Erratum to

IHTR 2375

DECONTAMINATION METHODS FOR AMMONIUM PERCHLORATE CONTAMINATED BUILDINGS AND EQUIPMENT SURFACES

Dated 30 September 2001

Remove cover and form 298 and replace with the enclosed cover and form.

25 July 2002
Erratum - Decontamination Methods for Ammonium Perchlorate Contaminated Buildings and Equipment Surfaces

1. REPORT DATE
30-09-2001

2. REPORT TYPE
Final Report

3. DATES COVERED (FROM - TO)
xx-xx-2001 to xx-xx-2001

4. TITLE AND SUBTITLE
Erratum - Decontamination Methods for Ammonium Perchlorate Contaminated Buildings and Equipment Surfaces

5. AUTHOR(S)
Miller, James T.; Basom, Kenneth E.

6. PERFORMING ORGANIZATION NAME AND ADDRESS
Indian Head Division
Naval Surface Warfare Center
Indian Head, MD 20640-5035

8. PERFORMING ORGANIZATION REPORT NUMBER
IHTR 2375

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
Ordnance Environmental Support Office
Indian Head, MD 20640

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE

13. SUPPLEMENTARY NOTES

14. ABSTRACT
To assist in identifying the methods that might be used to remove ammonium perchlorate from contaminated surfaces, an extensive literature search was performed. Once candidate reactions were identified, they were tested under laboratory conditions for the selection of the optimum technique. Results are given.

15. SUBJECT TERMS
Ammonium perchlorate Decontamination

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
17

19. NAME OF RESPONSIBLE PERSON
Simpson, Susan
simpsonsm@ih.navy.mil

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
301744-4284
DSN 354-
DECONTAMINATION METHODS FOR AMMONIUM PERCHLORATE CONTAMINATED BUILDINGS AND EQUIPMENT SURFACES

James T. Miller
Kenneth E. Basom

Approved for public release; distribution is unlimited.
To assist in identifying the methods that might be used to remove ammonium perchlorate from contaminated surfaces, an extensive literature search was performed. Once candidate reactions were identified, they were tested under laboratory conditions for the selection of the optimum technique. Results are given.
DECONTAMINATION METHODS FOR AMMONIUM PERCHLORATE CONTAMINATED BUILDINGS AND EQUIPMENT SURFACES

James T. Miller

Approved for public release; distribution is unlimited.
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information, including suggestion for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 September 2001</td>
<td>Final Report</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECONTAMINATION METHODS FOR AMMONIUM PERCHLORATE CONTAMINATED BUILDINGS AND EQUIPMENT SURFACES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>James T. Miller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Head Division</td>
<td>IHTR 2375</td>
</tr>
<tr>
<td>Naval Surface Warfare Center</td>
<td></td>
</tr>
<tr>
<td>Indian Head, MD 20640-5035</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordnance Environmental Support Office</td>
<td>OESO</td>
</tr>
<tr>
<td>Indian Head, MD 20640</td>
<td></td>
</tr>
</tbody>
</table>

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

To assist in identifying the methods that might be used to remove ammonium perchlorate from contaminated surfaces, an extensive literature search was performed. Once candidate reactions were identified, they were tested under laboratory conditions for the selection of the optimum technique. Results are given.

15. SUBJECT TERMS

- Ammonium perchlorate
- Decontamination

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

SAR

18. NUMBER OF PAGES

17

19a. NAME OF RESPONSIBLE PERSON

Susan Simpson

19b. TELEPHONE NUMBER (Include area code)

301-744-4284

Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39-18
This page intentionally left blank.
FOREWORD

This work was performed at the Indian Head Division, Naval Surface Warfare Center, Indian Head, MD.

Joseph D. Anderson
Manager, Facilities Modernization Branch

Approved by:

Raymond A. Geckle
Director, Cast Products Technology Division

Released by:

N. Bertucci
Head, Applied Technology Department
CONTENTS

Heading Page
Foreword ... iii
Introduction ...1
Findings ...2
Conclusions and Recommendations ...6

Tables

I. Compositions of Solutions ..4
II. Results of Analysis of Perchlorate Solutions Treated with Ti (III) 4

Figures

1. Reduction of Perchlorate Versus Concentration ...5
This page intentionally left blank.
INTRODUCTION

Background

Ammonium perchlorate (AP) has been extensively used as one of nine major components of propellant, explosive, and pyrotechnic materials for decades. Most, if not all, of the processes discharge AP wastes into the environment, both in soils and water. AP is quite pervasive owing to its high water solubility and transport by all water media, both surface and subsurface.

