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ABSTRACT

Multiple unattended ground sensors are deployed for surveillance, monitoring the movement of troops, military vehicles, and
targeting. Usually, the probability of detection ( DP ) of an UGS is low and the false alarm density (FAD) is high. The
particle filter (PF) and range-parametrized extended Kalman filter (RPEKF) have been used previously to produce improved
results for the single sensor single target bearing-only tracking problem in the absence of clutter and with unity probability of
detection. Although a great deal of work has been done for the single target single sensor bearing-only tracking problem, not
much is known for the single target multi-sensor bearing-only problem with low DP  and high FAD. We present algorithms
and numerical results using particle filter (PF) and probabilistic data association  (PDA) for the single target multi-sensor
bearing-only tracking problem with high false alarms and low probability of detection. Our numerical results show that the
algorithm estimates the target state in a robust manner in realistic harsh conditions when the probability of detection is low
and the false alarm density is high.

Keywords:  Multi-sensor  Single-target Tracking, Unattended Ground Sensors (UGS), Acoustic Sensors, Particle Filter (PF),
Probabilistic Data Association (PDA)

1. INTRODUCTION

Unattended ground sensors (UGSs) [8],[9],[36] are deployed on the ground and are widely used in military and industrial
applications to collect signals from remote sources.  In the military domain, UGSs are used to detect, track, and classify
ground vehicles and aircrafts. In the industrial domain, UGSs are used in mining operation that involves deep blasting.
Common types of UGSs are acoustic, seismic, seismic/acoustic, magnetic, seismic/magnetic, seismic string, passive infrared
(PIR), active infrared (AIR), and breakwire [36]. Current UGSs are usually low-cost, lightweight, and small size sensors
compared to the previous UGSs.

Aerial surveillance and human intelligence were primarily used to detect and track the movement of ground forces until the
mid 1960s. During the Vietnam War, it was realized that these approaches are ineffective to monitor the force movement in
thick forests. Moreover, long range standoff airborne radar sensors are not capable of providing continuous surveillance data
due to occlusion of the radar line-of-sight by terrain in certain scenarios. The UGSs can complement the airborne and
spaceborne sensors to provide continuos surveillance data of the battlespace.

Approved for public release; distribution is unlimited.

bonta
Approved for public release; distribution is unlimited.



Report Documentation Page

Report Date 
00 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Multi-Sensor Single Target Bearing-Only Tracking in Clutter

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
ALPHATECH, Inc 50 Mall Rd Burlington, MA 01803

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
Department of the Army, CECOM RDEC Night Vision &
Electronic Sensors Directorate AMSEL-RD-NV-D 10221
Burbeck Road Ft. Belvoir, VA 22060-5806

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
See also ADM201471, Papers from the Meeting of the MSS Specialty Group on Battlefield Acoustic and Seismic
Sensing, Magnetic and Electric Field Sensors (2001) Held in Applied Physics Lab, Johns Hopkins Univ, Laurel, MD on
24-26 Oct 2001. Volume 2 (Also includes 1999 and 2000 Meetings), The original document contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
17



In this paper, we address the problem of single target tracking in clutter using multiple acoustic UGSs. An UGS determines
the bearing of a target by processing the incoming acoustic signal. In addition to bearing, other derived measurements such as
harmonic frequencies are also available. We restrict our analysis to single target tracking using bearing-only measurements
from multiple acoustic UGSs. Usually, the probability of detection ( DP ) for an UGS is low and the false alarm density

(FAD) is high. Although a great deal of work has been done for the single sensor bearing-only tracking problem, not much is
known for the single target multi-sensor bearing-only problem with low DP  and high FAD. The particle filter (PF)
[2],[5],[10],[11],[14]-[17],[30],[32] and range-parametrized extended Kalman filter (RPEKF) in [2], [25] have been shown to
produce improved results for the single sensor single target bearing-only tracking problem with unity DP  and no clutter. The
difficulty in bearing-only tracking is the low information content of the measurement, in addition to the nonlinearity in the
measurement model. The state estimates are also very sensitive to the relative geometry between the sensor and target. Often,
the estimates are unreliable, i.e., they have very high variance [1],[13],[21]-[24],[33]-[35]. We present algorithms and
numerical results using the PF for the single target multi-sensor bearing-only problem in clutter that represents realistic harsh
conditions.

