Award Number: DAMD17-99-1-9088

TITLE: Identification and characterization of novel antimitotic compounds for the treatment of breast cancer

PRINCIPAL INVESTIGATOR: Michel Roberge, Ph.D.

CONTRACTING ORGANIZATION: The University of British Columbia
Vancouver, British Columbia V6T 1Z3

REPORT DATE: August 2002

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Identification and characterization of novel antimitotic compounds for the treatment of breast cancer

Author(s):
Michel Roberge, Ph.D.

Performing Organization Name(s) and Address(es):
The University of British Columbia
Vancouver, British Columbia V6T 1Z3

E-Mail: michel@otter.biochem.ubc.ca

Sponsoring/Monitoring Agency Name(s) and Address(es):
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Abstract:

Our goal was to find new antimitotic drugs for the treatment of breast cancer using a novel cell-based assay to screen natural product libraries and guide the purification of their active components.

We carried out a screen of over 30,000 extracts of terrestrial plants, algae and marine organisms, obtained 223 positive extracts, and isolated and identified active compounds from several of the positive extracts.

We isolated a new rhizoxin analog, two paclitaxel analogs, three flavonoids, as well as agents that do not target microtubules, such as okadaic acid analogs, 3'-acetoxychavicol acetate, vernonatolide and 13-hydroxy-15-oxoozopatin.

We also isolated new analogs of the microtubule-stabilizing compound eleutherobin and produced several more by synthetic transformation. We used the analogs to carry out an extensive structure-activity relationship study of eleutherobin and identified unanticipated structural requirements that will be important for future pharmacophore models. We have been able to isolate eleutherobin from the producing octocoral grown in aquaculture, providing a renewable resource for this natural product in quantities sufficient for preclinical testing.

Subject Terms:
breast cancer, antimitotic drugs, cell-based assay

Security Classification of Report: Unclassified

Security Classification of this Page: Unclassified

Security Classification of Abstract: Unclassified

Limitation of Abstract: Unlimited
Table of Contents

Cover ..1

SF 298 ..2

Table of Contents ...3

Introduction ...4

Body ..4

Key Research Accomplishments ...9

Reportable Outcomes ...11

Conclusions ...12

References ...12

Appendices ..13
INTRODUCTION

Antimitotics are drugs that kill cancer cells by causing them to arrest in mitosis. Antimitotics currently used in breast cancer therapy include paclitaxel, vincristine and vinblastine. Although these drugs are extremely valuable, they are not ideal because they have serious side effects, and, most importantly, many breast cancers are resistant to them. Our goal was to find new antimitotic drugs for the treatment of breast cancer using a novel cell-based assay to screen natural product libraries and guide the purification of their active components.

BODY

TASK 1

Screen the natural product collection (5,000 extracts) for antimitotic activity (months 1-4)

In Year 1 we completed a screen of about 30,000 extracts. In addition to the proposed collection of marine microorganisms, we also screened two other collections in order to maximize the diversity of sources of antimitotics. One was of marine invertebrates collected by the Andersen laboratory from a variety of habitats: cold temperate Pacific Ocean waters along the coast of British Columbia, tropical Pacific Ocean reefs off Motupore and Madang in Papua New Guinea, tropical waters off the island of Dominica in the Caribbean, and temperate Atlantic waters surrounding the Isle of Man (U.K.). The second collection was obtained from the Natural Products Repository of the National Cancer Institute Developmental Therapeutics Program. It is a diverse collection of terrestrial plants, algae and marine organisms from around the world. Access to this valuable collection was granted in January 1999.

To deal with the massive amount of screening, we adapted our original ELISA assay which is a moderately lengthy and labor-intensive procedure requiring the preparation of cell lysates, their transfer to protein-binding plates, and many solution changes. We simplified it, reducing the time of the procedure and the number of steps by half and avoiding transfer of samples to ELISA plates. In the new procedure, the cells are fixed with formaldehyde in the microtiter culture plate and permeabilized with methanol and detergents, and the TG-3 primary antibody and HRP-conjugated secondary antibody are added simultaneously. Colorimetric detection of HRP activity remains unchanged. Since cell fixation and permeabilization in situ are steps commonly used in immunocytochemistry, we termed the assay Enzyme-Linked Immuno-Cytochemical Assay or ELICA.

In order to handle the large amount of data being generated by our screen, we developed a database for all the positive extracts. The database lists each extract's date of screening, its storage location, identifying number, its source (marine invertebrate, plant, or alga), its family, genus and species, and notes concerning the stage of purification and/or characterization it has undergone. The database may be searched by any of these
parameters. We have found the database to be particularly useful when prioritizing extracts to undergo chemical purification. For example, positive extracts from organisms of the same genus, such as the plants *Ilex siderioxylodes* and *Ilex macrophylla* are very likely to contain the same or similar antimitotics. Only one would be selected for further intensive study when searching for structurally novel compounds. Similarly extracts from organisms in the same genus as an organism known to contain an identified antimitotic would be a low priority for further study. For example, the positive extract of *Combretum fuscum* is very likely to contain the known antimitotic combretastatin originally identified in *Combretum caffrum* (Sackett, 1993). Conversely, in order to find new analogs of a particularly important antimitotic, extracts from related organisms may be selected. We took this approach for finding new analogs of eleutherobin, and selected extracts from organisms related to *Erythrophium caribaerum* for further study. The significance of this choice is detailed under Task 2.

The original ELISA assay, the modified ELICA assay, and the screen of the first 25,000 extracts was published in Cancer Research (Roberge et al., 2000; Appendix 1).

TASK 2

Isolate and identify the chemical structure of active compounds (months 5-30)

The pilot study we presented in our proposal yielded two antimitotics out of 263 screened, a hit rate of 0.7%. Our final screen gave us 223 positive extracts out of 30,000 screened, also a hit rate of 0.7%. The process of fractionation, dereplication, purification and chemical structure elucidation of active compounds has been completed for selected positive extracts. Their structural formulae are shown in Figures 1 and 2.

We found a new rhizoxin analog from a *Pseudomonas* species (Roberge et al., 2000; Appendix 1) and two paclitaxel analogs in the stem bark of the tree *Ilex macrophylla* (Roberge et al., 2000; Appendix 1). From a plant extract we isolated 3 active flavonoids (3’-methoxycalycompterin, 4’,5,7-trihydroxy-3,3’,6,8-tetramethoxyflavone, 3,3’dimethoxyquercacitin) and one inactive analog. From a marine invertebrate, we isolated 2 okadaic acid analogs, 27-O-acyl-dinophysisostoxin and 27-O-acyl-okadaic acid. We also isolated 3’acetoxychavicol acetate, vernonataloide, and 13-hydroxy-15-oxozaapatlin from different plants.

We discovered a new source of eleutherobin in the octocoral *Erythrophodium caribaerum* from which we purified six new eleutherobin analogs (Cinel, 2000a; Appendix 1). We pursued this further, obtaining 12 positive extracts from corals related to *Erythrophodium caribaerum* that we suspected might contain other eleutherobin analogs. From these, we completed the isolation and identification of four additional analogs (Britton et al., 2001a; Appendix 1). We produced several other analogs by synthetic transformation (Britton et al., 2001b; Appendix 1). We also demonstrated that the eleutherobin initially described by Fenical and coworkers (Lindel et al., 1997) is an
Figure 1. Structural formulae of eleutherobin analogs purified or synthesized and their IC₅₀ for mitotic arrest.

isolation artifact and that desmethylleutherobin (first described by us in Year 1) is the natural product (Britton et al, 2001a; Appendix 1). Most importantly, we have now succeeded in isolating active eleutherobin compounds from cultured Erythropodium caribaeorum, thus providing a renewable resource for this natural product (Tagliatela-Scarfatì, 2002; Appendix 1).
Figure 2. Structural formulae of non-eleutherobin antimitotics.

TASK 3

Mechanism of action of new antimitotic compounds (months 13-32)

We used several assays to investigate the mechanism of action of our purified antimitotics. The first assay examined the effect of the compounds on cells. Cells grown on coverslips were treated with the compounds, and examined by immunofluorescence microscopy using the DNA dye bisbenzimide to visualize the chromosomes and a monoclonal antibody to β-tubulin to examine the microtubules of interphase cells and the spindle of mitotic cells. A second assay examined whether the compounds can interact directly with purified tubulin to cause either its depolymerization or its polymerization. A third assay examined whether the antimitotic effect of the compounds is due to inhibition of Ser/Thr protein phosphatases. In a 96-well format phosphatases, either in crude extract form or as purified protein phosphatase 1A or 2A, and a phosphopeptide substrate are
incubated with the antimitotic compound and inhibition of release of phosphate is detected by decreased malachite green signal.

The flavonoids caused the cells to arrest in mitosis with depolymerized microtubules. This is the most common mechanism of action for antimitotics. The IC$_{50}$ of the most active analog was about 10 µg/ml. These compounds belong to a family of flavones related to centaureidin whose antimitotic properties have been extensively studied (Beutler et al., 1998).

The okadaic acid analogs did not cause microtubule bundling or depolymerization in the cell-based tubulin immunofluorescence assay. However they were potent inhibitors of Serine/Threonine protein phosphatases (IC$_{50}$ 0.3 ng/ml).

3’acetoxychavicol acetate and vernonataloide did not cause microtubule bundling or depolymerization. In fact treated cells, although rounded up, had none of the other standard morphological features of mitotic cells i.e. the chromosomes were not condensed, there was no mitotic spindle, and the nuclear lamina remained intact. However, further study showed that at the biochemical level treated cells had undergone many proline-directed phosphorylation events strictly associated with mitosis, such as phosphorylation of histone H3 at Ser10, phosphorylation of nucleolin at the TG3-immunoreactive site, phosphorylation of GF-7 antigen, and phosphorylation of MPM2 antigens. This strongly suggests that these two compounds are activating a proline-directed kinase. They did not act as Serine/Threonine phosphatase inhibitors. We are now carrying out biochemical studies to determine the kinase involved and its mechanism of activation.

13-hydroxy-15-oxoazoapatlin caused cells to arrest in mitosis (IC$_{50}$ 10 µM), but with an unusual morphology not produced by other antimitotics: their chromosomes were condensed and a mitotic spindle was formed, but the chromosomes failed to align properly on the mitotic spindle. It was also able to act as a G2 checkpoint inhibitor, i.e. it released cells from arrest in G2 phase of the cell cycle following DNA damage and caused them to enter mitosis (Rundle, 2001). This interesting combination of effects suggests a novel mechanism of action and we are now pursuing the identification of the relevant targets.

The new eleutherobin analogs all arrest cells in mitosis with bundled microtubules. Using the in vitro tubulin assay confirmed that the bundling of microtubules observed in cells is caused by a direct interaction between the eleutherobins and tubulin.

In addition, we used our cell-based antimitotic assay to quantitatively compare the antimitotic activity of the different analogs of rhizoxin, paclitaxel, and eleutherobin, permitting us to determine which regions of these compounds are important for antimitotic activity (Roberge et al., 2000 and Cinel et al., 2000a; Appendix 1). We have also been able to determine the solution and crystal structures of eleutherobin (Cinel,
2000b; Appendix 1) and to obtain a refined solution structure of eleutherobin (Cornett et al., submitted). This information is very useful for further drug development. The interpretation and significance of these results for the development of a tubulin-binding pharmacophore for compounds that stabilize microtubules is presented in (Britton et al., 2001b; Appendix 1).

TASK 4

Initial studies on therapeutic potential (months 14-36)

The purified compounds were tested for their ability to inhibit the proliferation of MCF-7mp53 breast cancer cells and of multidrug-resistant MCF-7 cells.

The okadaic acid analogs were found to be very potent inhibitors of proliferation (IC$_{50}$ 1 ng/ml) and were considered likely to be too toxic for therapeutic applications. The flavonoids were not studied further since they are members of a family of compounds extensively studied by others (Beutler, 1998).

3’acetoxychavicol acetate, vernonataloide, and 13-hydroxy-15-oxozoapatlin inhibit proliferation at low micromolar concentrations.

The eleutherobin analogs were particularly promising. Their effectiveness as antimitotics was closely correlated with their ability to inhibit cell proliferation, desmethyleleutherobin and eleutherobin being the most active, with an IC$_{50}$ for inhibition of proliferation of about 18 nM.

A major challenge with products isolated from marine invertebrate sources is to produce sufficient amounts of compound for the animal studies required for drug development. Harvesting large numbers of specimens from the wild is environmentally unsound and costly. Although two elegant syntheses of eleutherobin have been reported, the amounts generated have not been sufficient for testing in animals. We have found that *Erythropsodium caribaeorum* grown in aquaculture produces eleutherobin in amounts comparable to those collected in the wild (0.8 mg eleutherobin/100g wet weight) (Tagliatela-Scafati, 2002; Appendix 1). We now have sufficient purified eleutherobin to initiate animal studies.

KEY RESEARCH ACCOMPLISHMENTS

- We have developed the ELICA, a modification of our original assay, which is faster, less labor-intensive and less costly.

- We have completed the purification and identification of active compounds from several positive extracts, including analogs of rhizoxin, paclitaxel, okadaic acid and eleutherobin, as well as the flavonoids 3’-methoxycalycoperin, 4’,5,7-trihydroxy-
3,3',6,8-tetramethoxyflavone, 3,3'dimethoxyquercaetin, and the novel antimitotics 3'acetoxychavicol acetate, vernonataloide, and 13-hydroxy-15-oxozoapatlin.

