1. REPORT DATE (DD-MM-YYYY):

2. REPORT TYPE: Technical Papers

3. DATES COVERED (From - To):

4. TITLE AND SUBTITLE:

5a. CONTRACT NUMBER:
5b. GRANT NUMBER:
5c. PROGRAM ELEMENT NUMBER:
5d. PROJECT NUMBER:
5e. TASK NUMBER: 0053
5f. WORK UNIT NUMBER:

6. AUTHOR(S):

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES):
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

8. PERFORMING ORGANIZATION REPORT:

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES):
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S):

11. SPONSOR/MONITOR'S NUMBER(S):

12. DISTRIBUTION / AVAILABILITY STATEMENT:
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES:

14. ABSTRACT:

15. SUBJECT TERMS:

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT:

18. NUMBER OF PAGES:

19a. NAME OF RESPONSIBLE PERSON: Leilani Richardson
19b. TELEPHONE NUMBER (Include area code): (661) 275-5015

Standard Form 298 (Rev. 8-96)
Prescribed by ANSI Std. 239.18

I item enclosed
MEMORANDUM FOR PRS (Contractor Pu)

FROM: PROI (TI) (STINFO)

7 October 1999

1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-99-0184,
Ismail Ismail, ERC, and Tom Hawkins, PRSP, "Physical and Chemical characterization of Ultrafine
Aluminum Powders"

ACS Pacific Conference on Chemistry and Spectroscopy, 6-8 Oct 99 (Statement A)
PHYSICAL AND CHEMICAL CHARACTERIZATION
OF ULTRAFINE ALUMINUM POWDERS

I. M. K. Ismail
ERC, Inc., c/o AFRL/PRSP

and

T. W. Hawkins
AFRL/PRSP
Edwards Air Force Base, Ca 93524-7689
INTRODUCTION

- Compared to “regular” aluminum powders, ultrafine aluminum UFAI enhances the burning rate of propellants.

- Smaller UFAI particles have a large surface area which enhances the burning rate, they also have a large percentage of Al$_2$O$_3$ which reduces the ISP of the propellants.

- Open literature indicates UFAI powders can be prepared by several methods:
 - Electro-explosion of metal wires: Argonide Corporation (www.argonide.com)
 - Plasma torch vaporization & condensation (doi:10.1016/S0892-6771(05)00258-9).
 - Catalytic thermal decomposition of AlH$_3$ adducts (MRS 457, 131, 1997).
BACKGROUND

- Metallized gelled propellants such as O_2/RP-1/Al and gelled hydrogen $O_2/H_2/Al$ have been considered by NASA - nanoparticulate gellants by NASA/TRW (www.grc.nasa.gov/WWW/TU/launch/China)
- With UFAI powders, there is a potential for reduced gellant masses and agglomeration on nozzle.
- Higher rocket performance is needed for future missions.
- Different sources (DOD, NASA and private sector) have confirmed that the addition of UFAI powder to propellants increases burning rate by as much as a factor of 3.
- Open literature sites many methods of preparations but less emphasis has been given to properties of ultrafine particles.
- Due to their low bulk density, the powders are difficult to handle and their characterization is a challenge.
OBJECTIVES

- Develop techniques and methodologies for physical and chemical characterization of UFAI powders.
- Characterize the powders obtained from different sources.
- Develop a methodology to study the kinetics of reactions between UFAI and oxygen (oxidation) or nitrogen (nitridation) at different conditions.
- Estimate diffusion parameters and limitations for the reactions.
- Determine composition and crystallographic structure of solid residues left after the oxidation and nitridation reactions.
- Generate simple computer models to address the thickness of pre-existing Al_2O_3 layer on the particles of UFAI powders.
As particle size decreases, the percent of active aluminum decreases. Performance (ISP) of aluminized propellant may be lowered.

(Pre-existing oxide thickness is arbitrarily taken here as 2.5 nm)

% Active Aluminum vs Particle Size

- Recommend to develop a technique for thin coating the particles immediately after they are born.
Theoretical oxidation of Al particles of different sizes with a constant starting (pre-existing) Al₂O₃ layer thickness = 2.5 nm

Maximum Oxygen Uptake as a function of Particle Size

Maximum theoretical value = 88.9%

Based on the 2.5 nm assumption, UFAI particles have less active aluminum and requires less oxygen than the state-of-the-art aluminum particles.
The nitridation reaction of UFA1 powder at the early stages of heat-up includes three main steps:
1. Weight gain due to change in gas density (buoyancy effect).
2. Weight loss due to release of moisture and volatiles.
3. Weight gain due to oxidation (or nitridation) plus buoyancy effects.