In Sections 2 and 3, we present the target kinematic model in two dimensions and acoustic measurement model, respectively.
We describe the Bayesian approach that provides a rigorous framework for state estimation with general probability density
functions for the state and measurement in Section 4. Analytic solutions using the Bayesian approach are not possible for
cases that involve nonlinear dynamics for the state, nonlinear measurement models, and non-Gaussian distributions. The
well- known Kalman filter estimator is a Bayesian estimator for linear dynamic model with additive Gaussian noise, linear
measurement model with additive Gaussian noise, and prior Gaussian distribution for the state. The bearing measurement
model is a nonlinear function of the target state. The commonly used extended Kalman filter (EKF) [3],[4],[5],[6],[19]  is not
an optimal estimator due to the nonlinear models for the measurement and state dynamics.  When the degree of nonlinearity
is small and the errors in the measurement and state dynamics are small, the EKF is a reasonable approximate estimator. The
EKF has been used within other estimator configurations like the Interacting Multiple Model (IMM) estimator and the IMM
probabilistic data association (PDA) estimator to solve different tracking problems [3],[4],[6],[7],[27],[28],[31]. When false
alarms are present and the DP  is less than unity, we can have zero or multiple measurements from a single sensor in a scan
for a single target. Commonly used approaches for this problem are the multiple hypothesis tracking (MHT) [6],[26] and
probabilistic data association (PDA). The PF algorithm using the PDA [4],[11],[18] is described in Section 5.  We present
numerical simulation and results in Section 6 and conclusions in Section 7.

2. TARGET KINEMATIC MODEL

The nearly constant velocity model (NCVM) in two dimensions is a widely used kinematic model [3],[4],[6] for ground
moving targets. The continuous-time target state for the NCVM is defined by

(2.1) [ ] ,)()()()(:)( ′= tytxtytxt &&x

where ))(),(( tytx and ))(),(( tytx && are the Cartesian position and velocity coordinates, of the target at time t, respectively.

The continuous-time NCVM is described by the linear stochastic differential equation
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(2.4) [ ] .)()(00)( ′= twtwt yxw

F is known as the system matrix and (.)xw  and (.)yw  are mutually independent, zero-mean white Gaussian acceleration

processes:

(2.5) ( ),)}()({,0)}({ τδτ −== tqwtwEtwE xxxx
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xq  and yq  represent the power spectral density (PSD) of ( )⋅xw  and ( )⋅yw , respectively [19].

We assume the initial state of the target to have the prior distribution

 (2.8) ( ),,0~)0( 0Px N

where 0P  is the prior covariance of the state.

Sensor observations are available at discrete times ,...1,0, =kt k . In the current work, we do not address the out-of-sequence
measurement (OOSM) that can arise in a multi-sensor tracking scenario. Since the measurements are available at discrete
times, it is necessary to discretize the continuous-time model in (2.2) corresponding to the measurement times. Discretization
of the continuous-time dynamics based on this sequence of times yields the following:

(2.8) kkkk wxx +=+ Φ1 ,

where
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We can prove that { }0, ≥kkw  is a zero-mean white Gaussian process:
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kQ  is known as the process noise covariance matrix.

3. ACOUSTIC UGS MEASUREMENT AND CLUTTER MODEL

The number of measurements in a scan can be zero or greater than zero due to 1<DP and the presence of false measurements

or clutter. Let km  denote the number of measurements in the thk  scan. The set of measurements kz  in the thk  scan is

defined by

,}{:)1.3( 1
km

ikik == zz

where kiz  is the thi  measurement in the thk  scan. For the acoustic sensor kiz  is a scalar. For the sake of generality, we

consider kiz  as a vector. All the measurements up to and including the thk  scan are defined by
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We describe the acoustic sensor measurement model, false measurement model, and likelihood functions for both the target
originated measurement and false alarm in Sections 3.1, 3.2, and 3.3, respectively.

3.1  Acoustic Sensor Measurement Model

Acoustic sensors are omni-directional sensors, which determine bearing by processing the incoming acoustic signal. The
bearing is a nonlinear function h of the target state kx and the sensor state ks  at time kt . We assume that the acoustic sensor

can detect a target with probability DP  when the distance of the target from the sensor is less than a maximum range, maxr .

We assume that the measurement noise kv  at time kt  is an additive independent Gaussian noise process.  Thus, the nonlinear

measurement model is described by
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where 2
ασ k  is the variance of the bearing measurement noise in the thk  scan. In practice, 2

ασ k  can vary with scan depending
on the distance of the target from the sensor.  For simplicity, we assume that the variance of the bearing measurement noise is
a constant for all scans:

(3.8)                                                           .2
ασ=kR

We also assume that the measurement noise kv  and the process noise lw  are uncorrelated at all times:

(3.9) .,allor,0}{ lkfvE lk =′w

The bearing angle is measured from the Y-axis (usually chosen along the local North direction) in the clockwise direction
and the measurement function is described by

(3.10) ( ) ( ) ( ) ).2,0[,,,tan, 1 π∈−−= −
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 The sensors are stationary with respect to the ground in our application. Therefore,  ,0== ykxk ss &&  for all k .