- We have examined the activity of the purified compounds. The flavonoids belong to a recently described family of antimitotics (Beutler, 1998) that act by depolymerizing microtubules. The okadaic acid analogs act through inhibition of Ser/Thr phosphatases but were deemed potentially too toxic for therapeutic use. 3'acetoxychavicol acetate, vernonataloide and 13-hydroxy-15-oxozoapatlin had novel mechanisms of action currently under further study. This success rate for novelty is in part attributable to our efforts at secondary screening of crude extracts to optimize for novelty, implemented in Year 1.

- We have purified a number of different eleutherobin analogs and produced several more by synthetic transformation. This has allowed us to carry out an extensive structure-activity study, using our ELICA assay, that has revealed some striking and unanticipated features of its antimitotic properties. A detailed understanding of the structural requirements for binding of microtubule-stabilizing agents to tubulin is an important tool for the rational design of new microtubule-stabilizing drugs.

- We have determined the solution and crystal structures of eleutherobin which will be useful for further drug development.

- We have been able to isolate active eleutherobin from *Erythropsidium caribaeorum* grown in aquaculture. This renewable resource has permitted the purification of sufficient compound to make possible the testing of anticancer activity in experimental tumors in mice in the immediate future.
REPORTABLE OUTCOMES

Publications (copies provided in Appendix 1)

Patents

CONCLUSIONS

Our cell-based assay for antimitotics met our expectations. It revealed 223 positive extracts from 30,000 extracts screened, and permitted us to purify the active compounds, even as very minor components, from those selected for further investigation. Several of these compounds are novel antimitotics. The assay also permitted us to carry out extensive structure-activity relationship studies using the different analogs we have purified, an essential part of drug development.

Of immediate value to breast cancer treatment is that our research has revealed a renewable source of the compound eleutherobin which should provide sufficient material for preclinical and early phase clinical trials of this promising compound.

REFERENCES

Cornett, B., Monteagudo, E., Cicero, D. O., Cinel, B., Andersen, R. J., Roberge, M., Liotta, D. C. and Snyder, J. P. Conformational analysis of the microtubule-stabilizing agent eleutherobin in CDCl₃. (Submitted).

APPENDIX 1
Manuscripts and published papers arising from research supported by this grant.
Cell-based Screen for Antimitotic Agents and Identification of Analogues of Rhizoxin, Ethulerebrin, and Paclitaxel in Natural Extracts

Michel Roberge, Bruno Cinel, Hillary J. Anderson, Lynette Lim, Xiuxian Jiang, Lin Xu, Cristina M. Bigg, Michael T. Kelly, and Raymond J. Andersen

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada (M. R., H. J. A., L. L., X. J., C. M. B.); Departments of Chemistry and Oceanography (E.S.), University of British Columbia, Vancouver, V6T 1Z3 Canada (B. C., L. K., R. J. A.); and SeaTek Marine Biotechnology, Inc., Surrey, British Columbia, V4A 7M4 Canada (M. T. K.)

ABSTRACT

We describe a cell-based assay for antimitotic compounds that is suitable for drug discovery and for quantitative determination of antimitotic activity. In the assay, cells arrested in mitosis as a result of exposure to antimitotic agents in pure form or in crude natural extracts are detected by ELISA using the monoclonal antibody TG-3. The assay was used to screen >24,000 extracts of marine microorganisms and invertebrates and terrestrial plants and to guide the purification of active compounds from 5 of 119 positive extracts. A new rhizoxin analogue was found in a Pseudomonas species, six new ethulerebrin analogues were identified from the oothecoral Erythropsidum caribaeorum, and two paclitaxel analogues were found in the bulbous herb of the basil family, Heliotropum. The assay was also used for quantitative comparison of the antimitotic activity of different analogues. It revealed the importance of the C-11 to C-13 segment of the diterpene core of ethulerebrin for its antimitotic activity. The identification of antimitotic compounds in very low abundance and their high (0.5%) occurrence in natural extracts indicates that drug discovery efforts using this cell-based assay may lead to the identification of structurally novel antimitotic agents.

INTRODUCTION

Antimitotic agents are compounds that arrest cells in mitosis. Several are clinically important anticancer drugs, including the Vinca alkaloids vinblastine, vincristine, and vinorelbine (1) and the taxanes paclitaxel and docetaxel (2). They cause mitotic arrest by interfering with the assembly or disassembly of α- and β-tubulin into microtubules. At high concentrations, the Vinca alkaloids and most other antimitotics cause complete microtubule depolymerization, whereas the taxanes cause bundling of microtubules by stabilizing them against depolymerization. At low concentrations, neither depolymerization nor bundling is observed, but there is sufficient alteration in the dynamics of tubulin loss or addition at the ends of mitotic spindle microtubules to prevent the spindle from carrying out its function of attaching to and segregating the chromosomes, and cells arrest in mitosis (3, 4). Prolonged arrest eventually leads to cell death, either in mitosis or after an eventual escape from mitotic arrest (5, 6). Another class of antimitotic agents, represented by estramustine, does bind tubulin (7) but may also bind microtubule-associated proteins and prevent them from regulating interactions between tubulin polymers (8). Agents that are not known to interact with microtubules, such as inhibitors of protein phosphatases 1 and 2A and mitotic kinesin inhibitors, can also arrest cells in mitosis (9–11).

The Vinca alkaloids were isolated from the periwinkle plant, which originally attracted attention because of reported hypoglycemic properties. However, periwinkle extracts showed no antidiabetic action but were found to prolong the life of mice bearing a transplantable lymphocytic leukemia (1). This led to the identification of vinblastine and vincristine. Paclitaxel was isolated from the bark of the Pacific yew tree, an extract of which showed antineoplastic activity in the NCI 60-screen. Vinorelbine and docetaxel are semisynthetic analogues.

These drugs, although extremely valuable, are not ideal. They have numerous toxicities, principally myelosuppression and neurotoxicity. More importantly, many cancers are inherently resistant to these drugs or become so during prolonged treatment (1, 2). This is often the result of multidrug resistance caused by overexpression of P-glycoprotein, which functions as a drug efflux pump. Other sources of resistance include increased expression of tubulin isotypes to which a particular drug binds less effectively and alterations in α- and β-tubulin structure, by mutation or posttranslational modification, that reduce binding.

Antimitotics with different chemical structures might show increased specificity to mitotic microtubules rather than neuronal microtubules and reduce unwanted side effects and might be effective against resistant cancers. Many other antimitotics have been discovered, some of which show promise in preclinical studies or have entered clinical trials (12). However, they were discovered either by serendipity or by cytotoxicity screening, or because they showed patterns of cytotoxic activity against panels of cancer cell lines similar to patterns shown by other antimitotic agents (13). The search for better antimitotics would be greatly aided by rational assays for use in drug screens.

We have developed a rapid and reliable cell-based screen for antimitotic agents. In this report, we describe the assay, its application to a screen of >24,000 natural extracts, and the purification and characterization of paclitaxel analogues and new rhizoxin and ethulerebrin analogues.

MATERIALS AND METHODS

Cell Culture and Treatment. Human breast carcinoma MCF-7 cells were cultured as monolayers (14). The cells were seeded at 10,000/well of 96-well polystyrene tissue culture plates (Falcon) in 100 μl of medium and were allowed to grow overnight. Crude extracts were then added at about 10 or 1 μg/ml from 1000-fold stocks in DMSO. Untreated samples received an equivalent amount of DMSO and served as negative controls. Cells treated with 100 ng/ml nocodazole (Sigma), from a 1000-fold stock in DMSO, served as positive controls. Cells were incubated for 16–20 h. The relative number of cells in mitosis was then determined by microscopy (14), by ELISA, or by ELICA (see below).

ELISA of Mitotic Cells. After incubation with extracts, the cell culture medium was withdrawn carefully using a pipetor. This did not result in any loss of the rounded-up mitotic cells, which remained attached to the plates. The cells were lysed by adding 100 μl of ice-cold lysis buffer (1 mm EGTA, pH 7.5; 0.25 M sucrose, 5 mm MgCl2, 0.1% deoxycholate, 1 mm PMSF, 1 μg/ml leupeptin, 1 μg/ml aprotinin, 1 mm benzamidine, 10 μg/ml sodium orthovanadate, and 10 g/ml N-acetylcysteine) to the culture plates. The lysates were then centrifuged at 11,000 rpm for 5 min to remove unlysed debris. The supernatants were then screened for mitotic activity using the monoclonal antibody TG-3.
7.4, 0.5 mM phenylmethylsulfonyl fluoride) and by pipetting up-and-down 10 times. The cell lysates were transferred to 96-well PolySorp plates (Nunc) and dried completely in a stream of air at about 37°C from a hair dryer. Vacant protein binding sites were blocked by adding 200 μM well of antibody buffer (10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1 mM phenylmethylsulfonyl fluoride, and 3% (w/v) dried nonfat milk (Carnation)) for 1 h at room temperature. After washing and replaced with 100 μl of antibody buffer containing 0.1–0.15 μg/ml TG-3 monoclonal antibody (15, 16). This antibody recognizes a phosphoprotein on nucleolin that is present only at mitosis and was provided by Dr. Peter Davies (Albert Einstein College of Medicine, Bronx, NY). After 16–20 h incubation at 4°C, the antibody solution was removed, and the wells were rinsed twice with 200 μl of 10 mM Tris-HCl (pH 7.4), 0.02% Tween 20. HRP-conjugated goat antimouse IgM secondary antibody (Southern Biotechnology Associates) was added at a dilution of 1:500. After overnight incubation at 4°C, the antibody solution was removed, and the wells were rinsed three times with 200 μl of 10 mM Tris-HCl (pH 7.4), 0.02% Tween 20. One hundred μl of 120 mM Na2HPO4, 100 mM citric acid (pH 4.0) containing 0.5 μg/ml 2',2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and 0.01% hydrogen peroxide was added for 1 h at room temperature, and absorbance at 405 nm was determined using a Dynex MRX plate reader.

ELISA of Mitotic Cells. After incubation with extracts, the medium was withdrawn carefully using a pipette, and 100 μl of 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, containing 3.7% formaldehyde, was added to fix the cells for 30 min at 4°C. The fixative was removed and replaced with 100 μl of cold (−20°C) methanol for 5 min to permeabilize the fixed cells. The methanol was removed, and the wells were rinsed briefly with 200 μl of antibody buffer. Then, 100 μl of antibody buffer containing 0.1–0.15 μg/ml TG-3 monoclonal antibody and HRP-conjugated goat antiserum IgM secondary antibody at a dilution of 1:500 was added for 16–20 h at 4°C. The plates were washed twice with 200 μl of 10 mM Tris-HCl (pH 7.4), 0.02% Tween 20. One hundred μl of 120 mM Na2HPO4, 100 mM citric acid (pH 4.0) containing 0.5 μg/ml 2',2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and 0.01% hydrogen peroxide was added for 1 h at room temperature, and absorbance at 405 nm was measured. Additional information about this assay is provided in “Results.”

Sample Collection and Extraction Preparation. Approximately 250 g each of marine invertebrates were collected by hand, using scuba, from the cold temperate waters of the Pacific Ocean along the coast of British Columbia, from tropical Pacific Ocean reefs off Moontop and Madang in Papua New Guinea, and from tropical waters off the island of Dominica in the Caribbean. Samples were deep frozen on site and transported to Vancouver over dry ice. Voucher samples of each invertebrate are stored in methanol at −20°C at the University of British Columbia for taxonomic identification. Marine microorganisms were isolated from the invertebrates on site using various marine culture media, and pure cultures were grown as lawns on solid agar marine media in 10-cm Petri plates for several days and then freeze-dried. Extracts of invertebrates were prepared by homogenizing in methanol −200 μg of each sample. The homogenates were filtered and concentrated to dryness in vacuo to give a gummy residue. Extracts of microorganisms were prepared by extracting the freeze-dried culture (cells and agar) multiple times with dry methanol-acetone, followed by lyophilization. A small amount of each extract was dissolved in DMSO for the antimicrobial screen. Extracts of terrestrial plants were obtained from the Open Repository Program of the Natural Products Repository of the NCI Developmental Therapeutics Program at 500-μg samples that were dissolved in 100 μl of DMSO. All diluted extracts were stored at −20°C.

RESULTS

Screen for Antimicrobial Agents. The TG-3 monoclonal antibody, originally described as a marker of Alzheimer’s disease (15), is highly specific for mitotic cells. Flow cytometry shows that TG-3 immunofluorescence >50-fold more intense in mitotic cells than in interphase cells (16). In Western blot, the antibody reacts with a M, 105,000 protein that is present in abundance in extracts of cells treated for 20 h with the antimitotic agent nocodazole but present at only low levels in extracts from cycling MCF-7 cells (Fig. 1). This protein has been identified as a mitotically phosphorylated form of nucleolin (17). Densitometric scanning of the bands showed a 27-fold difference in intensity between nocodazole-treated and untreated cells, corresponding well to the difference in the number of mitotic cells in the two samples: 80% for the nocodazole-treated sample and 3% for the untreated sample, as measured by microscopy.

