MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (TI) (STINFO) 11 October 2000

Hoge, B. (USC); Christe, K.O. (ERC), "A New Synthesis of Fluorine Nitrate"

Journal of Fluorine Chemistry (Statement A)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

__

__

Signature ___________________________ Date ______________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b.) possible higher headquarters review
Comments: ____________________________

__

Signature ___________________________ Date ______________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required
Comments: ____________________________

__

Signature ___________________________ Date ______________

4. This request has been reviewed by PRS for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability
Comments: ____________________________

__

APPROVED/APPROVED AS AMENDED/DISAPPROVED

__ Date
PHILIP A. KESSEL
Technical Advisor
Propulsion Science and Advanced Concepts Division

Cleared (PA) ___________________________
Logged (PA) ___________________________
Notified (PA) ___________________________
Copied & Distributed (STINFO) ___________
This original is for PA files
A new synthesis of fluorine nitrate†

B. Hoge, K. O. Christe

Abstract

The reaction of \(\text{NF}_4^+\text{SbF}_6^- \) with alkali metal nitrates in either \(\text{CH}_3\text{CN} \) or \(\text{SO}_2 \) solution at low temperatures, produces \(\text{FONO}_2 \) in quantitative yield. Attempts were unsuccessful to prepare \(\text{FONO} \) from \(\text{NF}_4\text{SbF}_6 \) and \(\text{KNO}_2 \) in an analogous manner.

Keywords: Fluorine nitrate; fluorine nitrite; tetrafluoroammonium nitrate; synthesis.

1. Introduction

Covalent hypofluorites can generally be prepared by the direct fluorination of the corresponding oxo- or oxofluoro- salts or the acids with elemental fluorine [1]:

\[
\text{MOXO}_m\text{F}_n + \text{F}_2 \rightarrow \text{MF} + \text{FOXO}_m\text{F}_n
\]

\((\text{M} = \text{H} \text{ or alkali metal fluoride })\)

An alternate method that avoids the need for handling elemental fluorine involves the metathetical synthesis of the corresponding \(\text{NF}_4^+ \) salts and their subsequent thermal decomposition to \(\text{NF}_3 \) and the desired hypofluorites [2,3]:

\[
\begin{align*}
\text{NF}_4^+\text{SbF}_6^- + \text{M}^+\text{XO}_m\text{F}_n^- & \xrightarrow{\text{HF} \ -78^\circ C} [\text{NF}_4^+\text{XO}_m\text{F}_n^-] + \text{MSbF}_6^- \\
[\text{NF}_4^+\text{XO}_m\text{F}_n^-] & \rightarrow \text{NF}_3 + \text{FOXO}_{(m-1)}\text{F}_n
\end{align*}
\]
This method has been successfully demonstrated for the syntheses of FOCIO₃ [2] and FOSO₂F [3]. Application of this method to FONO₂ had failed [2] because NO₃⁻ reacts with HF according to:

\[
\text{NO}_3^- + 2\text{HF} \rightarrow \text{NO}_2^+ + \text{H}_2\text{O} + 2\text{F}^-
\]

In this paper it is shown that by the choice of a suitable solvent this problem can be overcome, and that the reaction of NF₄⁺ with NO₃⁻ represents an excellent method for preparing FONO₂.

2. Experimental

Caution! Fluorine nitrate is shock sensitive, and the combinations of strong oxidizers, such as NF₄NO₃, with organic materials, such as CH₃CN, can be explosive.

2.1. Materials and apparatus

All reactions were carried out in \(\frac{1}{4} \) inch o. d. Teflon-FEP ampoules that contained Teflon-coated magnetic stirring bars and were closed by stainless steel valves. Volatile materials were handled on a stainless steel / Teflon-FEP vacuum line [4]. Nonvolatile solids were handled in the dry nitrogen atmosphere of a glove box. The CH₃CN was dried over P₂O₅ and distilled prior to its use on a grease-free Pyrex glass vacuum line. The preparation of NF₄SbF₆ has previously been described [5]. The CsNO₃ was prepared from aqueous Cs₂CO₃ and HNO₃ by using a pH electrode for endpoint detection. It was purified by recrystallization from H₂O and dried in an oven at 100 °C for 24 h.

