1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE | Technical Papers | 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER | 2303 | 5e. TASK NUMBER | 1A3 | 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

8. PERFORMING ORGANIZATION REPORT

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Leilani Richardson

19b. TELEPHONE NUMBER (Include area code)
(661) 275-5015

20030110 148

13 separate items enclosed
MEMORANDUM FOR PR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO) 17 Apr 2000

Blanksi, R., Phillips, S., Chaffee, K.; Lichtenhan, J. (Hybrid Plastics); Lee, A. & Geng, H.P. (Michigan State University), "The Synthesis of Hybrid Materials by the Blending of Polyhedral Oligosilsesquioxanes into Organic Polymers"

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.

Comments:

Signature ________________________________ Date __________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.

Comments:

Signature ________________________________ Date __________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required

Comments:

Signature ________________________________ Date __________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability

Comments:

APPROVED/APPROVED AS AMENDED/DISAPPROVED

ROBERT C. CORLEY (Date)
Senior Scientist (Propulsion)
Propulsion Directorate
The Synthesis of Hybrid Materials by the Blending of Polyhedral Oligosilsesquioxanes into Organic Polymers

Rusty L. Blanski1, Shawn H. Phillips1, Kevin Chaffee1, Joseph Lichtenhan2, Andre Lee3, and Hei Ping Geng3.

1AFRL/PRSM, Air Force Research Laboratory, 10 E. Saturn Blvd, Bldg. 8451, Edwards AFB, CA 93524,
2Hybrid Plastics, 18237 Mt. Baldy Circle, Fountain Valley, CA 92708
3Department of Materials Science and Mechanics, Michigan State University, East Lansing, MI 48824

Approved for public release; distribution unlimited
Hybrid Organic/Inorganic Blends

- GOAL: To study the interaction and solubility of Polyhedral Oligosilsesquioxane (POSS) molecules containing various organic side groups with the polymer matrix.
- Polystyrene was chosen since it is readily available and can easily be solvent cast with the POSS molecules for TEM studies.
Why Use Blendables?

- Easier to tailor the organic side groups of the POSS molecule to give a polymer-soluble species
- Simple blending techniques can be used instead of copolymerization with reactive POSS monomers
- Potential Drop-in molecular modifier without requiring expensive replacement of processing equipment
POSS = Polyhedral Oligomeric Silsesquioxane

General Synthesis

\[\text{RSiCl}_3 + \text{H}_2\text{O} \]

\[\text{THF, NEt}_3, \text{HCl} \]

R = cyclopentyl vinyl

R = cyclopentyl
POSS = Polyhedral Oligomeric Silsesquioxane
General Synthesis
Preparation of Styrene-POSS Blends

- TEM Method
- Dissolve the Styrene and POSS in THF
- Cast very thin film by slow solvent evaporation
- **Traditional Processing**
 - Place Polystyrene in Extruder
 - Add POSS
 - Blend 2-5 Minutes
POSS Blends - Crystal Formation

50 wt % Cp₈T₈ in 2 million mol. wt. Polystyrene

R = cyclopentyl

Cp₈T₈

TEM image clearly shows formation of immiscible POSS crystallites (20-50k molecules)
POSS Blends - Crystal Formation

50 wt % $V_i T_8$ in 2 million mol. wt. Polystyrene

$V_i T_8$

TEM image clearly shows immiscibility in polymer system
POSS Blends - Increased Solubility

50 wt % Cp₇T₈Styryl in 2 million mol. wt. Polystyrene

R = cyclopentyl

TEM image shows significant decrease in size of crystallites
POSS Blends - Miscibility

50 wt % Styrenyl$_8$T$_8$ in 2 million mol. wt. Polystyrene

- White domains represent pure polystyrene (process issue)
- Grey domains represent miscible POSS/polystyrene
- Black dots are POSS crystallites (<100 POSS molecules)
- 30% increase in surface hardness of the material
POSS Blends - Miscibility

50 wt % Phenethyl₈T₈ in 2 million mol. wt. Polystyrene

\[R = \text{Phenethyl} \]

- Demonstrated Complete Miscibility!!
- Grey domains represent miscible POSS/polystyrene
- Black dots are POSS crystallites (<100 POSS molecules)
Conclusions

• The organic side groups on the POSS molecule are extremely important in determining the solubility of the POSS in polystyrene

• The addition of the more soluble styrenyl POSS into styrene leads to an increase in surface hardness without adversely affecting polymer properties

• POSS can be thought of as functionalized silicas with the side groups acting as solubility enhancers
Acknowledgements

- AFRL Propulsion Directorate
- Mr. Paul Jones (Analytical)
- Dr. Charles Lee, AFOSR (Funding)