REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-MM-YYYY)
 2. REPORT TYPE
 Technical Papers

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5. a. CONTRACT NUMBER
 b. GRANT NUMBER
 c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory (AFMC)
 AFRL/PRS
 5 Pollux Drive
 Edwards AFB CA 93524-7048

8. PERFORMING ORGANIZATION REPORT

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory (AFMC)
 AFRL/PRS
 5 Pollux Drive
 Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 Unclassified
 b. ABSTRACT
 Unclassified
 c. THIS PAGE
 Unclassified

17. LIMITATION OF ABSTRACT
 A

18. NUMBER OF PAGES

19. a. NAME OF RESPONSIBLE PERSON
 Leilani Richardson
 b. TELEPHONE NUMBER
 (661) 275-5015

36c separate pages are enclosed
MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (TI) (STINFO) 10 October 2000

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

Signature ________________________________ Date ________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b.) possible higher headquarters review
Comments:

Signature ________________________________ Date ________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required
Comments:

Signature ________________________________ Date ________________

4. This request has been reviewed by PRS for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability
Comments:

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL Date
Technical Advisor

Cleared (PA) ____________________________
Logged (PA) ____________________________
Notified (PA) ____________________________
Copied & Distributed (STINFO) ____________
This original is for PA files

20021119 123
Monitoring Initiation and Growth of Crack in a Particulate Composite Material Using Nondestructive Testing techniques

C. T. Liu
AFRL/PRSM
10 E. Saturn Blvd.
Edwards AFB CA 93524-7680

An important engineering problem in structural design is evaluating structural integrity and reliability. It is well known that structural strength may be degraded during its design life due to mechanical or chemical aging, or a combination of these two aging mechanisms. Depending on the structural design, material type, service loading, and environmental condition, the cause and degree of strength degradation due to the different aging mechanisms differs. One of the common causes of strength degradation is the result of crack development in the structure.

In recent years, a considerable amount of work has been done in studying damage characteristics in highly filled polymeric materials, using nondestructive testing techniques. The importance of these studies stems from the fact that damage can significantly affect the constitutive and the crack growth behavior in these materials. Experimental findings reveal that damage, expressed in terms of the attenuation of the acoustic energy, increases with increasing strain rate and the critical damage is relatively insensitive to the strain rate. They also reveal that the damage state correlates well with the constitutive behavior of the material. In addition, for pre-cracked specimens, the damage state near the tip of a stationary crack is highly dependent on the loading history.

In this study, Lockheed-Martin Research Laboratory’s high-energy real-time x-ray system (HERTS) was used to monitor the processes of initiation and growth of damage and crack in edge-cracked sheet specimens. The specimens were made of a particulate composite material containing hard particles embedded in a rubber matrix and tested at a constant strain rate of 1.0 min⁻¹. The experimental data were analyzed and the results were discussed.