It is incumbent then on the industry to develop clean-up techniques that will remove the AP contaminant to the non-detectable level using present laboratory techniques. To assist in identifying the methods that might be used to remove AP from the contaminated surfaces, an extensive literature search was performed. Once candidate reactions were identified, they were tested under laboratory conditions for the selection of the optimum technique.

Approach

1. Search the Internet and scientific journals for literature citing reactions of AP and selected reagents that reduce AP to its chloride.

2. Obtain and study the literature identified. Select the reaction that will yield the most benign environmental by-products while reducing the AP to acceptable (EPA) levels.

3. Prepare appropriate solutions of AP and reagents and conduct laboratory reactions to confirm findings of the literature search.

4. Report all findings.
FINDINGS

Literature Search

A search of the bibliographies available in the A.T. Camp Technical Library at the Indian Head Division identified three candidate publications. Inquiries to pertinent technical societies turned up two additional sources. The seeming dearth of applicable literature sources was owed to the stringent requirements that the candidate reagents had to meet:

- The reagents used to decompose the perchlorate would be environmentally benign.
- The products of the reaction of the perchlorate with the reactants would be environmentally benign.
- Optimal temperature for the reaction to occur would be at or slightly above ambient.
- The reaction would be sufficiently robust as to consume the perchlorate in a relatively brief period.
- The reactants would not be particularly aggressive to a variety of the surfaces anticipated to be treated.
- The reactants would not be hazardous to personnel (i.e., flammable, lachrymators, etc.).
- The physical qualities of the reactants would render them amenable to application with commonly used equipment (i.e., power sprayers).
- The reagents would be commercially available and relatively inexpensive.

The publications selected for review/study were:

Literature Review Results

Initial cursory review of the literature indicated that the reduction of the perchlorate has a favorable E° (oxidation potential) for reduction in an acidic medium (+1.19 volts). Reactions with common reductants incorporating divalent iron, chromate, and tin, however, had high activation energies and, consequently, low reaction rates. This was likely due to the chloride portion of the ion residing in the interior and the inability of the divalents to complex with the surrounding oxygen and expose the halogen. Titanous ion, however, is capable of reduction of the perchlorate. Recent work (per publication 1) has shown facile reduction of perchlorate in ethanolic solution. Reaction in an aqueous medium, however, is inhibited by the polarity of water, and the use of ethyl alcohol, a flammable solvent, in a decontamination protocol is problematic. Past work involving the reduction of perchlorate by trivalent titanium (per publications 2 and 3) describes the rapid reaction of perchlorate in an acidic medium. The reaction proceeds to completion, generating tetravalent titanium, chloride ion, and water. The reaction meets all of the above criteria—

- The reagents, titanium chloride and dilute acid, are environmentally benign.
- The products of the reaction, tetravalent titanium with chloride and water, are also environmentally benign.
- The reaction occurs at ambient temperature; however, slight elevations in temperature appear to facilitate reaction.
- The stated rates indicate a rapid reaction.
- The titanium and dilute acidic medium are not aggressive towards a wide variety of materials or hazardous to personnel.
- The properties of the materials allow for application to surfaces by commonly used means.
- Materials are readily available and relatively inexpensive.

Laboratory Confirmation of Literature Search

Solutions of all the reagents to be used were composed in the laboratory. Tests were conducted to determine reaction times as a function of perchlorate concentration, acid concentration, and temperatures. A suitable quenching agent, which will halt the reaction at desired intervals and not provide interference to the eventual quantitation of the perchlorate, was tested. The analyses described in publications 3 and 4 will detect perchlorate down to the parts to sub-parts per billion range to provide a measure of reaction completion. The latter is important since the original work is dated (1922 and 1954) and the completion of reaction was determined at concentrations above current acceptable levels for defining the absence of perchlorate (<1 part per million).

