
Abstract- We investigated robotic methods for teaching 
movements to hemiparetic subjects using novel techniques for 
neuro-adaptive control. Eight healthy subjects and twelve 
hemiparetic stroke subjects were exposed to novel viscous forces 
during planar movement of the hand towards a visual target.  
These forces were initially responsible for significant movement 
errors, but were followed by automatic adaptation. The forces 
were designed so that unexpected withdrawal would result in a 
pronounced after-effect, consisting of movement path errors that 
were opposite in sign to those induced by initial application of 
the force filed. For healthy subjects, the desired movement was a 
curved sinusoid. For the hemiparetics, we chose a replicated 
normal trajectory. After-effect trajectories in healthy subjects’ 
were significantly shifted toward the desired trajectory. This 
after-effect fully washed out following the removal of the forces 
in the final 50-75 movements, regardless of whether the subjects 
had visual feedback of their position. After-effects also 
generalized to movement directions that were not practiced.  
Hemiparetics showed different types of results. While several of 
them showed minimal improvement, the remaining hemiparetics 
showed adaptation with beneficial after-effects. Furthermore, 
several in this group retained diminished features of these after-
effects for the duration of the experiment. This approach may be 
an effective neurorehabilitation tool because it does not require 
explicit instructions about the desired movement. 
Keywords - Robot, motor control, model, dynamics, adaptation, 
learning 

 
I. INTRODUCTION 

 
The full potential of robots for teaching and rehabilitation 

has yet to be determined, but certainly there are options that 
go beyond what a therapist can do -- robots are precise, 
tireless devices that can measure progress with high accuracy. 
We have been focusing on a force field approach that may 
facilitate recovery from brain injuries such as stroke. 

Motor adaptation studies have demonstrated that when 
people are repeatedly exposed to a force field that 
systematically disturbs arm motion, they learn to anticipate 
and cancel out the forces and recover their original kinematic 
patterns [1-7]. When the disturbing force field is 
unexpectedly removed, where subjects make erroneous 
movements in directions opposite to the perturbing forces 
(after-effect).   

We have recently shown that it is possible to reverse-
engineer the problem and determine the forces that will 
ultimately result in prespecified, “desired” after-effects [8-
10]. In this paper we continue to explore the simplest possible 
approach to this -- a model-free technique using a two-joint 
planar robot [10]. We present two new results testing the 
technique on healthy subjects and then turn our attention to 
stroke subjects. In these initial studies, we restricted our 

forces to the first 200 ms of the movement to determine 
whether correcting errors in the early phases of movement 
would diminish the errors later in the movement. The results 
should provide initial guidance for more in-depth clinical 
studies on robot-assisted neurorehabilitation. 
 

II. METHODOLOGY 
 
Our goal was to determine the robotic training forces that 

ultimately lead to the execution of the desired movement xD(t) 
as an after-effect of adaptation. We assume that the 
adaptation is an alteration of the feedforward plan that 
cancels out externally applied forces from the robot. The 
method involves two parts. The first part is an iterative 
algorithm that determines the forces FDi(t) required to shift 
the unsuspecting subject's trajectory to the desired trajectory 
xDi(t) for the first 200 ms. The  subscript i represents the three 
target directions (Figure 1). Forces were presented 
intermittently (1 in every 4 movements, randomly presented) 
to prevent any expectation. The second part of our method 
applied -FDi(t), the vector inverse, in prolonged training that 
would lead to the desired adaptation as an after-effect.  
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Figure 1. The subject and planar robot, driven by two brushed DC 
torque motors (Kolmorgen PMI JR24M4CH), controlling forces at a 
handle via a 4 bar linkage (Figure 1). Digital encoders (Teledyne-
Gurley 25/045-NB17-TA-PPA-QAR1S) report angular position, and 
a force/torque sensor (ATI Gamma 30/100) reports the interface 
kinetics. Data were collected at 100 Hz. 
 

