1. REPORT DATE (DD-MM-YYYY): [Blank]
2. REPORT TYPE: Technical Paper
3. DATES COVERED (From - To): [Blank]

4. TITLE AND SUBTITLE: [Blank]

5. AUTHOR(S): [Blank]

6. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES):
 Air Force Research Laboratory (AFMC)
 AFRL/PRS
 5 Pollux Drive
 Edwards AFB CA 93524-7048

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): [Blank]

8. PERFORMING ORGANIZATION REPORT: [Blank]

9. DISTRIBUTION / AVAILABILITY STATEMENT:
 Approved for public release; distribution unlimited.

10. SECURITY CLASSIFICATION OF:
 a. REPORT: Unclassified
 b. ABSTRACT: Unclassified
 c. THIS PAGE: Unclassified

11. SPONSOR/MONITOR'S ACRONYM(S): [Blank]

12. SPONSOR/MONITOR'S NUMBER(S): [Blank]

13. SUPPLEMENTARY NOTES: [Blank]

14. ABSTRACT: [Blank]

15. SUBJECT TERMS: [Blank]

16. LIMITATION OF ABSTRACT: [A]

17. NUMBER OF PAGES: [A]

18. NAME OF RESPONSIBLE PERSON:
 Leilani Richardson

19. TELEPHONE NUMBER (include area code):
 (661) 275-5015

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (Contractor/In-House Publication)

FROM: PROI (STINFO) 10 January 2002

Jeff Muss (Sierra); Curtis Johnson (Sierra); Richard Cohn; Peter Strakey; Ron Bates; Doug Talley,
"Swirl Coaxial Injector Development, Part I: Test Results"

JANNAF JPC
(Destin, FL, 8-12 April 2002) (Deadline: 15 Feb 2002)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity. Comments:__
__
__
Signature __ Date __________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review. Comments:__
__
__
Signature __ Date __________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required Comments:__
__
__
Signature __ Date __________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability Comments:__
__
__

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL Date
Technical Advisor
Space and Missile Propulsion Division

20021119 101
Swirl Coaxial Injector Development
Part I Test Results

Jeff Muss and Curtis Johnson, Sierra Engineering, Inc.
Richard Cohn, Peter Strakey, Ron Bates, and Doug Talley, AFRL

Abstract

Injector design is crucial to obtain long life and provide high energy release efficiency in the main combustion chamber. Introducing a swirl component in the injector flow can enhance the propellant mixing and thus improve engine performance. Therefore, swirl coaxial injectors show promise for the next generation of high performance staged combustion rocket engines utilizing hydrocarbon fuels. These injectors swirl liquid fuel around a gaseous oxygen core. This work develops a design methodology, utilizing both high-pressure cold-flow testing and uni-element hot-fire testing to create a high performing, long life swirl coaxial injector for multi-element combustor use. Several swirl coax injector configurations were designed and fabricated by Sierra Engineering, and tested at the Propulsion Directorate of the Air Force Research Lab. Both cold-flow and hot-fire tests were conducted. Cold-flow testing used near-field shadowgraphs and pattering to investigate atomization, non-combusting mixing efficiency, and flow uniformity. The cold-flow results (Figures 1 and 2) allowed ranking injector performance in terms of pressure drop, drop size, spray uniformity, and mixing. The most promising injectors were then installed in a combustor and hot-fire tested. The hot-fire tests demonstrated uni-element performance, ignition characteristics, and some stability characteristics. In addition, the injector elements have been operated at several different mixture ratios to characterize off-design performance. Work in progress (to be completed before the conference) includes flame imaging to better understand flame holding characteristics, and near field combustion phenomena of these swirler elements. The results of the cold-flow and hot-fire tests were compared to discern what phenomena observed during cold flow testing is directly applicable to hot-fire operation.
Figure 1. Near-Field Shadow Graphs of Nine Injectors Operating at Pc=285 psia

Figure 2. Plots of Liquid and Gas Fluxes 2 inches Below the Injector for Injectors Operating at Pc=285 psia