TG-3 also recognizes mitotic cells in ELISA using microtiter plates (18). In this standard assay (19), cells grown in 96-well plates are lysed, and the lysates are transferred to protein-binding ELISA plates for adsorption to the plastic surface. The antigen is detected by incubating with TG-3 antibody, followed by an HRP-conjugated secondary antibody and colorimetric determination of HRP activity. We first tested the suitability of the ELISA for quantifying the activity of antimicrobial agents. MCF-7 cells were incubated for 20 h with different concentrations of the antimicrobial drug paclitaxel, and the proportion of cells arrested in mitosis was measured by counting mitotic figures in the microscope and by ELISA. Paclitaxel induced mitotic arrest in a concentration-dependent manner with half-maximal activity at 10 nM measured by microscopy (Fig. 2A) and at 4 nM measured by ELISA (Fig. 2B).

ELISA is a lengthy and labor-intensive procedure requiring the preparation of cell lysates, their transfer to protein-binding plates, and many solution changes. We subsequently simplified it, reducing the time of the procedure and the number of steps by half and avoiding transfer of samples to ELISA plates. In this procedure, the cells are fixed with formaldehyde in their microtiter culture plate and permeabilized with methanol and detergents, and the TG-3 primary antibody and HRP-conjugated secondary antibody are added simultaneously. Colorimetric detection of HRP activity remains unchanged. Because cell fixation and permeabilization in situ are steps commonly used in immunochemistry, we termed the assay ELICA.

The ELICA was tested as above. Dose-dependent arrest of cells in mitosis by paclitaxel was detected by ELICA with half-maximal activity at 1.5 nM (Fig. 2). The ELICA showed a higher signal at low paclitaxel concentrations and a lower signal at high concentrations than did the ELISA (Fig. 2B). These differences probably resulted from higher nonspecific staining of interphase cells because of reduced washing and from lower specific staining of mitotic cells because of fixation and reduced antibody incubation times. Nevertheless, the ELICA consistently showed sufficient difference in absorbance between cells treated or not with antimicrobial agents to allow unambiguous detection of mitotic cells. Measurements obtained by ELICA consistently showed smaller SDs than obtained by ELISA, probably because the reduced number of manipulations reduced experimental variation.

Screening of Natural Extracts. We first tested the suitability of the ELICA for drug screening using a small selection of crude extracts from marine microorganisms (Table 1). Of the 264 extracts tested, 261 showed no activity, giving absorbance readings not statistically different from those of untreated cells. Three extracts clearly showed...
activity, with absorbance readings of 1.135, 1.437, and 1.245, close to the values obtained with nocodazole as a positive control.

We then screened over 2000 crude extracts of marine sponges, tunicates, soft corals, starfish, and nudibranchs. This screen identified 16 additional extracts with antimotic activity. The positive extracts were retested using mitotic indexes in the microscope, and all were confirmed to arrest cells in mitosis.

Finally, we screened crude extracts of terrestrial plants from the NCI Natural Products Repository using ELICA. The sensitivity of the ELICA for drug screening is illustrated in Table 2, which displays a screen of 264 plant extracts from three randomly selected 96-well plates. Five extracts showed activity, with absorbance readings close to or higher than those obtained with nocodazole. These positive readings were well above those obtained with negative controls or extracts showing no activity. Of 21,600 plant extracts tested in this manner, 100 showed activity, all of which were confirmed to be positive by microscopy.

All positive extracts from marine organisms and most positive extracts from plants were then rescreened using tubulin immunofluorescence microscopy (14) to examine their effects on microtubule structure. We then purified and identified the active agents in these three microbial extracts, in the single marine invertebrate extract that produced paclitaxel-like bundling of microtubules, and in the terrestrial plant extract that showed clearest evidence of microtubule bundling. The other extracts remain to be studied.

Identification of New Rhizoxin Analogues. Marine bacterial isolate MK7020 collected off the coast of British Columbia was identified as a *Pseudomonas* sp. by gas chromatographic analysis of cellular fatty acids. The active compounds 1 and 2 (Fig. 3) were purified by chromatographic procedures using the ELISA to guide fractionation. The two other microbial extracts were found to be independent isolates of the same *Pseudomonas* species and contained the same active compounds as MK7020.

Compound 1 is identical to WF-1360C (20, 21), a previously reported analogue of the antimotic agent rhizoxin (Fig. 3). Compound 1 showed half-maximal antimotic activity (IC₅₀) at 52 nM, as determined by ELISA (data not shown). Compound 2 is a new 8-lactone seco-hydroxy acid and had an IC₅₀ of 8 nM (data not shown).

Identification of New Eleutherothrin Analogues. An extract of octocoral *Erythropsidium* cf. *caribaecorum* collected from shallow reefs near Dominica showed antimotic activity and bundling of microtubules. The active compounds 3–10 (Fig. 4) were isolated, and their chemical structure was elucidated as described in detail elsewhere (22).

Compound 3 was identified as eleutherothrin, a recently discovered antimotic agent that acts like paclitaxel by stabilizing microtubules (23, 24). Compound 4 was identified as saccocystin A (25) and differs from eleutherothrin by replacement of the C-15 3-linked 2'-O-acetyl-o-arabinopyranose side chain of 3 with a methyl ester and replacement of the C-4 methoxy with a hydroxyl group. Compounds 5–10 have not been reported previously. Desacetelyeleutherothrin (5) retains the arabinose, but not the 2' acetyl substituent. Isoeleutherothrin A (6) has an acetyl group at the 3' position instead of the 2' position. Z-Eleutherothrin (7) is a geometric isomer of eleutherothrin at the C-2' to C-3' double bond of the C-8 N-(6')-methylurocanic acid ester side chain. Desmethyleleutherothrin (8) differs from eleutherothrin by the presence of a hydroxyl instead of a methoxy at C-4. Carbaesoside (9) differs from eleutherothrin by the presence of a hydroxyl at C-11 of the tricyclic core, and a double bond at C-12 to C-13 instead of C-11 to C-12, significantly altering the cyclohexene ring. Carbaesin (10) differs from carbaesoside only by the presence of a -CH_OCO-CH₃ substituent in the C-3 side chain.

The antibiotic activity profile of these compounds determined by

Table 1. Pilot ELISA screen of microbial extracts

<table>
<thead>
<tr>
<th>96-well plate</th>
<th>Positive extracts</th>
<th>Negative extracts</th>
<th>Negative control (no extract added)</th>
<th>Positive control (nocodazole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.135</td>
<td>0.270 ± 0.051 (n = 86)</td>
<td>0.294 ± 0.098 (n = 4)</td>
<td>1.615 ± 0.068 (n = 4)</td>
</tr>
<tr>
<td>B</td>
<td>1.437</td>
<td>0.280 ± 0.040 (n = 88)</td>
<td>0.267 ± 0.033 (n = 4)</td>
<td>1.208 ± 0.116 (n = 4)</td>
</tr>
<tr>
<td>C</td>
<td>1.245</td>
<td>0.270 ± 0.040 (n = 87)</td>
<td>0.305 ± 0.035 (n = 4)</td>
<td>1.448 ± 0.059 (n = 4)</td>
</tr>
</tbody>
</table>

* Values shown are mean and SD of the number of measurements shown in parentheses. The absorbance readings are raw data, not corrected for background caused by the microtiter plate and reagents.

Table 2. ELICA screen of plant extracts

<table>
<thead>
<tr>
<th>96-well plate</th>
<th>Positive extracts</th>
<th>Negative extracts</th>
<th>Negative control (no extract added)</th>
<th>Positive control (nocodazole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97040140</td>
<td>2.141</td>
<td>0.731 ± 0.346 (n = 85)</td>
<td>0.752 ± 0.047 (n = 4)</td>
<td>2.379 ± 0.057 (n = 4)</td>
</tr>
<tr>
<td>97040141</td>
<td>2.181</td>
<td>0.651 ± 0.198 (n = 88)</td>
<td>0.710 ± 0.108 (n = 4)</td>
<td>1.555 ± 0.113 (n = 4)</td>
</tr>
<tr>
<td>970400143</td>
<td>2.313</td>
<td>0.588 ± 0.321 (n = 86)</td>
<td>0.558 ± 0.046 (n = 4)</td>
<td>1.681 ± 0.030 (n = 4)</td>
</tr>
</tbody>
</table>

* Values shown are mean and SD of the number of measurements shown in parentheses. The absorbance readings are raw data, not corrected for background caused by the microtiter plate and reagents.
ELICA is shown in Fig. 5. Eleutherobin (3) had an IC₅₀ of 100 nm. The activity of Z-eleutherobin (7) was close, with an IC₅₀ of 250 nm. Desmethyl-eleutherobin (8) and isoeleutherobin A (6) were slightly more potent than eleutherobin, with IC₅₀ of 20 and 50 nm, respectively. Desacetyleleutherobin (5) was slightly less potent, with an IC₅₀ of 400 nm. Sarcoacetyln A (4) showed lower activity, with an IC₅₀ of 2 μM. Carbaacetyln (9) and carbaeleutherobin (10) were considerably less potent, with an IC₅₀ of 20 μM for both compounds.

Identification of Paclitaxel Analogues in a Non-Taxus Species. NCI Natural Products Repository extract N29701 was obtained from the stem bark of the tree *Ilex macrophylla* in Kalimantan, Indonesia. It showed antimitotic activity and caused bundling of microtubules. The active compounds were isolated and analyzed using ELICA and identified as the known paclitaxel analogues 10-deacetyltaxanorine A (11) and 7-β-xylosyl-10-deacetyltaxal C (12) (Fig. 6) by analysis of their nuclear magnetic resonance data and comparison with published values (26, 27). Compounds 11 (IC₅₀ 0.3 μM) and 12 (IC₅₀ 10 μM) were much less potent than paclitaxel (IC₅₀ 1.5 nm).

DISCUSSION

Cell-based Assay. We have described a cell-based assay for antimitotic compounds. When searching for therapeutic agents, cell-based assays are particularly valuable compared with cell-free assays because they select not only for activity against a particular target but also for other desirable properties, such as the ability to permeate cells and to retain activity in tissue culture medium and in cells. In one study, >90% of compounds found on the basis of *in vitro* target-based assays showed no cytotoxic activity because they did not cross the plasma membrane or were degraded rapidly (28). In addition, assays based on measuring arrest of cells in mitosis have the potential to identify not only agents that interact with microtubules but also agents that cause mitotic arrest by other mechanisms, such as protein phosphatase inhibitors and mitotic kinesin inhibitors (9–11).

The ELISA and the ELICA procedures both allow unambiguous detection of antimitotic activity in crude natural extracts. The ELICA was used for most of the screenings described here because it is faster, less labor-intensive, and less costly than the ELISA.

Our screen of over 24,000 crude extracts from different natural sources identified unambiguously 119 with antimitotic activity. The absence of false-positive results was confirmed by microscopy, and all five positive crude extracts that were subjected to further study yielded known or novel antimitotic agents; three extracts from the
Fig. 5. Antimitotic activity of eleutherobin and analogues. Cells were treated with different concentrations of the compounds for 20 h, and mitotic arrest was determined by ELICA. The absorbance values were transformed into the percentage of mitotic cells using a standard curve constructed by measuring the absorbance values of cell populations containing defined percentages of mitotic cells (18). Buer, SD.

SCREEN FOR ANTIMITOTIC AGENTS

A

B

- Eleutherobin (3)
- Sarcodictyin A (4)
- Desacetylreluherobin (5)
- Isoeleutherobin A (6)
- Z-Eleutherobin (7)
- Desmethyleleutherobin (8)
- Caribaeside (9)
- Caribaesin (10)

Concentration (μM)

% mitotic cells

Concentration (μM)

% mitotic cells

Eleutherobin was identified as a compound with paclitaxel-like properties in 1997 (23), but sarcodictyins A-D were the first members of the eleutherobin class of compounds to be identified (25, 34), their paclitaxel-like properties were recognized only later (35). Sarcodictyin A (4) was 20-fold less active than eleutherobin (3), indicating that the C-15 β-linked 2′-O-acetyl-D-arabinopyranose side chain or the C-4 methoxyl group is important for antimitotic activity. Desmethyleleutherobin (8) was active, showing that it is the C-15 side chain and not the C-4 methoxyl that is required. Desacetylreluherobin (5) and isoeleutherobin A (6) showed activity similar to eleutherobin, indicating that the acetyl group does not contribute importantly to activity. Therefore, although the sugar moiety is not absolutely required for antimitotic activity, it contributes to the high potency of eleutherobin.

Isomerization of the C-2′ to C-3′ double bond of the C-8 side chain of Z-eleutherobin (7) had little effect on the antimitotic activity of the compound, showing that the E configuration in eleutherobin is not required for antimitotic activity. Desmethyleleutherobin (8) was the most active of the compounds tested, suggesting that the C-4 hydroxyl might enhance activity through additional hydrogen bonding, or that the C-4 methoxyl somehow hinders the activity of eleutherobin. Caribaeside (9) was 200-fold less active than eleutherobin, revealing the importance of the C-11 to C-13 segment for antimitotic activity. Caribaesin (10) differs from caribaeside (9) only in the C-3 side chain, and the activities of these compounds are similar. Likewise, sarcodictyin A differs from desmethyleleutherobin only in the C-3 side chain, but its activity is lower than that of desmethyleleutherobin. These data indicate that the C-15 acetyl-D-arabinopyranose can be replaced with an acetoxyl functionality without significant loss of activity, confirming earlier data with synthetic analogues (36, 37), but not with a methyl ester.