- Corrected weight gain = apparent weight gain + maximum weight loss - buoyancy effects
Apparent weight gain is a function of sample size; diffusion through UFAI bed is significant - smaller samples show excess weight gain.

Effect of Al bed height at 600°C on kinetics (Indian Head UFAI powder):

- Reaction: $2\text{Al} + \text{N}_2 = 2\text{AIN}$

<table>
<thead>
<tr>
<th>Starting Weight (mg)</th>
<th>Corrected Weight Gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>41.3</td>
</tr>
<tr>
<td>9</td>
<td>42.5</td>
</tr>
<tr>
<td>27</td>
<td>42.1</td>
</tr>
</tbody>
</table>

Average = 41.9%

- Error = ± 0.6%

The average corrected weight gain is independent of sample size.
Nitridation reaction of UFAL

Reaction between UFAL and N2 (50 cc/min) at 600 C

% Weight Gain (Uncorrected)

51.9 % (max theoretical)

ALEX
N-96
N-11
N-01

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time, min
Nitridation and oxidation reactions of H-2 Valimet at 600 C.
In nitrogen, the reaction is completed in ~ 1 hour.
In oxygen, less than 10% of active aluminum was oxidized.
Oxidation of UFA1 (43 nm diameter) in oxygen at 600 °C

Indian Head UFA1 (43 nm diameter) at 600 °C in Oxygen (not air) - new bucket - 25 mg

After 30 minutes, there is practically no further increase.

Max corrected gain is 47.01%.

- The oxidation is completed in 15 minutes
Nitridation and oxidation reactions of UFA1-IH (43 nm) at 600 C.
In oxygen, the reaction is fast and reaches a constant value in ~30 minutes.
In nitrogen, the reaction is considerably slower.
• The current work indicates that there exist different types of diffusion limitations on the oxidation and nitridation reactions. The rate determining step differs with each gas.
• Under similar reaction conditions, the rate determining step is strongly controlled by the starting particle size of Al powder.
• The diffusion of N\textsubscript{2} through AlN at 600 C does not impose limitations on the kinetics of the reactions. The nitridation of the largest particle size was completed in an hour.
• However, the diffusion of oxygen through Al\textsubscript{2}O\textsubscript{3} does impose limitations which can be reduced by raising sample temperature. Smaller particles oxidize faster than larger particles (a result of the length of diffusion distance).
• Diffusion limitations of nitrogen through the aluminum bed can play an important role in nitridation kinetics. Such limitations are either due to a high (physical packing) density of the finer particles which limits the flow of species to active aluminum surface, or a high probability of forming agglomerates as a result of melting.
Step oxidation of UFA1-IH (46 nm) at different temperatures. With this particle size, the reaction is almost completed at 600 °C.

- Maximum weight gain = 53.12%
- Tick marks indicate the beginning of the constant temperature zone.
Russian ALEX (183 nm) in O₂ at 450, 600, 750 and 900 C: The reaction is almost completed ONLY at 900 C.

Corrected max oxygen uptake = 0.67 + 74.73 = 75.4%

Calculations based on 2.5 nm pre-existing oxide predicts 79.2%
Valimet H-2 (1035 nm) in oxygen at 450, 600, 750, 900, 1050 C. The reaction is completed at 1050 C. Oxidation at 450 and 600 C is slow.

![Graph showing weight gain and time](image)

Valimet H-2 has 2.5% impurities, corrected maximum gain = 87.62%

Based on 2.5 nm pre-existing oxide layer, maximum gain is 88.64%
X-ray diffraction data on residue left after nitridation of Valimet H-2.

Major component: 95% + hexagonal aluminum nitride.
Minor: cubic aluminum nitride and cubic aluminum oxy-nitride.
Crystal structure of AlN and Al2O3: the nitride has more interstitial space than the oxide.

