
Abstract-The deformations of the neck and head of the
human dried femur were measured and analyzed with
loads applied at the femoral head. Particular attention
was paid to measurements of bones  with osteoporosis.
We used double exposures or real-time holographic
interferometry  to measure precisely. The distal part of
each femur was embedded in  super hard plaster, and the
load was applied at the femoral head. In order to better
simulate the situation of a femur under physiological
muscles, we used the 3D finite element method (FEM)  for
our analyses. After modeling the femur, which consisted
of meshing  as eight noded elements for each section of
diaphysis, we used the 3D FEM to calculate stress and
strain. We obtained the  following results : (1)the
deformations increased  with the progress of
osteoporosis;(2) femur with osteoporosis showed obvious
rotational components in the femoral shaft and   (3) a
compressive stress distribution could be found  at the
medial side of  the diaphyseal region  by using  the FEM.
Keywords - Biomechanics, Real Time Holographic
Interferometry, Femur, FEM

I. INTRODUCTION

  The femoral neck and its head may experience complicated
deformation if they are subjected to force, because the shape
and the change of bone density with  advanced age are
complex.  It is well known that falling down or even small
external forces can cause a  fracture of the femoral neck in
the case of elderly  persons . In this   study,  the deformations
of the neck and head of the human dried femur were
measured and analyzed with loads applied at the femoral
head. We used x-ray   inspection  to select normal,  faultless
dried adult human  femora, some of which had osteoporosis ,
for our measurements. We simulated the reality of a femur
under physiological muscle stress  by using the 3D finite
element method (FEM) for our analyses..

II. MATERIALS AND METHODS

A. Optical   system

  Figure 1 shows the optical system used for the recording and
reconstruction of  the real-time hologram�1�. In the figure,
the light wave derived from the Ar laser is divided into two
waves (IL and  R), as shown in the figure by the half mirror
(HM). The wave IL illuminates the femur(O), and its
reflected wave reaches the thermoplastic film (H) of the
process camera (TPC 200, Steinbichler Optotechnik). The
reflecting wave at the half mirror (HM)  illuminates  the film
directly through the density filter (D) and the lenses (L). The
reflected wave from the object and the reference wave are
superimposed on the thermoplastic film. The displacement
.

Fig.1 Setup for measuring deformation of the object.
 O: Skull,  IL: Illuminating wave, R: Reference wave,
M: Mirror, L: Lens, HM: Half Mirror,  D: Density filter,  P:
Process camera for thermoplastic film, S: Shutter,
H: Hologram recorded on the thermoplastic film ,
C: Controller for the processing camera,  HR: Hard-copy
printer, MO: Monitor, V: CCD camera.

of the neighboring interference fringe corresponds to
0.26�m.

B.  Thermoplastic recording process

  The first step in the production of a hologram is charging
the thermoplastic film. The holographic picture can be
completed in a matter of seconds, fully automatically, at the
touch of a switch by the controller (C) of the process camera
(P). The course of a test can be followed on a monitor (MO)
by the real-time method immediately after an exposure.
Exposure time is set on the controller, and the light wave
from the laser is passed to the optical system when the shutter
(S) is opened. The thermoplastic film is developed
automatically, and 3 seconds after exposure the test result is
displayed on a video monitor. The reconstruction image can
be recorded on a video tape through the CCD camera. The
photo is produced in hard copy on a printer (HR) if necessary.
When a load is applied on the point of the femur, the real-
time holographic interferogram of the deformation is
observed through the monitor.

C. Specimens

We used x-ray examination to select six dried adult human
femora for our study. To fix the femur securely in place, we
used precision block-type boxes filled with super hard
plaster, as shown in Fig. 2. The bones were cut transversely
above the femoral condyles, and then they were embedded at
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5 cm under the lesser trochanter  before the plaster solidified,
so that the diaphysial long axis was inclined medially 20°.The
 loading method is also shown in Fig. 2.

Fig. 2. The method for applying load on  the specimen. S:
fulcrum, PU: pulleys, SS: Super hard plaster  poured in the
box-type block (SP), O: femur, W: weight, MH: head of
micrometer.

