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Abstract  The identification of the timing of the 

discharges of groups of muscle fibers (motor units) is of 
utmost importance in research into the strategies employed by 
the central nervous system in producing muscle force and in 
the diagnosis of neuromuscular diseases.  The process involves 
the recognition of unique shapes (action potentials) 
contributed by different motor units at random times 
throughout a muscle contraction.  This paper addresses a 
specific aspect of the identification process: the decomposition 
of the compound signal when the action potentials of two or 
more motor units are superimposed. We propose a cross-time-
frequency-based procedure to identify which two (out of a 
previously identified collection of waveforms) are included in 
a superposition.  

Keywords  Cross-time-frequency, decomposition, 
superposition,  action potential, motor unit 

I. INTRODUCTION 

A variety of algorithms have been proposed in the past to 
decompose the signal into the basic waveforms related to the 
firing of different motor units. However, when two or more 
different action potential waveforms occur at the same time, the 
automatic decomposition of the signal into the two action 
potential waveforms is not a trivial task. Traditional filtering 
approaches are not very successful in this case because motor unit 
action potential waveforms often partially overlap in frequency. 
Therefore trivial approaches (i.e. matched filters) are 
unsatisfactory to solve this problem [8]. The most common 
approach previously proposed is the peel-off method [4][11] 
where the superposition is correlated to each individual motor unit 
template and the best matched template is aligned with the 
superposition and subtracted from it. The procedure is repeated for 
the rest of the templates until the energy of the remaining signal is 
below a preset value. This approach is also unsatisfactory because 
depending on the delay with which the action potentials overlay 
each other various peaks can cancel each other out and the 
resultant signal may not have strong correlation to the individual 
templates [8].  In order to overcome the limitations of previous 
approaches we propose to investigate a methodology that relies on 
a cross-time-frequency based algorithm. The cross-time-frequency 
representations will be computed using Cohen Class 
transformations [7] because of the properties of this class of 
transformations that allow the filtering out of the cross-terms 
[9][12] that make it difficult to solve the superposition problem. 

II. CROSS TIME FREQUENCY BASED 
DECOMPOSITION OF SUPERPOSITIONS 

A. Rationale 

The proposed methodology to decompose superpositions 
will assume that a certain number of unique action potential 

waveforms, referred to as ‘templates’, have already been 
identified. Therefore let 1x , x2 , ... , xN  be the templates 
derived for N motor units and y a signal constituted by the 
superposition of xi  and x j ,which needs to be decomposed.  The 

technique that we propose consists of deriving the cross-time-
frequency distribution [6] of each template with the signal y 
constituted by the superposition of any combination of the 
identified action potential waveforms with unknown delays with 
respect to each other. It can be shown that when the template 
utilized to derive the cross-time-frequency distribution is 
embedded in the signal y, the cross-time-frequency distribution - 
filtered according to criteria designed in the ambiguity 
domain [10] - is “similar” to the time-frequency distribution of the 
template. On the contrary, when the template utilized to derive the 
cross-time-frequency distribution is not embedded in the signal y, 
the filtered cross-time-frequency distribution is not “similar” to 
the time-frequency distribution of the template. 

B. Illustration of the Technique 

In the following we illustrate the procedure for a 
superposition y x x= +1 2 .  We first consider the cross-time-

frequency representation of x1  and y , namely TFx y1
, and 

observe that it can be expressed as  

TF TF TFx y x x x x1 1 1 1 2
= +  

where TFx x1 1
is the time-frequency representation of 1x , 

and TFx x1 2
 is “half” the interference term [2] of the time-

frequency representation of y , TFyy  expressed by 

12212211 xxxxxxxxyy TFTFTFTFTF +++= . By applying an 

appropriate kernel to the cross-time-frequency transform TFx y1
, 

it is possible to reject TFx x1 2
 thus leading to TFx x1 1

. 

This is because TFx x1 2
 holds the characteristics of the 

interference terms [3] and thus, in order to reject it, one may apply 
the same criteria utilized to attenuate the interference terms which 
affect the auto-time-frequency representation of a generic signal. 
In practice an attenuation of TFx x1 2

 will be obtained rather than 

its complete rejection [12]. 