- The structures suggest that diffusion of gases through the oxide crystal is more restricted than through the nitride crystal.
Theoretical considerations and computations

- When aluminum reacts with nitrogen or oxygen, the particles swell.
- All particles of different sizes have a pre-existing external \(\text{Al}_2\text{O}_3 \) layer covering a core of active aluminum.
- The thickness of the oxide layer is assumed constant for all particles. It is taken here as 2.5 nm.
- As the process propagates, the radius of aluminum core, \(r_1 \), decreases.
- At a given time interval, the radius of the entire particle (aluminum core + aluminum nitride layer + pre-existing \(\text{Al}_2\text{O}_3 \)) is taken as \(r_2 \).

 Thus: \(r_2 - r_1 - 2.5 \text{ nm} = \text{thickness, } t, \text{ of AlN (or Al}_2\text{O}_3 \) formed during reaction.

- Densities of Al, AlN and \(\text{Al}_2\text{O}_3 \) were taken as 2.70, 3.26 and 3.84 g/cc.
Oxidation of Aluminum (starting particle size = 1.00 nm)

\[2 \text{Al} + 1.5 \text{O}_2 = \text{Al}_2\text{O}_3\]
Nitridation of Aluminum (starting particle size = 1.00 nm)

\[\text{Al} + 0.5 \text{N}_2 = \text{AlN} \]

- Final outer radius \(r_2 \)
- Al radius \(r_1 \)
- Nitride layer thickness \(t \)

TGA W\%
STM Photos of UFAI-IH Powders

IH
Average size: 43-64 nm

ALEX
Average size: 160-190 nm
SEM and STM of AlN after complete nitridation of UFAI-IH powder.

The ultrafine particles agglomerates moderately during the nitridation reaction at 600 C. Individual particles are still seen.
Adsorption Isotherms of N$_2$ at 77 K on UFAI Powders

Average Diameter (nm) - assuming spherical particles:

N - 11: 40 nm
N - 96: 41 nm
ALEX: 165 n
N- 01: 209 n

N-11 - 55.4 m2/g
N-96 - 53.6 m2/g
ALEX - 13.3 m2/g
N-01: 10.6 m2/g
Surface Area and Estimated Average Particle Size for Ultrafine Aluminum Powders

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Average A_s m2/g</th>
<th>BET Average Particle size (nm)</th>
<th>Average Particle size from STM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEX</td>
<td>13.3</td>
<td>165</td>
<td>177</td>
</tr>
<tr>
<td>RF-A</td>
<td>48.1</td>
<td>46</td>
<td>40-120 nm (agglomerates)</td>
</tr>
<tr>
<td>RF-B</td>
<td>48.6</td>
<td>46</td>
<td>20-100 nm (agglomerates)</td>
</tr>
<tr>
<td>Valimet H-2</td>
<td>2.14</td>
<td>1035 (\sim 1 μm)</td>
<td>0.5-3.5 μm spherical</td>
</tr>
<tr>
<td>N-35</td>
<td>15.73</td>
<td>141</td>
<td>50-250 irregular shapes</td>
</tr>
<tr>
<td>N-40</td>
<td>6.87</td>
<td>322</td>
<td>50-100 irregular shapes</td>
</tr>
<tr>
<td>N-41</td>
<td>79.0</td>
<td>28</td>
<td>30-110 spherical</td>
</tr>
<tr>
<td>IH</td>
<td>51.3</td>
<td>43</td>
<td>43-64 spherical</td>
</tr>
</tbody>
</table>
Assumptions used to estimate particle diameter from BET surface area:

- Particles have insignificant porosity.
- Particles are composed of perfect spheres of one uniform size.
- Particles are smooth, they have zero level of roughness.
- Density of Al powders is = 2.71 g/cc.