A study was conducted to evaluate titanium (III) chloride’s (TiCl$_3$) potential for use as an agent to remove perchlorate from surfaces as part of decontamination protocols. Test solutions consisted of the titanous salt, a proton source (acetic acid), and concentrations of perchlorate ion ranging from approximately 370 parts per million (ppm) to 1,300 ppm. Solutions were allowed to react for 1 minute and 10 minutes before quenching. The composition of each solution is listed in Table I.
Table I. Compositions of Solutions

<table>
<thead>
<tr>
<th>Solution No.</th>
<th>Perchlorate concentration (ppm)</th>
<th>Perchlorate concentration (molarity)</th>
<th>TiCl₃ (molarity)</th>
<th>H⁺ (molarity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>370</td>
<td>0.003</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>700</td>
<td>0.007</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>0.012</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Previously composed solutions had contained perchlorate at <100 ppm. Due to the low concentration of the perchlorate and other reactants, the activity of the solutions proved insufficient for reaction. The quenching of the above solutions was, subsequently, effected by dilution of the solutions at the indicated time intervals rather than through the addition of a facile oxidizer (a cerium salt). All test solutions were analyzed by ion chromatography.

The results of the analyses are listed in Table II and depicted graphically in Figure 1. As can be seen, depletion of the perchlorate was observed in all three solutions. As depicted in the figure, the rate of reaction appeared to slow as the concentrations approached 100 to 200 ppm; in the case of solution 1, no further reaction of perchlorate was observed after the concentration dropped to 180 ppm. This phenomenon appears to be a product of the lowered activity that was previously observed in the dilute solutions. The rapid drop in concentration in solution 3 after 1 minute, followed by a decrease in rate could be accounted for by the consumption of the Ti (III) with a subsequent decrease in the solution’s activity, the same phenomena likely responsible for the curve generated by solution 2.

Table II. Results of Analysis of Perchlorate Solutions Treated with Ti (III)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Perchlorate concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solution 1</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
</tr>
</tbody>
</table>
Figure 1. Reduction of Perchlorate Versus Concentration

An increase in rate and decrease in perchlorate below the observed level could be most readily effected by increasing the concentration of reactants or the kinetics of the system through elevation of temperature. While the kinetics of the system has been defined at higher concentrations (publication 2), the drop in activity of the system at sub-molar levels has prevented investigators from defining reactivity in extremely dilute solutions. In the absence of such predictive models, the effect of increasing pH, Ti (III), or the temperature of the system will have to be empirically determined.
CONCLUSIONS AND RECOMMENDATIONS

The literature search identified and laboratory test confirmed that trivalent titanium components were suitable for reducing AP contaminants on equipment and building surfaces. However, these findings were not free of concerns that would attend the operation in the field. A process variable study would optimize conditions.

The initial reaction rates were quite encouraging, but as concentrations of the Ti (III) ion dropped below 400 ppm, the reaction slowed and then stopped at 180 ppm. The scope of this study did not extend to the determination of the optimization of the process variables, pH, Ti (III) concentrations, and temperature; however, sufficient data are available for the development of decontamination protocols.
DISTRIBUTION

raschke@dac-enh2.army.mil

29TH DOD EXPL SAFETY SEMINAR
DEPT OF DEFENSE EXPL SAFETY BOARD
C/O THE JOHN HOPKINS UNIVERSITY
CHEMICAL PROPULSION INFO AGENCY
ATTN DOTTIE BECKER
10630 LITTLE PATUXENT PKWY STE 202
COLUMBIA MD 21044-3201

DEPT OF DEFENSE EXPL SAFETY BOARD
ATTN CHAIRMAN
ROOM 856_C HOFFMAN BLDG 1
2461 EISENHOWER AVE
ALEXANDRIA VA 22331

DEFENSE AMMUNITION CTR
ATTN SMAAC-TDM (JOHN RASCHKE)
1 C-TREE ROAD BLDG 35
MCALESTER OK 74501

ADMINISTRATOR
DEFENSE TECH INFORMATION CTR
ATTN JACK RIKE OCA
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

JHU/CPIA
ATTN SECURITY OFFICER
10630 LITTLE PATUXENT PKWY STE 202
COLUMBIA MD 21044-3200

Internal:

04 1
20 1
210 1
2120K 1
2150 4
071 3
073 1
1

DISTRIBUTION 1