Fig. 6. Structural formulae of paclitaxel and analogues.
activity demonstrates an important role for this region in antimitotic activity. Further studies will be required to determine whether the reduced antimitotic activity of carbaesiode is attributable to reduced affinity for tubulin and microtubules or to factors such as drug uptake, extrusion, or metabolism.

Paclitaxel is an approved drug for the treatment of advanced ovarian cancer and metastatic breast cancer. It was originally isolated from Taxus brevifolia in 1971 (45). Since then, over 350 related diterpenoids have been isolated from different species of the genus Taxus (46), including compounds 11 and 12 described here. Compound 11 differs from paclitaxel in the nature of the N-acyl substituent on the C-13 phenylisoserine side chain and in the absence of the acetyl substituent at C-10. It was less active than paclitaxel, showing that the C-13 and C-10 substituents, although not essential for activity, contribute to the high potency of paclitaxel. Compound 12 further differs from paclitaxel by the presence of a β-synolyl substituent at C-7. Compound 12 was less active than compound 11, indicating that the C-7 substituent also contributes to the potency of paclitaxel.

Unexpected Outcomes. An unexpected outcome of this study is that although the active compounds we isolated belong to known antimitotic chemotypes, they were found in organisms not known or suspected to produce them. To our knowledge, rhizoxin compounds have previously only been isolated from the rice seedling blight fungus Rhizopus chinenesis and unidentified species of the same genus (29). We have now identified rhizoxin analogues in marine bacterial isolates of the genus *Pseudomonas*, which is common in Pacific Northwest waters. Eleutherobin was originally isolated from the soft coral *Eleutherobia* sp. (possibly *E. albiflora*) collected in Western Australia (23). We now identify eleutherobin in the Caribbean octocoral *Erythrodeepia caribbeorum*. This is of practical significance because it has not been possible to obtain sufficient amounts of natural or synthetic eleutherobin for preclinical development (47). The taxonomic classification of this source was confirmed by the identification of large quantities of the erythrolide diterpenoids characteristic of this species (48). In contrast to *Eleutherobia*, *E. caribbeorum* is widespread in the Caribbean and Florida (49–51), abundant in certain areas, and has been grown in aquaria. It may thus constitute a suitable source of eleutherobin for preclinical and early phase clinical trials. Paclitaxel and analogues have all been isolated from the bark of yew trees (46), from endophytic fungi isolated from the *Taxus* species or *Taxodium distichum* (52, 53), and recently from an epiphytic fungus on the rauisubas plant *Magnolia speciosa* (54). It was surprising to find paclitaxel analogues in the bark of a non- *Taxus* tree. The taxonomic classification of our extract was confirmed by the presence of the triterpenoid glycosides characteristic of the genus *Ilex* (55). It is possible that an endophytic fungus is responsible for their production in *Ilex macrophylla*.

Perhaps the most important outcome of this study is that the assay permitted us to detect antimitotic agents in extracts that were not found to contain them using other methods. *E. caribbeorum* has been subjected to extensive chemical characterization (48), but eleutherobin compounds were not detected because they are very minor components. The COMPARE algorithm, which is able to detect similar differential patterns of growth inhibition for the 60 human cell lines in the NCI anticancer drug screen, has been used successfully to identify new antimitotic agents within the NCI chemical repository of pure compounds (13). Extracts in the NCI Natural Products Repository have also been tested against the NCI cell line panel. A COMPARE analysis using paclitaxel as the probe compound identified 47 plant extracts with a Pearson correlation coefficient above 0.6 (not shown). Three of these extracts were positive in our antimitotic screen, and all three were from *Cataphractus rosescens*, the plant from which the Vinca alkaloids were originally isolated (1). The analysis did not identify the extract from *Ilex macrophylla*, the growth inhibition pattern of which does not resemble that of paclitaxel and other antimitotic compounds. This illustrates the usefulness of the cell-based assay for the identification of active compounds present in very low abundance in crude natural extracts. The assay should greatly facilitate the discovery and development of novel antimitotic agents and their characterization in the context of living cells.

ACKNOWLEDGMENTS

We thank Peter Davies for providing TG3-3 antibody; Hans Bebrbreich and Ross University for logistic support in the Commonwealth of Dominica; and Michael Leblanc, David Williams, and Robert Britton for collecting *E. caribbeorum*.

REFERENCES

Antimitotic Diterpenes from Erythrophorum caribaeorum Test Pharmacophore Models for Microtubule Stabilization

Bruno Cinel, Michel Roberge, Hans Behrisch, Leen van der Vege, Clovis B. Castro, and Raymond J. Andersen

Departments of Chemistry and Oceanography (EOS), University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z3. Ross University Medical School, Commonwealth of Dominica, National Naatunhislisch Museum, Leiden, The Netherlands, and Museu Nacional, Rio de Janeiro, Brazil

randersn@unixg.ubc.ca

Received October 29, 1999

ABSTRACT

Six new antimitotic diterpenes, 2–7, have been isolated from the Caribbean octocoral Erythrophorum caribaeorum. Structural variations encountered in this group of natural products test recently proposed pharmacophore models for microtubule stabilizing compounds.

Antimitotic compounds interfere with the dynamic assembly and disassembly of α- and β-tubulin into microtubules, causing cells to arrest in mitosis. Prolonged arrest in mitosis eventually leads to cell death, mainly by apoptosis. Two chemical classes of antimitotic agents, the vinca alkaloids (vinblastine, vincristine, and vinorelbine) and the taxanes (paclitaxel and docetaxel), are clinically useful anticancer drugs. Most known antimitotic agents, including the vinca alkaloids, induce mitotic arrest by inhibiting the polymerization of tubulin into microtubules. Paclitaxel was the first chemical entity shown to cause mitotic arrest by stabilizing microtubules against depolymerization. Since the initial discovery of paclitaxel’s mechanism of action and its introduction into clinical use, there has been much interest in finding other chemical structural types that also stabilize microtubules. Four additional chemotypes that have paclitaxel-like effects have subsequently been identified. These include the mycobacterium metabolites epothilones A and B, the marine sponge metabolites discodermolide, laulimalide, and isolaulimalide, and the soft coral metabolite eleutherobin. Ojima et al. have recently proposed a common pharmacophore for the microtubule stabilizing compounds that effectively accommodates nonatax, paclitaxel, disco-
dermolide, eleutherobin, and the epitolones. This model predicts that three regions of eleutherobin (1) (see boxes A, B, and C below) are important domains for binding to tubulin.

![Chemical Structure](image)

Most known antimitotic natural products were initially isolated because they exhibited potent in vitro cytotoxicity, and only subsequent mechanism of action studies revealed that they interfered with tubulin assembly and disassembly dynamics. Two classes of antimitotic agents, the epitolones and the laulimalides, have been discovered by rational screening, illustrating the significant potential for assay-directed identification of novel antimitotic chemotypes. Recently, a new cell-based antimitotic assay that is rapid and reliable has been developed in one of our laboratories. Extracts of the octocoral *Erythrophidium caribaearum* collected at several sites in the Southern Caribbean showed potent activity in the assay. Microscopic examination of cells arrested in mitosis by the *E. caribaearum* extract showed evidence of tubulin bundling, similar to the effects of paclitaxel.

Bioassay guided fractionation of the *E. caribaearum* extract led to the isolation of eleutherobin (1) and the new antimitotic diterpenoids desmethyleleutherobin (2), desacetyleleutherobin (3), isoeleutherobin A (4), Z-eleutherobin (5), caribaeside (6), and caribazolin (7). Compounds 3–7 all differ from eleutherobin in the proposed A, B, and C tubulin binding regions. In particular, caribaeside (6) provides the first test for the B region in Ojima’s model of the eleutherobin pharmacophore.

Fresly collected specimens of *E. caribaearum* were frozen on site and transported to Vancouver over dry ice.

Thawed samples (5.3 kg wet wt) were extracted multiple times with MeOH, and the combined MeOH extracts were concentrated to a gum in vacuo. Fractionation of the crude gum (280 g) by sequential application of vacuum reversed-phase flash (gradient elution: 80:20 H₂O/MeOH to MeOH in 10% increments), normal-phase flash (gradient elution: EtOAc to 80:20 EtOAc/MeOH in 2% increments), and normal-phase high-performance liquid chromatographies (eluents: 93:7 CH₂Cl₂/MeOH; gave pure samples of 1 (50 mg), 2 (7 mg), 3 (6 mg), 4 (3 mg), and 5 (2 mg). Compounds 6 (1 mg) and 7 (1 mg) partially decomposed on silica gel so they were isolated using only vacuum reversed-phase flash chromatography and cyano-bonded-phase HPLC (eluents: 56: 42:2 EtOAc/hexane/(Pr₃)NH).

![Chemical Structure](image)

All NMR data for the *E. caribaearum* diterpenes were recorded in DMSO-d₆ at 300 MHz. Tables of the NMR assignments are available in the Supporting Information. Eleutherobin (1) was identified by comparison of its spectroscopic data with literature values. Desmethyleleutherobin (2) was isolated as a clear oil that gave a [M + H]⁺ ion in the HRFABMS at m/z 643.3230, appropriate for a molecular formula of C₃₈H₇₄N₂O₈ (ΔM = 1.21 ppm), that differed from the molecular formula of eleutherobin simply by the loss of CH₂. The 1H NMR spectrum of 2 differed from the 1H NMR spectrum of eleutherobin (1) only by the absence of a methyl resonance at δ 3.1 that could be assigned to the C-4 methoxy substituent. This evidence indicated that 2 was identical to eleutherobin (1) except for the presence of a hydroxyl group instead of a methoxyl group at C-4. The 2D NMR data obtained for 2 was in complete agreement with this assignment.

Desacetyleleutherobin (3) was isolated as a clear oil that gave a [M + H]⁺ ion at m/z 615.32813 in the HRFABMS corresponding to a molecular formula of C₃₈H₇₂N₂O₈ (ΔM = 0.05 ppm), which differed from the formula of eleutherobin (1) by the loss of C₂H₂O. The 1H NMR spectrum of 3 showed a strong resemblance to the 1H NMR spectrum of eleutherobin (1) except for the absence of a methyl singlet at δ 2.2 that could be assigned to an acetyl residue and the chemical shifts of the resonances assigned to the arabinose protons. These NMR differences suggested that 3 was simply the

desacetyl analogue of eleutherobin (1). Acetylation of 3 with
acetic anhydride in pyridine converted it to diaetyleleuth-
erobin (8), which was identical to 8 prepared by acetylation of
eleutherobin using the same reaction conditions, confirm-
ing the proposed structure of 3.

Isoeleutherobin A (4), isolated as a colorless oil, gave an [M+
+ H]+ ion at m/z 657.33834 in the HRFABMS corresponding
to a molecular formula of C35H42N2O16 (ΔM −0.58 ppm),
which was identical to the molecular formula of eleutherobin
(1). Comparison of the 1H 1D and 2D NMR data for
isoeleutherobin A (4) with the data for eleutherobin (1)
showed that the molecules differed only in the position of
acylation on the arabinose fragment. COSY correlations
observed between resonances at δ 3.38 and 3.62 (both broad
doublets; J = 12.2 Hz, assigned to the C-5" methylene
protons, and a methine at δ 3.83 (H-4"
" m) showed that the
acetate was not at C-4". The H-4" resonance in turn showed
a COSY correlation to a resonance at δ 4.80 (dd, J = 2.5,
10.1 Hz), assigned to H3", which was significantly deshield-
ed relative to the corresponding H3+ resonance (δ 3.73) in
eleutherobin (1). Therefore, isoeleutherobin A was assigned
structure 4. Acetylation with acetic anhydride in pyridine
converted isoeleutherobin A (4) to diaetyleleutherobin (8),
confirming the assigned structure of 4.

Z-Eleutherobin (5) gave a [M + H]+ ion at m/z 657.33830
in the HRFABMS appropriate for a molecular formula of
C35H42N2O16 (ΔM −0.65 ppm), again identical to the
molecular formula of eleutherobin (1). Comparison of the
NMR data obtained for 5 with the data for 1 showed that the
molecules differed only in the configuration of the Δ23
olefin. In the 1H NMR spectrum of Z-eleutherobin (5), the
urocatic acid olefinic proton resonances appeared at δ 5.75
(H-2') and 6.94 (H-3') with a coupling constant of 12.6 Hz,
whereas in the spectrum of eleutherobin (1) they were found
at δ 6.35 (H-2') and 7.53 (H-3') with a coupling constant of
15.6 Hz. The NMR sample of Z-eleutherobin (5) partially
isomerized over time to eleutherobin (1), confirming the
assigned structure.

Caribaeside (6), obtained as a colorless glass, gave a [M+
+ H]+ ion in the HRFABMS at m/z 673.33474 appropriate
for a molecular formula of C35H42N2O18 (ΔM 1.64 ppm),
that only differed from the molecular formula of eleutherobin
(1) by the presence of one additional oxygen atom. Analysis
of the NMR data obtained for caribaeside (6) revealed that
it too was a diterpenoid glycoside with the same N-(6')-
methylurocatic acid and 2"-O-acetyl-arabinose substitu-
tions that are attached to the central core of eleutherobin (1).