The technique is illustrated in Figure 1. The upper plot 
represents the action potential waveforms of two templates, x1(t) 
and x2(t). The plot in the middle shows the time-frequency 
representation of the two templates. The lower plot displays the 
cross-time-frequency representation of x1(t) and y(t)=x1(t)+x2(t) 
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obtained using the Choi-Williams transformation [5]. The cross-
time-frequency representation in Figure 1 is apparently “similar” 
to the time-frequency representation of x1(t). 

C. Interpretation in the Ambiguity Domain  

To further demonstrate how the cross time-frequency 
approach suppresses undesirable terms and ‘teases out’ the 
template embedded in the superposition, consider the cross-
ambiguity function derived by x1  and y  

AF AF AFx y x x x x1 1 1 1 2
= +

 
 (1) 

where AF indicates either the ambiguity function or the 
cross-ambiguity function. Subscripts correspond to those defined 
above for the time-frequency representations. It is well known that 
the term AFx x1 1

 is usually concentrated over the axes of the 

ambiguity plane, while the term AFx x1 2
, which corresponds to a 

“half” interference term, is expected to be away from the axes. 
The distance of AFx x1 2

 from the origin of the ambiguity plane is 

a function of the distance between the baricenters of the auto-
time-frequency representations of x1  ( TFx x1 1

) and x2  

( TFx x2 2
). Therefore kernels which attenuate components of the 

ambiguity function that are away from the axes lead to a reduction 
of the amplitude of TFx x1 2

. 

Figure 2 shows the ambiguity functions of the action 
potential waveforms represented in Figure 1. The ambiguity 
function of x1(t) and the cross-ambiguity function of x1(t) and x2(t) 
are displayed.  The sum of these two functions is equal to the 
cross-ambiguity function of x1(t) and y(t)=x1(t) + x2(t), as seen 
from equation (1) above. The coordinates of the baricenter of the 
cross-ambiguity function of x1(t) and x2(t) are equal to the 
distance in time and frequency of the time-frequency 
representations of the two components [9]. This figure also 
emphasizes the relevance of an appropriate choice of the filtering 
function in the ambiguity domain. The optimal filter would 
maximize the attenuation of the cross-ambiguity function of x1(t), 
x2(t) and not alter the ambiguity function of x1(t). Possible design 
criteria are discussed in the last section of this paper. 

D. Classification Procedure  

With y x xi j= +  and i and j being unknown, the 

proposed classification procedure requires the computation of all 
the cross-time-frequency representations of xk  (with k=1, ... , N) 
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Figure 1. The cross-time-frequency based 
technique to solve the superposition of waveforms. 
(A) Superimposed waveforms x1(t) and x2(t). 
(B) Time-frequency distributions 

1xTF and 
2xTF . 

(C) The Choi-Williams cross-time-frequency 
distribution computed using the first template x1(t) 
with the superimposed signal y(t)=x1(t)+x2(t). 
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Figure 2. The ambiguity function of the template 
x1(t) and cross-ambiguity function of x1(t) and 
x2(t). The relationship between the ambiguity and 
cross-ambiguity functions are used to filter the 
cross-ambiguity function in order to identify the 
template contributing to the superposition.  



and y  thus  

jkikk xxxxyx TFTFTF +=  

and the cross-ambiguity function 

21 xxxxyx kkk
AFAFAF += . 

It is apparent that in cases where j≠ i or j, the cross-
ambiguity function is expected to be located away from the axes 
while the energy around the origin of the ambiguity plane is 
expected to be negligible. In fact, in these cases, we are computing 
the cross-ambiguity function of cross-products among different 
components, i.e. templates, thus leading to terms that are like the 
interference terms. 

An example is shown in Figure 3 that shows the output of 
the proposed procedure when one computes the cross-time-

frequency representation of the superimposed waveform 
y(t)=x1(t)+x2(t) with a template x3(t). The upper plot of Figure 3 
shows the motor unit action potential waveforms x1(t) and x2(t), 
that contribute to the superimposed waveform, together with a 
third template x3(t). The plot in the middle represents the time-
frequency distribution of the template x3(t). The lower plot reports 
the cross-time-frequency distribution of x3(t) and y(t)=x1(t)+x2(t) 
computed using a Choi-Williams transformation [5]. Clearly, the 
derived cross-time-frequency distribution does not even slightly 
resemble the time-frequency distribution of x1(t). 