Average particle diameter, \(d \) (in nm) was calculated from the BET surface area, \(A_s \) (m\(^2\)/g) using the following equation:

\[
d \text{ (in nm)} = \frac{6000}{(2.71 \times A_s)}
\]
Different methods for determining particle size of UFAI powders

METHOD

- Direct from STM and SEM
- BET surface area
- Direct from TEM cross-sections
- From TGA measurements see next Three slides

Pros and cons

- Electrostatic causes agglomeration
- All particles assumed spherical
 - Gives One average size
 - No roughness
- Work in progress
- Need to know thickness of pre-existing Al₂O₃ layer
<table>
<thead>
<tr>
<th>Sample</th>
<th>BET size, nm</th>
<th>% Al</th>
<th>% Al_2O_3</th>
<th>Estimated thickness, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-11</td>
<td>40</td>
<td>87.82</td>
<td>12.18</td>
<td>0.61</td>
</tr>
<tr>
<td>N-96</td>
<td>41</td>
<td>87.91</td>
<td>12.09</td>
<td>0.62</td>
</tr>
<tr>
<td>ALEX</td>
<td>165</td>
<td>89.21</td>
<td>10.79</td>
<td>2.22</td>
</tr>
<tr>
<td>N-41</td>
<td>28</td>
<td>85.67</td>
<td>14.33</td>
<td>0.51</td>
</tr>
<tr>
<td>RF-A</td>
<td>46</td>
<td>85.47</td>
<td>14.53</td>
<td>0.85</td>
</tr>
<tr>
<td>RF-B</td>
<td>46</td>
<td>94.83</td>
<td>5.17</td>
<td>0.29</td>
</tr>
<tr>
<td>IH</td>
<td>43</td>
<td>79.63</td>
<td>20.37</td>
<td>1.24</td>
</tr>
<tr>
<td>IH-small</td>
<td>43</td>
<td>82.05</td>
<td>17.95</td>
<td>1.07</td>
</tr>
<tr>
<td>IH-medium</td>
<td>43</td>
<td>81.13</td>
<td>18.87</td>
<td>1.14</td>
</tr>
<tr>
<td>IH-large</td>
<td>43</td>
<td>80.94</td>
<td>19.06</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Average:

| Valinet H-2 | 1035 | 92.19 | 7.81 |
| ALEX-RUSSIAN | 183 | 89.16 | 10.84 |

Dependence of percent active aluminum on UFAI starting particle size (nitridation reaction at 600 °C)
1. Find percentage of active aluminum (taken here as 90%) after complete nitridation.
2. Assume the balance (10%) as the pre-existing Al$_2$O$_3$ layer.
3. Obtain a plot between thickness of oxide layer and particle size.
4. Assume a value for the thickness (e.g., 2.5 nm) and obtain particle size.
1. Find percentage of active aluminum (taken here as 90%) after complete nitridation.
2. Assume the balance (10%) as the pre-existing Al₂O₃ layer.
3. Obtain a plot between particle size and thickness of oxide.
4. Take the particle size of powder as computed by the BET previous calculation.
5. Obtain the corresponding oxide thickness from the plot.
CONCLUSIONS

- Reaction between UFAI powders and nitrogen indicated that the nitridation reaction was completed at 600 C on all samples examined.
- The nitridation reaction forms hexagonal AlN as shown by x-ray diffraction.
- Diffusion of gaseous N₂ from the outer surface of particles through the AlN layer to the inner core of aluminum is not restricted at 600 C.
- Unlike nitridation, the reaction between UFAI powders and O₂ is not always completed at 600 C.
- The completion of oxidation reaction depends on UFAI particle size. For smaller particles (~50 nm), the oxidation can be completed at 600 C. For larger particles (~1000 nm), the oxidation can ONLY be completed at higher temperatures; as high as 1050 C.
- Diffusion of O₂ through the oxide layer to inner core of aluminum is restricted. The oxide layer is imposing diffusion limitations on oxidation.
RECOMMENDATIONS

- New techniques and methodologies are required to evaluate UFAI.
- Develop a technique for thin coating of UFAI immediately after the particles are born. This treatment will increase the active aluminum content of the sample.
- In order to evaluate the different methods of preparing UFAI powders, samples with different particle sizes ought to be prepared by each method.
- The effect of aging (for example, the exposure of UFAI powders to dry and wet air) needs to be addressed.
- Compatibility between UFAI powders and other propellants, fuels and oxidizers needs to be considered.
ACKNOWLEDGEMENT

- Strategic Environmental R & D Program - Green Missile Project, Ms. Diane Hagler - Project Manager, US Army, Redstone Arsenal, Huntsville, Al.

- Dr. Kevin Chaffee for x-ray diffraction work.

- Ms. Marietta Fernandez for SEM and STM work.