2.2. Synthesis of FONO₂

In the dry box, equimolar amounts (1.00 mmol each) of NF₄SbF₆ and CsNO₃ were placed into a prepassivated (with ClF₃) Teflon ampoule. This ampoule was then connected to the Pyrex glass line, and dry CH₃CN (3 mL liquid) was condensed in at -196 °C. It was then connected to
the steel vacuum line, and the reaction mixture was warmed to -40 °C. Upon melting of the solvent, strong gas evolution was observed. The turbid solution was stirred for 15 min, and the volatile products were separated by fractional condensation in a dynamic vacuum through three cold traps, kept at -126 (methylcyclohexane slush bath), -183 (liquid oxygen), and -210 °C (nitrogen slush), respectively. The -126 °C trap contained the CH₃CN solvent, the -183 °C trap had 1.0 mmol of pure FONO₂ that was identified by its vibrational [6,7] and ¹⁹F nmr [8] spectra, while the -210 °C trap contained 1.0 mmol of NF₃. The nonvolatile white solid residue in the ampoule consisted of 1.0 mmol of CsSbF₆ that was identified by its Raman spectrum [9].

When in the above reaction the CH₃CN solvent was replaced by SO₂ and the reaction was carried out at the melting point of SO₂ (~ -70 °C), again quantitative FONO₂ and NF₃ evolution was observed. However, the separation of the FONO₂ from the SO₂ solvent was more difficult due to their more similar volatilities.

3. Results and discussion

The reaction of NF₄SbF₆ and CsNO₃ in a solvent that is compatible with NO₃⁻ offers a new synthesis for FONO₂ with essentially quantitative yields.

\[
\text{SO}_2 \text{ or CH}_3\text{CN} \quad \text{NF}_4^+\text{SbF}_6^- + \text{Cs}^+\text{NO}_3^- \rightarrow \text{FONO}_2 + \text{NF}_3 + \text{MSbF}_6^-.
\]

The potential NF₄⁺NO₃⁻ intermediate, expected for a metathetical reaction [2,3], could not be isolated. It appears that the fluorination of the NO₃⁻ anion proceeds already at low temperatures in solution, thus interfering with the isolation of solid NF₄⁺NO₃⁻.

If NF₄SbF₆ is available, the new synthesis offers a convenient method for the preparation of FONO₂ that does not require the handling of elemental fluorine. In this study, three solvents, i.e., CH₃CN, SO₂, and SO₂ClF, were investigated. Whereas CH₃CN offers the advantage of easier
product separation, the use of SO$_2$ might be preferable from a safety point of view for larger scale reactions, avoiding the combination of a powerful oxidizer with an organic material. In SO$_2$ClF, no reaction was observed at temperatures up to 10 °C, due to the low solubility of the starting materials in this solvent.

Attempts to prepare the yet unknown FONO molecule by the analogous reaction of NF$_4$SbF$_6$ with KNO$_2$ in SO$_2$ or CH$_3$CN solution were unsuccessful. In SO$_2$, no apparent reaction took place even at -10 °C, probably due to the low solubility of KNO$_2$. However in CH$_3$CN, strong gas evolution was observed upon its melting at ~ -40 °C. The volatile products consisted of NF$_3$ and variable amounts of different nitrogen oxides and some FNO and FONO$_2$.

Acknowledgements

The work at USC was financially supported by the National Science Foundation, and that at the Air Force Research Laboratory by the Air Force Office of Scientific Research and the Defense Research Project Agency. One of us (B.H.) thanks the Deutsche Forschungsgemeinschaft for a stipend.

References

* Dedicated to the memory of Dr. Karel Lutar, a dear friend and outstanding chemist.

* Corresponding author. E-mail address: karl.christe@ple.af.mil (K.O.Christe)

* Current address: Institute of Inorganic Chemistry, University of Cologne, Germany.