A number of features of the NMR data revealed that
caribaeside (2) and eleutherobin (1) differed in the C-11 to
C-13 regions of their diterpene cores. The C-17 olefinic
methylene resonance at δ 1.47 and the H-12 olefinic methine
resonance at δ 5.27 in the 1H NMR spectrum of eleutherobin
(1) were both missing in the 1H NMR spectrum of car-
ibaeside (6). In their place, the 1H NMR spectrum of 6 had
a singlet methyl resonance at δ 0.82 and a pair olefinic
methine resonances at δ 5.52–5.54 (H-12 and H-13). The
two-proton olefinic resonance showed correlations in the
HMQC spectrum to carbon resonances at δ 125.6 (C-13) and
137.4 (C-12). HMBC correlations observed between the
Me-17 singlet at δ 0.82 and the C-12 olefinic resonance at
δ 137.4, a quaternary carbon resonance at δ 68.3, and a
methine resonance at δ 45.7 (HMQC to δ 2.07) confirmed
the proximity of Me-17 and C-12 and indicated that there
was a hydroxyl substituent at C-11 and a methine carbon at
C-10.9 A pair of overlapping doublets (6H) at δ 0.94–0.95,
that showed COSY correlations to a methine resonance at δ
1.68, were assigned to the Me-19 and Me-20 isopropyl
protons, and a multiplet at δ 4.00, that showed COSY
correlations to an olefinic doublet at δ 5.38 (H-2') and a
methine resonance at δ 2.07 (H-10), was assigned to H-1.
The H-1 resonance in the spectrum of 6 had a chemical shift
and multiplicity nearly identical to the H-1 resonance in
eleutherobin (1) (δ 3.88), consistent with the proposal that
the C-1, C-2, C-10, and C-14 centers in 6 were identical to
the corresponding sites in 1.

ROESY and scalar coupling constant data established the
relative stereochemistry about the cyclohexene ring in
caribaeside (6). The resonances assigned to H-1 (δ 4.00)
and H-2 (δ 5.38) in 6 had chemical shifts and a vicinal
coupling constant (J = 9.7 Hz) nearly identical with their
counterparts in eleutherobin (1) (δ H-1, 3.88; H-2, 5.39: J
= 9.4 Hz), indicating that the dihedral angle between them
in 6 was essentially identical to that in 1. ROESY correlations
observed between the isopropyl methyl proton resonances at
δ 0.94–0.95 and the H-1 (δ 4.00) and H-10 (δ 2.07)
resonances in 6, demonstrated that the isopropyl group, H-1,
and H-10 were on the same face of the molecule, as in
eleutherobin (1). The Me-17 resonance at δ 0.82 in 6 showed
a strong ROESY correlation to the H-2 (δ 5.38) resonance
demonstrating that Me-17 and C-2 were cis. Models indicate
that the Me-17 protons can sit in the shielding region of the
Δ23 olefin, consistent with their unusually shielded chemical
shift of δ 0.82. ROESY correlations observed between Me-
16 (δ 1.33) and both H-8 (δ 4.85) and OMe-21 (δ 3.08),
and between H-8 and H-10 (δ 2.07), confirmed that car-
(9) Sarcodictyin F, a related 4,7-oxaacellulose diterpeneid, has
a similarly functionalized cyclohexene ring, but with the opposite stereo-
ibaeoside (6) and eleutherobin (1) had identical relative stereochemistries at C-4, C-7, C-8, and C-10.

Caribaecol (7) was isolated as a clear oil that gave a [M + H]^+ ion in the HRFABMS at m/z 541.29111 corresponding to a molecular formula of C_{38}H_{44}O_{12} (AM -0.49 ppm). Analysis of the 1D and 2D 1H detected NMR data obtained for 7 revealed that it contained the diterpene core and N-(6’)-methyluronic acid fragments that constitute the aglycon of caribaecol (6) but was missing the arabinose sugar residue. COSY and ROESY correlations were observed between an olefinic methine resonance at δ 5.38, assigned to H-2, and a broad two proton singlet at δ 4.46, assigned to the H-15 methylene protons. HMBC correlations were observed between a carbonyl resonance at δ 169.9 and both the H-15 methyl proton resonance at δ 4.46 and a singlet methyl resonance at δ 1.97. These HMBC correlations demonstrated that in caribaecol (7) a C-15 acetyl substituent was present in place of the C-15 arabinose sugar residue found in caribaecol (6). Strong ROESY correlations were observed between the Me-17 resonance at δ 0.77 and the H-2 olefinic proton resonance at δ 5.38, indicating that Me-17 and C-2 were cis to each other as in caribaecol (6). Additional ROESY correlations observed between the C-19/C-20 isopropyl methyl proton resonances at δ 0.95–0.96 and the H-1 (δ 4.01) and H-10 (δ 2.07) resonances, between the Me-16 (δ 1.34) and both of the H-8 (δ 4.85) and OMe-21 (δ 3.08) resonances, and between the H-8 and H-10 (δ 2.07) resonances confirmed that the relative stereochemistry in caribaecol (7) was the same as in caribaecol (6).

All of the E. caribaeorum diterpenoids 1–7 reported above showed antimitic activity in the cell-based assay.7 Desmethylleleutherobin (2) (IC_{50} 20 nM) and isoleleutherobin A (4) (IC_{50} 50 nM) were both slightly more potent than eleutherobin (1) (IC_{50} 100 nM). Z-eleutherobin (5) (IC_{50} 250 nM) was comparable in activity to eleutherobin (1), desacetyeleleutherobin (3) (IC_{50} 400 nM) was slightly less potent, while caribaecol (6) (IC_{50} 20 μM) and caribaecol (7) (IC_{50} 20 μM) were considerably less potent than eleutherobin (1).

Many synthetic analogues of eleutherobin (1) have been prepared as part of SAR studies,10 however, to date they have all been based on the eleutherobin diterpenoid core. The Ojima pharmacophore proposal implies that changes in the C-11–C-13 region of eleutherobin should have an impact on the ability of analogues to stabilize tubulin polymers. Caribaecol (6) represents the first such analogue to be tested for antimitic activity. The significant decrease in antimitic potency of caribaecol (6) relative to eleutherobin (1), resulting from introduction of a hydroxy group at C-11 and migration of the olefin to the Δ^{12,13} position, provides further support for Ojima’s pharmacophore model. The structural changes in 6 alter both the shape and polarity of the diterpene core in the tubulin binding region B of the proposed pharmacophore.

A number of other features of the antimitic potencies are also noteworthy. Altering the Δ^{2,3} configuration (i.e., 5), a change in the A region of the pharmacophore, has little effect, while alterations in the arabinose fragment, representing changes in the C region of the pharmacophore, can either enhance (i.e., 4) or decrease (i.e., 3) the potency. Changing the C-4 substituent from methoxyl (i.e., 1) to hydroxyl (i.e., 2), an alteration that is formally outside of the Ojima pharmacophore binding regions, leads to a slight increase in potency. Replacement of the arabinose fragment in caribaecol (6) with a simple acetate residue (i.e., 7) results in no additional loss of potency, which is consistent with previous observations.6

In summary, the current study has identified a new and relatively high-yielding source of eleutherobin (1), whose preclinical development has been impeded by its scarcity, as well as providing a series of new eleutherobin analogues 2–7 that serve as a further test of recent pharmacophore models for microtubule stabilization.

Acknowledgment. Financial support was provided by the National Cancer Institute of Canada (R.J.A.), NSERC (R.J.A.), and the Canadian Breast Cancer Research Initiative (M.R.). The authors thank M. LeBlanc, D. Williams, R. Britton, and the staff of Ross University for assistance collecting the samples.

Supporting Information Available: Tables of optical rotations, UV data, and 1H and 13C NMR assignments for compounds 1–8. This material is available free of charge via the Internet at http://pubs.acs.org.

OL9912027

Solid-state and solution conformations of eleutherobin obtained from X-ray diffraction analysis and solution NOE data

Bruno Cinel, Brian O. Patrick, Michel Roberge and Raymond J. Andersen

*Departments of Chemistry and Earth and Ocean Sciences, University of British Columbia, Vancouver BC V6T 1Z1, Canada
bDepartment of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada

Received 22 January 2000; accepted 4 February 2000

Abstract

Single crystal X-ray diffraction analysis has revealed the solid-state conformation of the microtubule-stabilizing diterpenoid eleutherobin (1). NOE data obtained for 1 in CDCl3 and DMSO-d6 are consistent with solution conformations that are virtually identical to the solid state conformation. © 2000 Elsevier Science Ltd. All rights reserved.

Eleutherobin (1), initially isolated from a Western Australian octocoral in the genus Eleutherobia (possibly albiflora), represents one of a small number of antimitotic natural product families that are known to stabilize microtubules. Other structural types possessing this important biological activity are represented by paclitaxel, epothilones A and B, discodermolide, and the laulimalides. The current excitement surrounding this group of compounds stems from the FDA approval of paclitaxel for the treatment of ovarian (1992) and metastatic breast cancers (1994). Paclitaxel’s clinical utility has generated great interest in developing additional anticancer drug candidates that exploit its mechanism of action. One approach to designing the next generation of microtubule-stabilizing compounds has been to create three-dimensional pharmacophore models that embrace all the available SAR data for the known natural product structural types with these properties. The validity of this approach has been demonstrated by the pharmacophore-guided design and subsequent synthesis of new hybrid structures with demonstrated cytotoxic and tubulin binding abilities.

Creation of predictive pharmacophore models depends on detailed knowledge about the conformation of all the known structural types possessing microtubule stabilizing properties. To date, there have been no published solid-state or solution conformational analyses of eleutherobin (1), although the original report of the structure elucidation did provide a series of useful NOE constraints. Recently, we discovered that the Caribbean octocoral Erythropodium cariboeorum is a relatively high-yielding source.
of eleutherobin and several new structural analogs. During the course of characterizing the antimitotic diterpenes from the *E. caribaeorum* extracts, several crystals of eleutherobin (I) were obtained by the fortuitous slow evaporation of a concentrated NMR sample dissolved in DMSO-<i>d</i>₆. The crystals proved to be suitable for X-ray diffraction analysis, which has provided the first solid state conformation for eleutherobin (I). ROESY and difference NOE data have also been collected for eleutherobin (I) in DMSO-<i>d</i>₆ and CDCl₃ in order to facilitate a comparison of the solid state conformation with the solution conformations in both a polar and a nonpolar solvent.

Eleutherobin (I) crystallized in space group *P₂₁₁* with *a* = 12.8291(8), *b* = 13.6209(6), and *c* = 19.168(1) Å. A crystal with dimensions 0.30×0.20×0.15 mm, was mounted on a glass fiber. Data were collected at −100°C on a Rigaku/ADSC CCD area detector in two sets of scans (ϕ = 0.0 to 190.0°, χ = 0°; and ω = −18.0 to 23.0°, χ = −90°) using 0.50° oscillations with 58.0 s exposures. The crystal-to-detector distance was 40.55 mm with a detector swing angle of −5.52°. Of the 7035 unique reflections measured (Mo-Kα radiation, 2θ_{max} = 55.8°, *R*_{int} = 0.071, Friedels not merged), 4520 were considered observed (*I* > 3σ(*I*)). The final refinement residuals were *R* = 0.046 (on *F*), *I* > 3σ(*I*) and *wR*₂ = 0.141 (on *P*², all data).⁹ The data was processed using the *d*TREK program and corrected for both Lorentz and polarization effects. The structure was solved by direct methods¹⁰ and all non-hydrogen atoms were refined anisotropically, while all hydrogens involved in hydrogen-bonding were refined isotropically. All hydrogens were included in calculated positions. The enantiomorph shown in Fig. 1 was chosen based on the known configuration of eleutherobin (I).¹¹ All calculations were performed using the teXsan¹² crystallographic software package of the Molecular Structure Corporation.

![ORTEP drawing of eleutherobin (I). Hydrogen atoms have been omitted for clarity.](image)

ROESY (500 MHz) and difference NOE (400 MHz) data were collected for eleutherobin (I) dissolved in DMSO-<i>d</i>₆ and CDCl₃. The NMR samples were degassed and purged of oxygen by freezing in a dry ice/acetone bath and placing the frozen sample under vacuum. The degassed samples were then flushed with argon and sealed. Table 1 lists the difference NOE results obtained in CDCl₃ and the ROESY
correlations observed in CDCl₃ and DMSO-d₆ along with the solid-state internuclear distances between the relevant pairs of protons. A number of key NOEs indicate that the solution conformation of the diterpenoid core of eleutherobin (1) in both CDCl₃ and DMSO-d₆ is identical to, or at least extremely similar to, the solid state conformation. These include difference NOEs observed in the resonances for H1, H10, and Me19 when the H8 resonance is irradiated and in H13α when H2 is irradiated. The C8–C9–C10–C1 torsional angle in the solid state is –66°, which places H8 2.438 Å from H1 and 2.304 Å from H10, consistent with the difference NOEs observed. A C9–C10–C1–C14 torsional angle of 177.7° in the solid state brings the Me19 protons into sufficient proximity to H8 to explain the weak difference NOE observed between their resonances, and the C2–C1–C14–C13 torsional angle of –61° in the solid state places H2 only 2.118 Å from H13α in agreement with the strong difference NOE observed between their resonances. Molecular models indicate that the combination of H8 to H10, H1, Me19 and H2 to H13α NOEs represent an extremely restrictive set of conformational constraints. Any significant deviation from the solid-state conformation results in H8 to H1, H10, Me19 and H2 to H13α interproton distances that would make the simultaneous appearance of the observed suite of NOEs between these protons highly unlikely. The diagnostic dipolar couplings between H8 and both H1 and H10, and between H2 and H13α, are all observed as ROESY correlations in both CDCl₃ and DMSO-d₆, providing additional evidence that the solution conformations in both solvents must be essentially identical to the solid-state conformation.