3.2  Clutter Model

In addition to actual measurement originating from a true target, there may be false measurements observed by a sensor in a
scan. We assume that the number of false measurements km  in the thk  scan obeys the Poisson distribution. Thus the

probability of observing km  false measurements in the thk  scan is
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where λ  is the average number of false measurements per unit area of measurement space  per scan and V is the volume of
the measurement space. For the omni-directional acoustic sensor

.2)12.3( π=V

We assume that the false measurements are uniformly distributed in the measurement space.

3.3   Likelihood Function

The likelihood functions for target originated measurement and false measurement are
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4. BAYESIAN ESTIMATION

A general discrete time dynamics for the state n
k ℜ∈x of a system is described by [11],[14],[15],[20],[30]

),,()1.4( 111 −−−= kkkk wxfx

where  npn
k ℜ→ℜ×ℜ− :1f  is the system evolution function and p

k ℜ∈−1w  is a white noise sequence (known as the

process noise) independent of the past and current states. We assume that the probability density function (pdf) of 1−kw  is

known. The function 1−kf  may be a linear or  nonlinear function of 1−kx  and 1−kw , and the pdf of 1−kw  may be arbitrary.

We assume that measurements }{ m
k ℜ∈z are available at discrete times and a functional relationship between the

measurement kz  and the state kx  is known [11],[14],[15],[20],[30]:

).,()2.4( kkkk vxhz =

where mrn
k ℜ→ℜ×ℜ:h  is the measurement model function and r

k ℜ∈v  is a white noise sequence (known as the

measurement noise) with known pdf. We assume that kv  is independent of the past and current states and process noise.

The measurement function kh  may be a linear or nonlinear function of kx  and kv , and the pdf of kv may be arbitrary. Let
kZ denote the set of measurements },...,,{ 21 kzzz .

Our objective is to compute the conditional density )|( k
kp Zx of the state kx  given all the measurements kZ  at time k .

Suppose )|( 1
1

−
−

k
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kp Zx  can be computed from )|( 1
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−
−

k
kp Zx  using the prediction and the

measurement update steps. Using the prediction step, the prior pdf of the state at time kt  is given by [11],[14],[15],[20],[30]
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where )|( 1−kkp xx  is known as the state transition density and is determined by the system dynamics model (4.1). The
second step on the RHS of  (4.3) is obtained from the first using the system dynamics model (4.1). Then the prior pdf of the
state )|( k

kp Zx can be updated at time k  by Bayes’ rule using the measurement kz [11],[14],[15],[20],[30]:
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)|( kkp xz  is known as the likelihood function and is determined by the measurement model (4.2). Equations (4.3) and (4.4)
represent a general recursive solution for the state estimation problem in the Bayesian framework.  These equations are valid
for any pdf of the state, process noise, and measurement noise with general system dynamics and measurement models.
However, closed form solutions are not always possible. When kf  and kh  are linear, and kw  and kv  are additive Gaussian

noises with known pdf,  (4.3) and (4.4) give rise to the well-known Kalman filter (KF) algorithm [3],[4],[6],[19]. Since kh
for the acoustic measurement model is nonlinear, the EKF is not an optimal estimator for the problem.

Given kZ , the conditional mean estimator [11],[14] ,[15]

(4.6) ∫== k
k

kk
k

kkk dpE xZxxZxx )|(}|{:ˆ |

represents the minimum variance or minimum mean-square error (MMSE) estimator [3],[4]. The covariance of the
conditional mean estimate is given by [11],[14],[15]
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We emphasize that if the posterior distribution is multi-modal, then the conditional mean and associated covariance are not
sufficient statistics.

5. SINGLE TARGET TRACKING IN CLUTTER USING PARTICLE FILTER

The computation of the likelihood function in the absence of clutter is straightforward. We use the PDA approach
[4],[11],[18] to compute the likelihood function required by the PF. First we present the algorithm to compute the likelihood
function and then we present the steps of the PF algorithm.

5.1  Likelihood Function
 When there are km  measurements in the thk  scan, we have the following mutually exclusive and exhaustive hypotheses [4]:
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measurements are conditionally independent,
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Using the measurement model (3.3) and likelihood in (3.13)
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where  V  is the volume of the measurement space. For generality, we treat kjz as a vector measurement. Using (5.4) in
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 Using the Poisson model (3.11) for clutter, we get

.
)(!

