluntary contraction.
Group Mean ±1 Standard Error.

Reflex Stiffness vs Voluntary Torque (Group Results)

Figure 3 shows the group-means and standard errors of
reflex stiffness parameters as a function of voluntary
contraction. The major findings are:
(1) Reflex stiffness gain ( GR , Fig. 5A) was significantly

larger for SCIs than for controls at all levels of
contractions.

(2) The frequency parameter (p, Fig. 5C) was smaller in
SCIs than controls and the difference increased as
voluntary contraction increased. Modulation of p with
voluntary torque was also abnormal; p decreased as
torque increased in SCIs while it increased in controls.
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Figure 3: Reflex stiffness gain vs voluntary contraction.
Group Mean ±1 Standard Error.
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Reflex Gain vs Voluntary Torque (Individual Results)

The modulation of most intrinsic and reflex stiffness
parameters with voluntary contractions was very consistent
as indicated by narrow standard error. The SCI reflex gain
showed much larger variability and consequently we
examined the behavior of each subject separately as shown in
Figure 4. Four types of behavior were apparent
(1) GR remained constant at low levels of contraction and

then increased for higher level of contraction (Fig 4, S2).
(2) GR did not change systematically with voluntary torque

(Fig. 4, S1 & S3).
(3) GR first increased from relaxed to lowest level of

contraction then decreased as torque increased, and again
increased (Fig. 4, S4 & S8).

(4) GR changed similarly to (3) except it did not increase at

the end. This trend was similar to the trend of control
subjects (Fig. 4, S5-S7).
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Figure 4: Reflex stiffness gain vs voluntary contraction for SCI
subjects. Each panel shows the results of one SCI subject.

DISCUSSION AND CONCLUSION

The results show that the intrinsic and reflex stiffness
strongly change with voluntary contraction in both groups
and demonstrate four major abnormalities in SCI subjects:
(1) reflex gain was enhanced significantly; (2) modulation of
reflex gain with voluntary contraction was abnormal; (3) the
frequency parameter was reduced, (4) modulation of the
reflex frequency parameter with torque was abnormal. In
contrast to reflex stiffness, intrinsic stiffness was similar in
both SCI and control groups.

The increase in reflex gain in SCI subjects may be
attributed to inappropriate recruitment of motor units in
spastic subjects [6], as mentioned in introduction.

Abnormal modulation of reflex stiffness gain with
voluntary contraction can be caused by abnormal changes in
force generation of spastic muscles due to inappropriate

recruitment of motoneurons, or perhaps a disruption in size
principle.

The smaller values of the reflex frequency parameter, p,
in SCIs for active condition could be attributed to neural
mechanisms. Our earlier study demonstrated that, in active
conditions, reflex activation dynamics (including both
receptor responses and motoneuron dynamics) of both SCIs
and controls are comprised of a main peak at a latency
corresponding to that of a monosynpatic reflex arc, followed
by a few additional bursts of decreasing amplitude at
intervals of about 140 ms [8]. The amplitudes of the extra
bursts were significantly larger in SCIs than controls and had
inverse relation with the value of p. This suggested that
repeated activation of the motoneuron pool, represented by
extra peaks in the reflex activation dynamics, could be the
origin of the reduced frequency parameter.

Our finding that the frequency parameter of the reflex
stiffness increased with torque in controls is consistent with
the size principle and the fact that higher-threshold motor
units, recruited more at higher levels of contraction, have a
shorter twitch contraction time. However, inappropriate
recruitment of larger motoneurons and abnormal changes in
neural mechanisms may cause a decrease in the frequency
parameter rather than increase.
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