REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Technical Papers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
2362

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

8. PERFORMING ORGANIZATION REPORT

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Leilani Richardson

19b. TELEPHONE NUMBER
(include area code)
(661) 275-5015

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (Contractor Publication)

FROM: PROI (STINFO) 20 October 2000

Liu, C.T.; Kwon, Y.W. (Naval Postgraduate School), and Hendrickson, T.L., "Predicting the Initial Crack
Length in a Solid Propellant"

JANNAF 34th Structures & Mechanical Behavior Subcommittee Meeting
(Cocoa Beach, FL, 20-26 Mar 2001) (Deadline: 06 Nov 2000) (Statement A)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement
b.) military/national critical technology, c.) export controls or distribution restrictions,
d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

________________________________________________________________________

________________________________________________________________________

Signature ___________________________ Date ____________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release
and/or b) possible higher headquarters review
Comments:

________________________________________________________________________

________________________________________________________________________

Signature ___________________________ Date ____________

3. This request has been reviewed by the STINFO for: a.) punctuation and grammar, and b.) format and completion
of meeting clearance form if required.
Comments:

________________________________________________________________________

________________________________________________________________________

Signature ___________________________ Date ____________

4. This request has been reviewed by PRS for: a.) technical accuracy, b.) appropriateness for audience, c.)
appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/
national critical technology, and f.) data rights and patentability
Comments:

________________________________________________________________________

________________________________________________________________________

APPROVED / APPROVED AS AMENDED / DISAPPROVED

PHILIP A. KESSEL Date
Technical Advisor
Missile & Space Propulsion Division
Title of Paper: Predicting the Initial Crack length in a Solid Propellant

Author(s): C.T. Liu, Y. W. Kwon, and T. L. Hendrickson

Is this paper an update? Yes, No. X Has it been presented elsewhere? Yes, No. X

In this study, a micro-macromechanical approach was used to predict the initial crack length near the edge of the hole in solid propellant specimens. The approach was based on a simplified micromechanical model, damage mechanics at the micro-level, and finite element analysis at the macro-level. Both micromechanical and macromechanical analyses were conducted in tandem. The developed technique together with a mechanistic criterion was used to predict the initial crack length in high stress regions. The criterion was based on the instability of the damaged material just ahead of the crack tip. The initial crack length is equal to the length of unstable material zone when the damage at the crack tip element is saturated. Based on the definition of the initial crack length and the micro-macromechanical approach, the initial crack lengths in the high stress regions were predicted. The predicted initial crack lengths and the experimentally measured values were compared and the results were discussed.