)()!1(
)1(

)(
)12.5(

1
k

m
k

m
k

kFA

kFA

m
V

Vm

Vm
mP

mP
k

k λ

λ

λ
=

−
=

− −

Substituting (5.12) in (5.11), we get

[ ]
[ ]

.
.0,)1()1(

,...,2,1,)1()13.5( 1

1







=−+−
=−+= −

−

jVPPmVP
mjVPPmP

DDkD

kDDkD
j

λλ
λγ



Define

.,...,1,0),|(),|(:)14.5( kkkjkkjkkj mjPp == xxz θθβ

Then







=

=
= −

+−

.0,

,,...,1,),0;(
)15.5(

1

jV

mjNV

j
m

kjkkj
m

kj k

k

γ

γ
β

R?

Using (5.7) and (5.13) in (5.15), we get





=

=
=

,0,

,,...,1,
)16.5(

jb

mje

k

kkj
kj ξβ

),(]/)1[(:)17.5( kDDk PPb λη−=

where ξ  is a constant. Substitution of (5.16) in (5.2) gives

.)|(),|()|()18.5(
10

][ ∑∑
==

+==
kk m

j
kjk

m

j
kkjkkjkkk ebPpp ξθθ xxzxz

5.2  Steps of PF Algorithm

1. Initialization

       Set scan index k  = 0.

Sample { }N
i

i p 100 )(~ =xx .

2.    Increment scan index  k :  k  = k  +1.

3. Prediction

Generate N samples of the process noise:
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       Compute N  predicted state vectors:
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We note that the predicted measurement is the same for all measurements km
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6.   Compute the measurement updated state estimate:
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Else
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       Go to step 3.
End

6. NUMERICAL SIMULATIONS AND RESULTS

The truth trajectory of the target and the positions of four acoustic UGSs are shown in Figure 6.1. We use the nearly constant
velocity model to generate the truth trajectory. The initial position and speed of the target are (-220 m, 300m) and 40 km/hr,
respectively. The initial azimuth angle of the target is 45 degrees. The PSD of each component the acceleration process noise
(q) for the truth trajectory is 0.01 m2s -3.  We use 5000 particles throughout our simulation. The detections and false
measurements at various scans for the case when DP  = 0.9 and the average number of false measurements per scan is one,

are shown in Figures 6.2. The truth and PF estimated position and velocity for a benign scenario where the DP  = 0.9 and

average number of false measurements per scan is one, are shown in Figures 6.3-6.5. We observe from Figures 6.3-6.5.  that
the PF algorithm estimates the position and velocity of the target accurately for this benign scenario. The root mean square
(RMS) position and velocity errors are presented in Table 6.1.  We present results for other cases in Table 6.1 by varying the

DP  and average number of false measurements per scan. We observe from Figures 6.3-6.5 and 6.7-6.9 that the large RMS

errors are mainly due to transients in the early part of estimation process. After the transient phase, the PF estimated state is
close to the true state.



Figure 6.1.  Sensor Locations and Truth Trajectory of the Target using the Nearly Constant Velocity Motion

Figure 6.2. Detection and false alarms at various scans for high probability of detection and low clutter.
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Table 6.1. PF-estimated position and velocity RMS errors using 120 scans.

Bearing
Sigma
(deg)

DP
Average
Number
of False
Alarms

per Scan

RMS
Position
Error (m)

RMS
Velocity

Error (m/s)

3 0.9 1 38.824 3.279
3 0.7 1 67.682 3.315
3 0.7 2 94.076 3.654
3 0.7 3 132.235 4.118

Figure 6.3. Truth and PF-estimated trajectories for high probability of detection and low clutter.
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Figure 6.4. Truth and PF-estimated X-component of velocity for high probability of detection and low clutter.

Figure 6.5. Truth and PF-estimated Y-component of velocity for high probability of detection and low clutter.
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Figure 6.6. Detection and false alarms at various scans for low probability of detection and high clutter.

Figure 6.7. Truth and PF-estimated trajectories for low probability of detection and high clutter.
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Figure 6.8. Truth and PF-estimated X-component of velocity for low probability of detection and high clutter.

Figure 6.9. Truth and PF-estimated Y-component of velocity for low probability of detection and high clutter.
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7. SUMMARY AND CONCLUSIONS

In this paper, we have addressed the single target multiple acoustic UGS tracking in clutter using the particle filter (PF)
algorithm. We have used realistic values for the probability of detection and false alarm. We have demonstrated that the PF
algorithm works in a robust manner when the probability of detection is low and the false alarm is high as is the case in
realistic harsh scenarios. In our future work, we plan to compare the performance of the PF with the EKF using the PDA
approach and analyze the estimation accuracy by varying the accuracy of the acoustic sensor measurement.
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