Table 1

<table>
<thead>
<tr>
<th>H# (δ in CDCl₃)</th>
<th>H# (δ in CDCl₃)</th>
<th>Internuclear Distance from X-ray Data (Å)</th>
<th>Difference NOE (% enhancement) H in First Column was Irradiated</th>
<th>ROESY Correlations in CDCl₃</th>
<th>ROESY Correlations in DMSO-d₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 (3.54)</td>
<td>H13α (2.29)</td>
<td>2.12</td>
<td>7.49</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H2</td>
<td>H14 (1.21)</td>
<td>2.61</td>
<td>3.51</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H8 (4.80)</td>
<td>H1 (3.94)</td>
<td>2.44</td>
<td>4.28</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H1</td>
<td>H10 (2.60)</td>
<td>2.50</td>
<td>6.16</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H8</td>
<td>H16 (1.43)</td>
<td>2.52</td>
<td>0.91</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H8</td>
<td>H19 (0.96)</td>
<td>2.64</td>
<td>0.52</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>H10 (2.60)</td>
<td>H1 (3.94)</td>
<td>2.33</td>
<td>4.79</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H10</td>
<td>H8 (4.80)</td>
<td>2.30</td>
<td>2.61</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H10</td>
<td>H19 (0.96)</td>
<td>2.51</td>
<td>0.77</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>H13α (2.29)</td>
<td>H2 (3.54)</td>
<td>2.12</td>
<td>9.69</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H14 (1.21)</td>
<td>H1 (3.94)</td>
<td>2.37</td>
<td>6.40</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H19 (0.96)</td>
<td>H1</td>
<td>2.02</td>
<td>0.97</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>H19</td>
<td>H8 (4.80)</td>
<td>2.64</td>
<td>0.32</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>H19</td>
<td>H10 (2.60)</td>
<td>2.51</td>
<td>0.42</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>H20 (0.96)</td>
<td>H13β (1.97)</td>
<td>2.03</td>
<td>0.96</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>OMe (3.20)</td>
<td>H16 (1.43)</td>
<td>2.28</td>
<td>1.01</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

* 400 MHz; 5 500 MHz; 6 β and α are defined as being above and below the plane of the diterpenoid core of eleutherobin in the structural representation 1; n - ROESY correlation not clear; y - ROESY correlation clearly observed.

It is interesting to compare the conformation of eleutherobin (1) revealed by the X-ray diffraction and solution NOE data in the current study to the conformation used by Ojima et al. in constructing their common pharmacophore for microtubule-stabilizing natural products. In order to generate a
conformation for pharmacophore creation, Ojima et al. carried out molecular dynamic calculations on eleutherobin (1) without using any constraints. The exact coordinates for the resulting conformation that they used for 1 were not available, but Figure 4 in their paper indicates that the modeled conformation had a C8–C9–C10–C1 torsional angle of $\geq-90^\circ$ and a C2–C1–C14–C13 torsional angle approaching 180°. A conformation with those torsional angles would not be expected to give any of the NOEs that are observed between H8 and H1 and Me19, or between H2 and H13α in CDCl$_3$ and DMSO-d_6. The Ojima conformation gives their binding region B (C11–C12–C13) a much different spatial relationship relative to the A (uroconic acid side chain) and C (d-arabinose residue) binding regions compared to the solid-state conformation (see Scheme 1). This suggests that the solid-state and solution conformations of eleutherobin (1) determined herein might have significantly different overlay fits with the reference structure nonataxel and the other microtubule-stabilizing structures that were used to construct the common pharmacophore. Therefore, it is anticipated that the availability of solid-state and solution conformation data for eleutherobin (1) will facilitate further refinements of microtubule-stabilizing pharmacophore models and, consequently, aid the eventual design of new compounds with this important biological activity.

Scheme 1.

Acknowledgements

Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (R.J.A.), the National Cancer Institute of Canada (R.J.A.), the Canadian Breast Cancer Research Initiative (M.R.), and the US Department of Defense Breast Cancer Program Idea Award No. DAMD17-99-1-9088 (M.R.).

References

9. Archival crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK. Please give a complete literature citation when ordering.
Antimitotic diterpenoids from Erythrophymum caribaeorum: isolation artifacts and putative biosynthetic intermediates

Robert Britton,a Michel Roberge,b Hans Berischc and Raymond J. Andersena, *

aDepartments of Chemistry and Oceanography (EOS), University of British Columbia, Vancouver, BC, Canada V6T 1Z1
bDepartment of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
cRoss University Medical School, Commonwealth of Dominica

Received 2 February 2001; accepted 28 February 2001

Abstract—Two new natural products, caribaeorane (12) and 15-hydroxycaribaeorane (11), have been identified in Erythrophymum caribaeorum extracts by isolation of their C-4 methylketals 10 and 9. It has been demonstrated that eleutherobin (1) is an isolation artifact. A proposal for the late stages of the biosynthetic pathway to the E. caribaeorum antimitotic diterpenoids is presented. © 2001 Published by Elsevier Science Ltd.

Eleutherobin (1), isolated by Fenical and coworkers from the Western Australian soft coral Euletherobia sp., belongs to a small family of soft coral diterpenoids that are microtubule-stabilizing antimitotic agents.1 A large amount of effort has been directed towards the total synthesis of eleutherobin and other members of this family.2 Although these efforts have culminated in the total synthesis of eleutherobin (1), its preclinical evaluation as an anticancer drug has been stalled by the limited supply of material available for testing.3 Recently, we reported that the relatively abundant Caribbean soft coral Erythrophymum caribaeorum is a good source of eleutherobin (1) and a number of analogs including sarcodictyin A (2), caribaeoside (3), Z-eleutherobin, desmethyleleutherobin (4), isoeleutherobin A (5), and desacetylleleutherobin (6).4,5 E. caribaeorum could provide adequate quantities of material for preclinical evaluation of this promising family of anticancer drug leads and even clinical trials should the compounds progress that far.

Initial collections of E. caribaeorum examined by our laboratory were extracted with MeOH, resulting in the isolation of highly variable ratios of eleutherobin (1) and desmethyleleutherobin (4). Ketzel et al. have reported isolating the eleuthosides (e.g. 7), which are all hemiketals at C-4, from Euletherobia aurea by using non-alcohol solvents such EtOAc.6 These observations raised the possibility that eleutherobin (1) was actually an isolation artifact. To resolve this issue, fresh specimens of E. caribaeorum were collected in Dominica and one portion of the sample was extracted with EtOH and a second portion was extracted with MeOH. The MeOH extracted sample yielded eleutherobin (1), desmethyleleutherobin (4), and sarcodictyin A (2) as the major components along with minor amounts of 3, 5, and 6 as before,3 while the EtOH extracted sample yielded the C-4 ethylketal 8 along with 2 and 4 as the major components. Eleutherobin (1) could not be detected by analytical HPLC or NMR analysis of the chromatography fractions from the EtOH extract.

* Corresponding author.

0040-4039/01/$ - see front matter © 2001 Published by Elsevier Science Ltd.
PII: S0040-4039(01)00347-1
These results show that the C-4 methyl ketal in eleutherobin (I) isolated from E. caribaeorum is indeed an artifact.

During the course of fractionating a large scale E. caribaeorum MeOH extract in order to obtain sufficient eleutherobin (I) for biological testing, the eleutherobin aglycon 9 and methylcaribaeorane (10) were isolated as very minor components along with sarcodictyin A (2) from the least polar fractions eluting from silica gel with EtOAc:MeOH (85:15). The eleutherobin aglycon 9 has previously been reported as a synthetic intermediate. Comparison of the spectroscopic data collected on the material isolated from E. caribaeorum with the literature data for the synthetic compound confirmed that they were identical. The eleutherobin aglycon 9 is presumed to be an artifact formed from the corresponding hemiketal natural product 15-hydroxycaribaeorane (11) during the MeOH extraction.

Methylcaribaeorane (10) isolated as a white amorphous solid, gave an [M+H]⁺ ion at m/z 467.2912 in the HRFABMS appropriate for a molecular formula of C₂₇H₃₆N₂O₄ that differed from the molecular formula of the eleutherobin aglycon 9 simply by the loss of one oxygen atom. Examination of the ¹H and ¹³C NMR data obtained for methylcaribaeorane (10) revealed the presence of two olefinic methyl groups (¹H NMR, C₆D₆: δ 1.65, s, 3H; 1.80, s, 3H) and the absence of resonances that could be assigned to an allylic hydroxymethyl fragment. These observations indicated that methylcaribaeorane (10) was simply missing the C-15 allylic alcohol found in the eleutherobin aglycon 9. HMBC correlations observed between a methyl resonance at δ 3.18 and a carbon resonance at δ 117.4 assigned the carbon resonance to the C-4 ketal. The olefinic methyl resonance at δ 1.80 showed HMBC correlations to the C-4 ketal carbon resonance at δ 117.4 and to the C-2 and C-3 olefinic carbon resonances at δ 131.3 and 134.0, respectively, confirming that there was an allylic methyl at C-15. The remaining NMR data for methylcaribaeorane was completely consistent with the structure 10. Methylcaribaeorane (10) is also presumed to be an isolation artifact formed from the corresponding hemiketal natural product caribae-
orane (12). The eleutherobin aglycon 9 and methylcaribaeorane (10) were active in a cell-based assay for antimitotic activity at 1 and 10 μM, respectively.

Most of the compounds isolated from the E. caribaeorum MeOH extract had C-4 methylketal, which are artifacts. Interestingly, sarcodictyin A (2) was only isolated as the C-4 hemiketal. Since methylketal transformations clearly take place during the extraction process, it seemed possible that the eleutherobin aglycon 9 might also be an artifact formed from eleutherobin (I) by hydrolysis/methanolysis of the glycosidic linkage during extraction. An investigation of the ketal transformations was undertaken in order to confirm that glycoside hydrolysis was not occurring during extraction and to gain insight into the lack of ketal formation in sarcodictyin A (2). First, it was found that desmethyllelethuberin (4) can be converted quantitatively to eleutherobin (I) by treatment with a catalytic amount of pyridinium p-toluenesulfonate (PPTS) in methanol at room temperature. The reverse transformation, 1 to 4, can be quantitatively effected using PPTS and water/CH₂Cl₂. Neither of these transformations result in glycoside hydrolysis. Sarcodictyin A (2) could also be converted quantitatively to its methylketal using PPTS and MeOH at rt. The combination of the extraction and the laboratory observations indicate that the MeOH extraction conditions are able to readily convert the C-4 hemiketal to the methylketal when there is a methyl, hydroxymethyl, or glycosidic functionality at C-15, but that they cannot effect methylketal formation when there is a ester at C-15. The PPTS in MeOH or PPTS in water/CH₂Cl₂ quantitatively interconverts all C-4 hemiketals and methylketales, but still does not bring about glycoside hydrolysis. Therefore, it is apparent that the milder MeOH extraction conditions will not cleave the glycoside linkage, confirming that 15-hydroxycaribaeorane (11) is indeed a natural product.

The discovery of methylcaribaeorane (10) and the eleutherobin aglycon 9 as minor constituents in the MeOH extracts of E. caribaeorum along with the previously reported compounds 1 to 6, and the demonstration that the C-4 methyl ketal functionalities in these
compounds are isolation artifacts, led to the biosynthetic proposal presented in Scheme 1. This proposal suggests that geranylgeranylpyrophosphate undergoes cyclization and oxidative functionalization to give the diterpenoid core which is esterified at the C-8 hydroxylic with the urocanic acid residue to give caribaeeorane (12), the first known intermediate in the pathway. Caribaeeorane (12) would then be oxidized to 15-hydroxyecaribaeeorane (11) and the arabinose residue would be added to give desacetyldesmethylletherobin (13), which if monoaacylated at C-2' would give desmethylletherobin (4) or at C-3' would give desmethylsoletherobin A (14). Further acetylation of either 4 or 14 would give eleuthoside A (7), while acetylation of desmethylletherobin (4) at C-4' would give eleuthoside B (15). In this proposal, sarcodictyiin A (2) represents a shunt metabolite formed by further oxidation of 15-hydroxyecaribaeeorane (11) to the 15-carboxylic acid followed by SAM methylation to give the methyl ester. It should be noted that there is no evidence for the occurrence of either 7 or 15 in the E. caribaeeorum extract, however, their biosynthesis in *Eleutherothis aurea* would presumably follow the same pathway.