Ten healthy and nine hemiparetic adults volunteered to 
participate. Before beginning the experiments, each subject 
signed an approved consent form and was seated so that the 
center of the range of targets was anterior to the shoulder 
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approximately in the center of their reachable workspace. 
Two hemiparetic  subjects were adjusted when it was 
necessary so that they could reach the starting point with 
ease. 

Each movement was 10 cm in one of 3 randomly chosen 
directions spaced 120 degrees apart (see Figure 2). Healthy 
subjects were given visual targets so that they made a series 
of random-walk reaching movements inside a rectangular 
area 38 wide by 28 tall. Hemiparetic subjects were given 
visual targets so that they made center-out reaching 
movements in the same three directions, but then were cued 
to return to the center point after each movement. To limit the 
impact of  fatigue, all subjects were allowed to rest before 
initiating any movement.  

We required subjects to perform movements in three 
directions, broken down into the following experimental 
phases, all evenly and randomly distributed amongst the three 
directions:  
PART 1 

• Unperturbed familiarization: 15 movements. 
• Unperturbed baseline: 15 movements. 
• Machine learning: 298 movements with random, intermittent 

perturbations were presented once every four movements. The 
computer gradually learned the forces required to push the 
subject over to the "desired" trajectory.  

PART 2: 
• Unperturbed familiarization: 3 movements 
• Unperturbed baseline. 15 movements to determine if the 

baseline pattern changed due to PART 1. 
• Learning. 330 movements of constant exposure to the forces. 
• After-effects. 120 movements, with random, intermittent 

removal of the force field once every eight movements (catch 
trials) to determine the after-effects. 

• Washout. 75 movements, all without forces. The subject de-
adapts.  
The desired trajectory xD(t) that we chose for healthy 

subjects was a sinusoidal warping of a typical bell-shaped 
velocity profiled movement (see bold dotted lines in Figure 
2). We chose this because it was not considered a movement 
that is biomechanically or physiologically impossible and 
because it would involve forces that would not take an 
excessively long time to learn. For hemiparetic susbjects, we 
chose a standard straight-line movement with a bell-shaped 
velocity profile.  

This paper presents two new experiments on healthy 
individuals to further understand the results demonstrating the 
effectiveness of this technique [10]. The first experiment  (no-
vision experiment) determined whether washout results from 
the subjects seeing a mistake and thus de-adapting. Five 
subjects participated. Vision of the moving cursor was 
blanked during the movement in all but the initial, 
unperturbed familiarization movements. After the movement 
had terminated the cursor appeared and the subject could 
move to the appropriate starting point for the next movement.   

The second experiment  (generalization experiment) de-
termined if after-effects generalize to adjacent directions. We 
tested the hypothesis that the nervous system is “broadly 

tuned” so that training in one set of directions can influence 
others [11]. We evaluated four more subjects with a slightly 
altered protocol with extra trials in new directions in the 
baseline, after-effects and final washout sections. These trials 
were to targets halfway between the original targets. 

 
Figure 2. Movement paths for a healthy subject. Desired trajectories 
are the bold dotted lines, the average trajectory are the bold solid 
lines, individual trajectories are thin lines, and shaded areas 
indicate 95% confidence.  
 

For hemiparetic subjects, we chose a standard straight-line 
movement with a bell-shaped velocity profile. These subjects 
were allowed to see their cursor at all times. 

To promote ready comparison between different studies, 
we estimated the initial direction error to gauge the 
effectiveness of the approach in shifting the early parts of the 
movement. This value measured by forming a vector from the 
start point to 25% of the distance to the target. We defined 
positive to be counter-clockwise from the each movement’s 
vector to that of the desired trajectory so that a value of zero 
meant a perfect shift to the desired trajectory. Hypotheses 
were tested using α = 0.05 using paired t-tests to determine 
significance. 



 
III. RESULTS 

III.A. Healthy subjects 
As reported previously [10], unperturbed movements 

approximated straight-lines with bell-shaped velocity profiles 
(Figure 2A). Then following machine learning and learning 
phases, the robot forces were suddenly removed and 
trajectories shifted closer to the desired trajectory (Figure 
2B). These after-effects washed out in the final 50-75 
movements (Figure 2C).  