The end of the rod was held at the fulcrum.  Its other end was
subjected to tension force by weight through its thread. The
fulcrum was located near the loading point by means of a
micrometer head, as shown in the figure. Its point was located
so that the bone was subjected to a load six times its weight.
The amount and direction of the load were easily changeable
by the loading system.  The amounts of loads were set from
1.5 N to 36.0 N,  and loading was applied to the femoral head
through its center. The directions of loads ranged from 0°to
40° for the anterior and posterior directions  in the sagittal
plane. The directions of loads in the frontal plane were varied
in the same manner for the lateral and medial directions.

III.EXPERIMENTAL RESULTS

A. Deformation of femur due to different load conditions

Figure 3 shows the reconstruction images representing the
deformations of the femur. The left and right photographs
show the images obtained from the frontal and medial views,
respectively. In Fig. 3(a) and (b), the amount of load was 24.0
N, and the loading directions were parallel with the frontal
plane and made an angle of  40°from the lateral and medial
directions for the vertical axis, respectively. In Fig. 3(a),
considering its shape and the appearance of the interference

fringes on the proximal part of the femur, we observed that
the head of the femur was deformed in the direction having
bending component toward the frontal direction and rotation
component around the diaphysis. In the images of medial

Fig.3  Reconstruction images representing the deformations
of femur, when the forces(24.0N) were applied at the
lateral(a) and medial(b)  points which make an angle of
40°for vertical axes.

views, the density of fringes is greater in image (a) than in
image (b). This shows that the proximal part of the femur is
more easily deformed by force subjected from the lateral
direction than from the medial direction. The moment is
greater with force applied from the lateral side, because the
moment arm is longer on that side, as shown in Fig. 4.

B. The relation   between deformation  and degree of
osteoporosis

The three femora with comparable head sizes were selected
to examine the relation between deformation and degree of
osteoporosis.  X-rays of the three femora are shown in Fig. 5.
The degree of osteoporosis is extreme in specimen (a). The
right-hand images show the deformation obtained for each
specimen, when a 24.0N load was applied to the head at an
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angle of 40°between the posterior direction and the vertical
axis. The images were observed from the frontal
direction.The highest density of interference fringes is shown
in Fig. 5(a). The inclination of displacement at the femoral
neck is the largest in specimen(a), which indicates that this

Fig. 4   The  relation between the direction of force and the
moment arm. The moment arm A  is smaller than the moment
arm B. O: the center of femoral head .

Fig.5 Reconstruction images representing the difference of
deformation between the femora with and without       
osteoporosis.�The progresses of  osteoporosis show that
specimen 1 is most serious from the density of x-ray.

femur had extreme osteoporosis. The femur was bent forward
and rotated about the neck of the femur.

B. The relation  between deformation  and degree of
osteoporosis

 The three femora with comparable head sizes were selected
to examine the relation between deformation and degree of
osteoporosis.  X-rays of the three femora are shown in Fig. 5.
The degree of osteoporosis is extreme in specimen (a). The
right-hand images show the deformation obtained for each
specimen, when a 24.0N load was applied to the head at an
angle of 40°between the posterior direction and the vertical
axis. The images were observed from the frontal direction.
The highest density of interference fringes is shown in Fig.
5(a). The inclination of displacement at the femoral neck is
the largest in specimen(a), which indicates that this femur had
extreme osteoporosis. The femur was bent forward and
rotated about the neck of the femur.

C. The finite element analysis
The finite element method (FEM) �2� was applied to study
the stress and strain distribution of the femur by the
application of physiological muscle loads and the joint
reaction force. The finite element model was generated
consisting of eight noded elements. The geometry and the
material properties of the bone were decided from the shape
obtained from each section from the proximal portion to the
diaphysis. Figure 6 shows an example of the obtained results,
when a 24.0N load was applied to the head from the posterior
direction at an angle of 40°from the vertical axis. The
experimental and analytical results were resemble in
distribution of displacements.

(a) (b)
Fig. 6 Comparison of displacement as measured by our
experiment (a) and by the FEM (b).

IV.SUMMARY
  In this study, the deformations of the dried human femur
due to static load were analyzed. The following results were
obtained: (1) the deformations increased with the progress of
osteoporosis; (2) femurs with osteoporosis showed obvious
rotational components in the femoral shaft and (3) a
compressive stress distribution could be found at the medial
side of the diaphyseal region by using the FEM.
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