Figures 1 and 3 summarize the rationale for the 
identification procedure. When one computes the cross-time-
frequency distribution of the superimposed waveform and a 
template that does contribute to the superposition, the computed 
representation on the time-frequency domain is “similar” to the 
distribution of the template. Conversely, when one derives the 
cross-time-frequency distribution of the superimposed waveform 
and a template that does not contribute to the superposition, the 
derived representation on the time-frequency domain does not 
even resemble the time-frequency distribution of the template. 
Therefore, using a measure of “similarity”, i.e. distance, between 
the cross-time-frequency representation and the time-frequency 
distribution of the template, one may define a way to identify the 
templates that contribute to the superimposed waveform. 

E. Filtering of the Cross Ambiguity Function 

To increase the “similarity” between time-frequency and 
cross-time-frequency representations (Figure 2) we compared 
different approaches to filtering the cross-ambiguity function (i.e., 
choices of the kernel of the cross-time-frequency transformation). 
Specifically, we utilized the following transformations: 1) cross-
Wigner-Ville (XWV); 2) Choi-Williams (CW) (σ=0.1) [10]; 
3) Radially Gaussian Kernel (RGK) [1]; 4) a transformation based 
on a modified design of the RGK kernel (Modified RGK), derived 
by utilizing the entire ambiguity function domain for the 
convergence of the algorithm as opposed to the first and second 
quadrants; 5) a Matched Kernel transformation designed, for each 
template under consideration, as the square of the magnitude of its 
ambiguity function.  Figure 4 displays the improvement 
introduced by the use of the Matched Kernel. 

F. Simulations 

Five actual action potential waveforms (templates) recorded 
during a muscle contraction were used to simulate superimposed 
waveforms. A total of 400 superpositions were obtained by 
combining pairs of templates with different degrees of overlap, 
i.e., shifting one template with respect to the other (range ±1 ms). 
For each superposition, the cross-time-frequency representations 
of the superposition and each of the templates were computed 
using the methods described above. Then the Kolmogorov 
distance between each cross-time-frequency representation and 
the time-frequency distribution of the template used to derive the 
cross-time-frequency representation was computed. The 
superposition was considered to be made up of the two templates 
that resulted in the lowest two distances. 
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Figure 3.  The rejection of a template that is not 
included in a superposition. (A) Two templates x1(t) 
and x2(t), that contribute to a superposition y(t)= x1(t) 
+ x2(t), and a third template x3(t) that is not included 
in the superposition. (B) Time-frequency 
representation of the third template x3(t). (C) The 
Choi-Williams cross-time-frequency distribution of 
y(t)= x1(t) + x2(t) and x3(t). 



III. PRELIMINARY RESULTS  

Our study indicates that the proposed method can identify 
the motor unit action potential waveforms contributing to a 
superposition with reasonable success. Marked differences were 
observed when different filtering approaches were applied to the 
cross-ambiguity functions. The XWV approach resulted in the 
lowest performance, i.e., 58.5 % of the decompositions were 
successful. The Matched Kernel approach was the best (88 % 
successful decompositions). 

IV. CONCLUSIONS 

A method to solve the superposition of action potential 
waveforms has been proposed based on the use of cross-time-
frequency transformations. A preliminary study to assess its 
application to real data indicates the suitability of the technique.  
However, future work needs to be done in order to fully 
characterize the methodology. Specifically, a point of paramount 
importance is the characterization of the methodology when the 
motor unit action potential waveforms slightly change in time, as 
it happens because of the physiology of the muscle contraction. 
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Figure 4. Improvements afforded by filtering in the 
ambiguity domain. A. The cross-ambiguity functions 
between the waveforms x1 and x3 with the 
superposition waveform y = x1 + x2 (see Figure 2). 
The kernels are shown as shaded areas. B. The 
resultant cross-time-frequency transforms between 
the superposition waveform and the templates x1 and 
x3. Note the increased similarity between the cross-
time-frequency representation and the time-
frequency distribution of x1 included in the 
superposition. 

 

 

 

 

 

 

Figure 5. Successful decompositions of the proposed 
procedure. The different bars show the results for the 
cross-Wigner-Ville transform (XWV), the cross-
Choi-Williams cross-transformation (CW), the 
radially Gaussian kernel cross-distribution (RGK), its 
modified version (Modified RGK), and the Matched 
Kernel approach.  
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