One significant aspect of the hypothesis presented in Scheme 1 is the proposal that the urocanic ester residue is added to the diterpenoid core before the C-15 alcohol required for glycoside formation is introduced. In an attempt to provide further evidence for this suggestion, the urocanic acid residue was removed from methylcaribaeeorane (10) by hydrolysis with a few drops of 5N NaOH in MeOH overnight at rt to give 16,9 the methyl ketal analog of one of the potential biosynthetic precursors 17 of caribaeeorane (12). Careful examination of the *E. caribaeeorum* MeOH extract chromatography fractions by TLC and GC analysis using 16 as a reference failed to show any evidence for its presence. The corresponding hydrolysis product 18 of the eletherobin aglycon 9 was also prepared and once again TLC and GC analysis failed to show any evidence for its presence in the *E. caribaeeorum* MeOH extract. This negative evidence does not eliminate 17 as the immediate biosynthetic precursor to caribaeeorane (12) or rule out the possibility that 19 is the direct precursor to 11, but it does raise the interesting possibility that the urocanic ester is formed before all the diterpenoid functionality, such as the C-7 tertiary alcohol or the C-4 ketone, are in place.

Acknowledgements

Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (R.J.A.) and by the National Cancer Institute of Canada (R.J.A.). Logistical assistance with collecting was provided by the Fisheries Development Division, Commonwealth of Dominica.

References

7. Eletherobin aglycon 9: 1H NMR (CDCl3, 400 MHz) δ 7.52, d, J = 15.4 Hz (H-3), 7.45, s (H-7), 7.08, s (H-5'), 6.54, d, J = 15.4 Hz (H-2'), 6.21, d, J = 6.0 Hz (H-6), 6.02, d, J = 6.0 Hz (H-5), 5.56, d, J = 9.4 Hz (H-2), 5.25, m, δ (H-12), 4.80, d, J = 7.4 Hz (H-8), 4.16, d, J = 12.0 Hz (H-15), 3.85–3.95, m (H-15, H-1), 3.69, s (H-9'), 3.23, s (H-21), 2.67, m (OH), 2.59, m, δ (H-10), 2.31, m (H-13), 1.98, m (H-13), 1.50–1.65, m (H-9, H-18), 1.50, s (H-17), 1.45, s (H-16), 1.25–1.40, m (H-9, H-14), 0.97, d, J = 6.5 Hz (H-19), 0.91, d, J = 6.5 Hz (H-20); HRABMS [M+H]+ calecd for C28H38N2O6: 483.2859; found: 483.2860; [α]D = -24.9.
8. Methylcaribaeeorane (10): 1H NMR (CD3, 500 MHz) δ 7.95, d, J = 15.4 Hz (H-3'), 7.26, d, J = 15.4 Hz (H-2'), 6.72, s (H-7), 6.00, s (H-5'), 5.95, d, J = 5.8 Hz (H-6), 5.78, d, J = 5.8 Hz (H-5), 5.49, d, J = 9.7 Hz (H-2), 5.33, m (H-12), 5.25, d, J = 7.3 Hz (H-8), 4.30, m (H-1), 3.18, m (H-21), 2.95, m (H-10), 2.37, m (H-13), 2.25, s (H-9), 2.00, m (H-9), 1.98, m (H-13), 1.18, m (H-9), 1.80, s (H-15), 1.65, m (H-17), 1.57, m (H-18), 1.46, m (H-16), 1.28, m (H-14), 1.06, d, J = 6.5 Hz (H-19), 0.89, d, J = 6.5 Hz (H-20); 13C NMR (CD3, 100 MHz) δ 167.1 (C-1'), 139.2 (C-4'), 139.2 (C-7'), 137.3 (C-3'), 134.9 (C-11), 134.8 (C-6), 134.0 (C-3), 131.3 (C-2), 130.1 (C-5), 122.5 (C-5'), 121.6 (C-12), 117.4 (C-4), 116.5 (C-2'), 90.5 (C-7'), 82.2 (C-49), 49.5 (C-21), 43.3 (C-14), 39.6 (C-10), 34.6 (C-1), 32.3 (C-9), 31.9 (C-9'), 29.4 (C-18), 24.9 (C-16), 24.8 (C-13), 22.4 (C-15), 22.3 (C-17), 22.2 (C-20), 20.8 (C-19); HRABMS [M+H]+ calecd for C30H46N2O8: 461.2994; found: 461.2994.
9. Compound 16: 1H NMR (CD3, 400 MHz) δ 5.99, d, J = 5.9 Hz (H-6), 5.74, d, J = 5.9 Hz (H-5), 5.41, d, d, 1H, J = 9.3, 1.3 Hz (H-2'), 5.36, m (H-12), 4.15, m (H-1), 3.47, m (H-8), 3.19, s (H-21), 2.35, m (H-10), 2.28, m (H-13), 1.97, m (H-13), 1.80, s (H-15), 1.62, s (H-17), 1.50, s (H-16), 1.50–1.72, m (H-9, H-18, H-14, OH), 1.27, m (H-9), 0.98, d, J = 6.5 Hz (H-19), 0.93, d, J = 6.5 Hz (H-20); HRABMS calecd for C21H33O3: 332.2351; found: 332.2351.
10. Compound 18: 1H NMR (CD$_2$D$_6$, 400 MHz) δ 5.94, d, $J=5.9$ Hz (H-6), 5.68, d, $J=5.9$ Hz (H-5), 5.67, d, $J=9.5$ Hz (H-2), 5.31, m (H-12), 4.00-4.20, m (H-1, H-15, H-15), 3.44, bd, $J=6.1$ Hz (H-8), 3.00, s (H-21), 2.23-2.38, m (OH, H-10, H-13), 1.93, m (H-13), 1.59, s (H-17), 1.43, s (H-16), 1.42-1.62, m (H-9, H-18, OH), 1.30, m (H-14), 1.25, m (H-9), 0.93, d, $J=6.9$ Hz (H-19), 0.90, d, $J=6.7$ Hz (H-20); HRDCl-MS calcd for C$_{21}$H$_{32}$O$_4$: 348.2301, found: 348.2303.
Synthetic Transformations of Eleutherobin Reveal New Features of its Microtubule-Stabilizing Pharmacophore

Robert Britton,1,2 E. Dilip de Silva,3 Cristina M. Bigg,4 Lianne M. McHardy,1 Michel Roberge,1,2 and Raymond J. Andersen1,2

1Departments of Chemistry and EOS, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1; 2Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z3

RECEIVED DATE (will be automatically inserted after manuscript is accepted).

The clinical usefulness of paclitaxel for treating cancer has generated significant interest in finding other compound classes that stabilize microtubules. Discosomiderolide, epothilones, laulimalide, and the eleutherobines also have this important biological property.5 Several pharmacophore models have attempted to reconcile the SAR data for the taxoids and other compound types in order to generate a sufficiently detailed understanding of the tubulin binding requirements to allow rational design of new classes of microtubule-stabilizing drugs.6 The predictive power of the pharmacophore models relies on accurate knowledge of the structural features required for activity in each compound class. Eleutherobin (1), isolated by Fenical et al. from the rare alycanthosporine E. caribaeorum sp., belongs to the 'eleutheside' family of microtubule-stabilizing diterpenoids.7 Total syntheses of eleutherobin and related eleuthesides have provided information about the nature of the C-8 ester, the C-4 ketal, and the C-15 functionality required for strong interaction of eleuthesides with tubulin, which has facilitated the incorporation of this diterpenoid template into pharmacophore models.1 However, neither synthesis nor the original natural source has provided sufficient quantities of eleutherobin to permit full in vivo evaluation and this has thwarted its further development.

The Caribbean soft coral Erythroductum caribaeorum was recently found to be a good source of eleutherobine.8 Eleutherobin (1) can be obtained directly as an isolation artifact from MeOH extracts of E. caribaeeorum by chemical transformation of desmethyleleutherobin (2), the major elutheside in the soft coral.9 The ready availability of 1 has led to the determination of its solid-state and solution conformations,10 paved the way for in vivo testing, and created an opportunity to investigate chemical transformations of the molecule. In this communication, we report the first detailed investigation of the reactivity of intact eleutherobin, which has uncovered some striking and unanticipated features of its antimiticolic pharmacophore.

The total syntheses of eluthesides have generated very limited diversity in the diterpenoid core, and most variations reported only in the C-15 functionality.4 Nevertheles, all of the pharmacophore models suggest, without supporting data other than structural overlans, that the cyclohexene ring and its appended substituents (i.e., the isopropyl residue) are important determinants of antimiticolic activity. There is also general agreement that the uroncanc ester is crucial and the Ginnmakkakou model11 suggests that the C-4/C-7 ether bridge in 1 is a hydrogen bond acceptor corresponding to the exo-keto oxygen in the taxoids and to the 12,13 epoxide in the epothilones. The importance of the cyclohexene ring is supported by the observation that cardiacadose, which has a β-hydroxyl at C-11 and a Δ11,12 olefin, is 1,000-fold less active than eleutherobin.10 Prompted by the potential importance of the C-4/C-7 ether bridge, the uroncanc ester, and the cyclohexene ring for antimiticolic activity in the eleuthesides, our chemical transformations focused on the masked C-4 ketone and olefin oxidation/reduction reactions.

Scheme 1

The first objective was to trap the C-4 ketone in 1 as a cyclic ketal in order to liberate the C-4/C-7 ether oxygen as a C-7 alcohol and to change the oxygen atom's spatial relationship with the C-14 isopropyl group. In order to test the reactivity of the C-4 hemiketal, desmethylleutherobin (2) was treated with various neat aliphatic alcohols (ROH: R = Et, 'Pr, 'Bu, Pr) and excess PPTS at rt, which gave the corresponding C-4 ketal analogs in excellent yield (Scheme 1). Attempts to make the C-4 cyclic ketals of 2 with ethylene glycol or 2,2-dimethyl-1,3-propanediol under a variety of conditions using PPTS as a catalyst gave only 3 and 4. The x-ray structure of eleutherobin12 shows significant distortion of the C-1/C-2/C-3 (132°) and C-2/C-3/C-4 (127°) bond angles. This angle strain may act like a clamp to keep the dihydrofuran ring from opening during the transketalization reactions.

Next we turned our attention to oxidation reactions involving the Δ11,12 olefin. Reaction of 1 with MCPBA in CH2Cl2 at rt for 8 h gave a mixture of two epoxides, 5 and 6 (Scheme 2). The 'H NMR data obtained for both 5 and 6 showed the absence of a resonance that could be assigned to H-12 and in both spectra the Me-17 resonance had undergone a significant upfield shift. The observation of a 1D NOESY correlation between the Me-17 resonance at δ 1.06 and the H-2 resonance at δ 5.47 showed that the major epoxide was the β
isomer 5. Treatment of 1 with SeO₂ (5 equiv.) in refluxing EtOH gave a single product 7 in modest yield.

\[\text{Scheme 2} \]

Finally, we examined reduction of the olefins. A solution of 1 in EtOAc containing catalytic Pd on BaSO₄ was stirred at rt for 1 h under 1 atm of H₂, resulting in the formation of hexahydroeleutheroberin 8 (Scheme 2). The ¹H NMR of 8 contained only a single olefinic proton resonance at δ 5.78 (d, J = 9.3 Hz), assigned to H-2, indicating that the Δ⁴⁺, Δ²⁻, and Δ²⁻ double bonds had been reduced. A ROESY correlation observed between the Me-17 resonance (δ 0.76 (d, J = 7.0 Hz)) and the H-2 resonance demonstrated that hydrogen had added to the β face of the Δ⁴⁺ olefin. Hexahydroeleutheroberin 8 (IC₅₀ >10³ nM) was found to be more than five thousand-fold less active than eleutheroberin (1) (IC₅₀ 20 nM) in a cell-based antimitotic assay, indicating that the presence of one or more of the reduced double bonds is important for tubulin binding. Biological evaluation of a synthetic sarcodictylin library had suggested that reduction of the Δ⁴⁺ olefin had minimal effect on the potency of tubulin polymerization. Therefore, 5,6,11,12-tetrahydroeleutheroberin (9) and 2',3'-dihydroeleutheroberin (10) were selected as logical targets to further probe the biological effects of olefin reduction.

\[\text{Scheme 3} \]

The synthesis of 9 started from eleutheroberin (1), by first forming the 3',4'-acetoxone 11, which was subsequently deacetylated to the 2' alcohol and converted directly to the 2'-TBS ether 12. Hydrogenation of 12, using a catalytic amount of Pd on BaSO₄, gave the 5,6,11,12,2',3'-hexahydro derivative vide supra (Scheme 3). Hydrolysis of the crude hydrogenation product cleanly cleaved the C-8 ester side chain, which was replaced with a N-methylurocanic ester residue to afford 14. Removal of the TBS protecting group, followed by acetylation provided 15, which was subsequently deprotected under mild acidic conditions to give 5,6,11,12-tetrahydroeleutheroberin (9). Similarly, 2',3'-dihydroeleutheroberin (10) was prepared from the 2'-TBS ether 12, by hydrolysis of the N-methylurocanic ester residue (NaOH, MeOH) to provide a secondary alcohol at C-8, which was directly coupled with 2,3-dihydro-N-methylurocanic acid (17) using DCC and DMAP in warm (50°C) DMP to afford 16. A deprotection/acetylation sequence similar to that employed in the synthesis of the tetrahydro derivative 9, provided 10 in good overall yield.