The results of this additional no-vision experiment 
provided no clear evidence that washout was attenuated. 
Hence, removal of vision during the movement phase is 
presumably not enough to significantly attenuate the washout 
phenomenon seen in this study. 

We found significant after-effects on these non-practiced 
directions, indicating that subjects’ learning generalizes to 
movements that were not practiced.   
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Figure 3. Group results from the Generalization experiment. Initial 
direction error measure illustrating after-effects and washout on 
interpolated (untrained) trajectories. Shaded areas represent 95% 
confidence intervals for the group, while the symbols and bars show 
the individual subject data. Though these trajectories were not part 
of the training, there is still a significant shift towards the desired 
trajectory. As expected, this effect also gradually vanishes in the 
washout phase.  
 
III.B. Hemiparetic subjects  

. Stroke subjects showed less dramatic results, yet for 
some subjects results were promising. Of the nine subjects 

that completed the experiments, one subject did not appear to 
adapt, three subjects were so high functioning that there was 
nothing to improve in the context of this experiment, and the 
remaining five showed signs of beneficial adaptation (Figure 
4). Three of the five displayed some features of these after-
effects for the duration of the experiment (75 washout trials). 
However, only one of the five of the subjects that showed 
beneficial adaptation in the beginning of movement also 
exhibited reduced errors at the end of the movement. This 
indicates that errors the final phase of movement are not just 
a over correction of the errors in the beginning of the 
experiment.  

 
Figure 4. Movement paths before (left) and after (right) training for 
a stroke survivor (Left L Basal Ganglion). Desired trajectories are 
the bold dotted lines, the average trajectory are the bold solid lines, 
individual trajectories are thin lines, and shaded areas indicate 95% 
confidence. This subject showed the typical synergy pattern for the 
up-and-to-the-right movement, and showed a beneficial after effect 
for his direction. Other movements were less dramatic due to a 
“ceiling effect” in which there was little to improve. 

 
IV. DISCUSSION 

 
This study reports on out preliminary investigations into a 

new approach for robot-assisted movement teaching that 



exploits the natural adapting tendencies of the nervous 
system. Subjects were trained by making movements in the 
presence of a force field specifically designed so that when 
the force field was unexpectedly removed a desired trajectory 
would result. Subjects showed shifts of trajectories towards 
desired, even though they were never given any knowledge of 
what the desired was. Depriving a healthy person of visual 
feedback does not appear to alter the washout. Healthy 
subjects also show after-effects in target direction that were 
not practiced. Finally, this system not only can cause the 
execution of prespecified curved trajectories in healthy 
subjects, it also provides some encouraging preliminary 
evidence that this approach can be used to obtain smoother 
trajectories in stroke patients.  

This system is reasonably successful although it neglects to 
take into account musculoskeletal impedance and spinal 
reflex properties. A more sophisticated approach may be to 
model these contributions and factor them in to the estimate 
of limb dynamics[8]. Our initial attempts at such a model-
based approach has proved less successful up to this point [9], 
but as more precise models are developed, the approach may 
prove more effective.  

Earlier studies on stroke subjects in our laboratory have 
revealed that after-effects can persist for many movements 
when the after-effects had the features of normally accurate 
and smooth movements [12]. The present study furthered this 
effort to provide forces that were custom-tailored to the 
subject. No clear evidence yet exists proving that subjects can 
preserve their after-effects, though some do appear to 
preserve at least some limited features of the aftereffects for 
the duration of the experiment. One can also consider 
prolonging this type of training over many days to get ever 
closer to the desired outcome. However, only patients whose 
injury spared the brain regions that are involved in adaptation 
would potentially benefit from this type of procedure. Other 
studies using robotics for rehabilitation have also provided 
tools for assessment and training, demonstrating the potential 
benefits of robotic rehabilitation [13-16]. Training typically 
requires a balance of repetitive practice, strengthening, and 
expert guidance. We believe that the implicit approach 
presented here provides a new pathway for augmenting motor 
learning in both the healthy and bran-injured populations.  
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