The C-4 ketal 3 and 4 had antimitotic activity (IC₅₀ 20 and 80 nM) comparable to eleutheroberin (IC₅₀ 20 nM) demonstrating that a bulky group can be tolerated at this position. The α-epoxide 6 and the 17-hydroxyeleutheroberin 7 had antimitotic potencies comparable to 1, while the β-epoxide 5 was ten-fold less active (IC₅₀ 5: 300, 6: 30, 7: 20 nM). This was unexpected in light of the dramatic decrease in activity previously shown by carbaesoside, attributed to the presence of a polar alcohol functionality in a binding region that was thought to require lipophilic character. Since hydroxylation at Me-17 and α-epoxidation at C-11/C-12 do not affect activity, the major negative effect of the C-11 OH in carbaesoside must be more subtle than originally thought.

Figure 1A shows antimitotic activity in a cell-based assay for 1, and the synthetic derivatives 8, 9, and 10. Tetrahydroeleutheroberin 9 (IC₅₀ 200 nM) was only ten-fold less active than eleutheroberin, suggesting that reduction of the Δ²⁻ olefin was primarily responsible for the dramatically reduced activity of 8 (IC₅₀ >10³ nM). This was confirmed by the observation that 2',3'-dihydroeleutheroberin (10) (IC₅₀ = 20,000 nM) is a thousand-fold less active than eleutheroberin (1). The lack of activity of 2',3'-dihydroeleutheroberin (10) in the cell-based antimitotic assay is mirrored in its complete lack of ability to promote the polymerization of purified bovine tubulin in a standard in vitro assay (Figure 1B).

The pharmacophore models put forward to date have all suggested that the C-8 urocanic ester is important for tubulin binding in the eleutheroberins, however, the remarkably stringent requirement for the 2',3'-double bond demonstrated here was completely unanticipated. This important feature of eleutheroberin binding, along with the observed tolerance for certain types of oxygenated functionality in the cyclohexane ring, will have to be accommodated in future iterations of the models.

Figure 1. A, antimitotic activity of 1, 8, 9, and 10. B, microtubule-stabilizing activity of eleutheroberin and 2',3'-dihydroeleutheroberin.

ACKNOWLEDGMENT Financial support was provided by NSERC (RJA), NCIC (RJA), and the DOD Breast Cancer Program (MR).

Supporting Information. Experimental procedures for the synthetic transformations and tabulated bioactivity data (16 pages).
Diterpenoids from Cultured Erythrophodium caribaerorum

Orazio Taglialetela-Scafati,† Martha Campbell,† Michel Roberge,† and Raymond J. Andersen‡*

Departments of Chemistry, EOS, Biochemistry, and Molecular Biology University of British Columbia, Vancouver, B.C. V6T 1Z1; Ocean Dreams, Inc., Tampa Bay, Florida

RECEIVED DATE (will be automatically inserted after manuscript is accepted)

Producing an adequate and sustainable supply of compound represents one of the major challenges to developing invertebrate-derived marine natural product drug leads into clinically useful entities.‡ Harvesting invertebrate specimens from the wild is not a viable source of a drug-substance because it is environmentally unsound and it is unpredictable. The obvious and preferred solution to this supply problem is total synthesis of the natural product or simplified analogs.‡ However, many marine natural products with promising biological activity are too complex to be readily synthesized on a commercial scale‡ and frequently the minimal pharmacophore is also a daunting synthetic challenge.‡ Aquaculture represents an attractive intermediate solution that utilizes the biosynthetic capabilities of the source organism to generate the compound of interest in a controlled and renewable fashion. Despite the appeal of aquaculture production of bioactive natural products, the difficulties associated with growing marine invertebrates in culture has thus far limited this approach to a small number of demonstration examples.†

Eleutherobin (1) is a microtubule-stabilizing diterpenoid glycoside originally isolated from the rare Australian octocoral Eleutherobia sp.† Although two elegant total syntheses of eleutherobin (1) have been reported,§ the anticancer potential of eleutherobin has never been fully evaluated because total synthesis and the natural source both failed to provide sufficient material for effective in vivo testing. Recently, it was discovered that Erythrophodium caribaerorum, a relatively abundant Caribbean gorgonian, is a good source of eleuthesides§ and it has provided sufficient eleutherobin (1) for preliminary animal studies§ and chemical transformations to analogs. A. caribaerorum grows well in culture and is a staple of the decorative sea-water aquarium industry. We have examined methanol extracts of cultured E. caribaerorum to determine if these animals produce the diterpenoids found in wild animals. The extracts yielded eleutherobin (1), desmethylleletherubin (2), Z-leletherobin (3), erythropilide A (4),§ and erythropilide B (5) in amounts comparable to those reported from Dominican reef animals,§ along with aquarilide A (6), which has not been reported to date from field-harvested E. caribaerorum.§ Aquarilide A (6) has an unprecedented highly rearranged diterpenoid carbon skeleton¶ that can be formally derived from the ‘briarane’ skeleton found in erythropilide B (5) by sequential di-β-methane and vinyl-cyclopropane rearrangements (VCR).

Aquarium-grown specimens of E. caribaerorum (400 g wet wt.) were extracted multiple times with MeOH. Fractionation of the combined MeOH extracts via solvent partitioning, silica-gel flash chromatography, and normal-phase HPLC (Supporting Materials) gave 1 (5.0 mg), 2 (1.2 mg), 3 (0.8 mg), 4 (290 mg), 5 (1.4 g), and 6 (3.0 mg). The known compounds 1-5 were identified by comparison of their spectroscopic data with literature values.¶

A. Carobaeren skeleton

1 R = Me, Δ2,3 = E
2 R = H, Δ2,3 = E
3 R = Me, Δ2,3 = Z
4 R = Ac
5 R = Me
6 R = H
7 R = Ac
8 R = H
9 R = Ac
10 R = H

Aquarilide A (6) was isolated as a colorless oil that gave [M+] and [M+2] ions at m/z 496.1498 and 498.1487 (m/z 31) in the HREIMS consistent with a molecular formula of C39H34O4Cl, requiring ten sites of unsaturation. One fragment of 6, stretching in a continuous sequence from the acetoxyl methine at C-4 (H: δ 5.71) along the linear carbon chain to the methine at C-10 (H: δ 6.70), including the α-ethyl-γ-lactone fused at C-7/C-8, was shown to be identical to the corresponding C-4 to C-10 fragment in erythropilide B (5) by detailed analysis of the 1D and 2D NMR data obtained for 6 (Supporting Materials). COSY correlations observed between H-4 (δ 5.71) and an aliphatic methine resonance at δ 3.03, assigned to H-3, identified the first point of difference between 6 and 5. Additional COSY correlations extended this spin system from H-3 through the vicinal cis olefinic protons H-2 (δ 5.82) and H-1 (δ 6.11) to its terminus at the aliphatic methine H-13 (δ 3.43). The H-3 resonance showed allylic coupling to H-1 and homoallylic coupling to H-13 in the COSY spectrum, consistent with the assigned spin system. With the 1H assignments in hand, HMOC correlations permitted routine assignments of 13C resonances to C-3 (δ 63.1), C-2 (δ 126.8), C-1 (δ 131.5), C-13 (δ 69.4), and C-10 (δ 43.5). A methyl singlet resonance at δ 1.60 (Me-15) showed HMBC correlations to a quaternary carbon resonance at δ 49.6 (C-14) and to the C-3, C-13, and C-10 resonances, which required that C-3, C-13 and C-10 must all be attached to the carbon (C-14) bearing the methyl group. This set of connectivities established the presence of a 9-membered ring in 6 that is fused to a cyclopentene ring at C-3 and C-14.
A second methyl singlet at δ 1.12 (Me-20) also showed HMBC correlations to the C-10 resonance (δ 43.5) and to non- protonated carbons at δ 79.6 (C-11) and 209.0 (C-12), demonstrating that the oxygenated tertiary carbon (C-11) bearing the methyl group (Me-20) was situated between C-10 and the ketone (C-12). The fragments identified above account for all of the atoms in aquilariolide, except for single hydrogen that was not attached to carbon, and they account for nine of the ten sites of unsaturation. Therefore, the ketone (C-12) had to be attached to C-13 to generate a five-membered ring representing the final site of unsaturation, and the oxygen functionality at C-11 had to be an alcohol to accommodate the final hydrogen atom. The cyclopentane ring so formed mirrors the one present in erythrolide A (4).

The relative stereochemistry of 6 was deduced from the ROESY data. All the dipolar couplings observed for the C-4 to C-12 fragment were in complete agreement with the stereochmistry reported for the same region in erythrolides A (4) and B (5). In particular, the following cross-peaks were detected: H-4/H-6; H-6/H-7; Me-18/OH-8; H-7/McCOO-9; H-10/OH-8; H-9/Me-20; OH-11/Me-20. Transannular nOes between OH-8 and H-16a, and between H-10 and H-16b, were also detected. Analysis of molecular models revealed that 6 can readily adopt a nine-membered ring conformation where the olefinic methylene protons H-16a and H-16b sit close to OH-8 and H-10, respectively. ROESY correlations observed between Me-15 (δ 1.60) and both H-3 (δ 3.30) and H-13 (δ 3.43) indicated a cis relationship for all of these protons. Furthermore, a ROESY correlation between H-3 (δ 3.30) and H-4 (δ 5.71), and their scalar coupling of only 3.0 Hz, were only consistent with the placement of these protons on the same face of the nine-membered ring. Fixing the H-3/H-4 relative stereochmistry related the relative stereochemistry of the cyclopentene ring with the remaining part of the molecule. Assuming that the C-4 to C-12 fragment of aquilariolide A (6) has the same absolute configuration as the corresponding fragments in erythrolides A (4) and B (5), the absolute configuration of aquilariolide A is as shown in 6.

Scheme 1

The new aquilariolide skeleton can be formally derived from a putative biauran precursor 7 (Scheme 1). A di-₋methylene rearrangement of 7 gives an erythrane intermediate 8, which can undergo a VCR rearrangement to give the aquilariolide skeleton in 6. Fenical et al. showed that erythrolide B (5) can be converted to erythrolide A (4) by irradiation with ambient sunlight. Although most VCR rearrangements require high temperatures, there are reports of photochemical variants. Side by side exposure of solutions of erythrolide B (5) and erythrolide A (4) in MeOH, acetone, and toluene to ambient sunlight resulted in the expected transformation of 5 to 4 in all solvents but produced no detectable change in 4 in any of the three solvents. Therefore, it seems that the VCR rearrangement required to convert an erythrane such as 8 into an aquilarion (i.e. 6) must be enzyme mediated. The absence of detectable amounts of the 11-acetoxy aquilariolide A analog 9 in the cultured E. caribaerorum extracts supports this conclusion.

Erythrolide A (4) is a major component of the extract and if its conversion to an aquilarion occurred via a non-enzymatic photochemical process, then 9 should have been a significant component of the extractable diterpenoids.

Our finding that cultured E. caribaerorum produces significant amounts of erythrane opens the way to large scale aquilariolide culture production of these interesting antimiotic agents should they prove to be viable anticancer drugs. The parallel discovery of aquilariolide A (6) adds a new dimension to our understanding of the diterpenoid chemistry of E. caribaerorum. It suggests that the photochemical conversion of biauranes (i.e. 5) to erythrane (i.e. 4) is not simply a tolerated happenstance event but an integral part of the metabolic pathways of the gorgonian, since there must be enzymes that have evolved to transform erythrane (i.e. 8) into aquilariones (i.e. 6).

ACKNOWLEDGMENT Financial support was provided by NSERC, NCIC; and USA DoD Breast Cancer Research Program Idea Award DAMD17-99-1-9088. The authors thank R. Osborne and D. Reberiores for technical assistance.

"Supporting Information Available:" NMR spectra, tables of NMR assignments, physical constants, and isolation details for 6. (5 pages)

(14) This result is consistent with Fenical's report (Ref. 10) that irradiation of a benzene solution of erythrolide B (5) in a quartz cell with a Hg lamp gave the single product erythrolide A (4).
Producing an adequate and sustainable supply of compound represents one of the major challenges to developing invertebrate-derived marine natural product drug leads into clinically useful entities. Aquaculture represents an attractive solution that utilizes the biosynthetic capabilities of the source organism to generate the compound of interest in a controlled and renewable fashion. MeOH extracts of cultured specimens of the Caribbean gorgonian Erythropodium caribaeorum have been found to contain the known antimitotic eleuthesides eleutherobin (1), desmethylleleutherobin (2), and Z-eleutherobin (3), and the 'briarane' diterpenoids erythrolide A (4), and erythrolide B (5) in amounts comparable to those reported from wild-harvested reef animals. The cultured animals also contained the novel diterpenoid aquaroliolide A (6) that has not been reported to date from wild animals. Aquaroliolide A (6) has an unprecedented highly rearranged diterpenoid carbon skeleton that can be formally derived from the 'briarane' skeleton found in erythrolide B (5) by sequential di-π-methane and vinyl-cyclopropane rearrangements. The finding that cultured E. caribaeorum produces significant amounts of eleuthesides opens the way to large scale aquaculture production of these interesting antimitotic agents should they prove to be viable anticancer drugs. The parallel discovery of aquaroliolide A (6) suggests that the photochemical conversion of briaranes (i.e. 5) to erythrane (i.e. 4) is not simply a tolerated happen-stance event but an integral part of the metabolic pathways of the gorgonian, since there must be enzymes that have evolved to transform erythrane (i.e. 8) into aquarlanes (i.e. 6).