Award Number: DAMD17-01-1-0521

TITLE: Identification of Candidate Breast Cancer Susceptibility Genes Using a cDNA Microarray/CGH Approach

PRINCIPAL INVESTIGATOR: Andrew K. Godwin, Ph.D.

CONTRACTING ORGANIZATION: Fox Chase Cancer Center
Philadelphia, Pennsylvania 19111

REPORT DATE: May 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Identification of Candidate Breast Cancer Susceptibility Genes Using a cDNA Microarray/CGH Approach

Andrew K. Godwin, Ph.D.

Fox Chase Cancer Center
Philadelphia, Pennsylvania 19111

E-Mail: A.Godwin@fcce.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Abstract (Maximum 200 words) (abstract should contain no proprietary or confidential information)

Familial breast cancer accounts for 15 to 35% of all breast cancers. Mutations in a number of genes are now known to cause susceptibility to breast cancer; the most notorious are the BRCA1 and BRCA2 genes. However, it has become evident that not all (or even the majority) of familial breast cancer families can be attributed to mutations in BRCA1 and BRCA2. In a recent study by the Breast Cancer Linkage Consortium, only one third of families with four or five cases of female breast cancer and no cases of ovarian cancer carry mutations in either BRCA1 or BRCA2. Smaller familial clusters are much more common than families with large numbers of cases, suggesting that a substantial proportion of familial clustering is not accounted for by mutations in BRCA1 and BRCA2; therefore, there is a great need to discover other genes that contribute to this disease. We hypothesize that a heterozygous deletion in constitutive DNA or a homozygous deletion in multiple tumors and tumor types from a cancer-prone family will represent a strong candidate cancer predisposing gene. To establish this proof of principle, we have successfully developed a fluorescent-based DNA microarray assay to identify deletions, as small as a single exon, in heterogeneous tumor DNA.
INTRODUCTION:

Besides family history of cancer and an individual’s age, no single etiologic factor can identify women at an increased risk for the disease. Approximately 10% of all cases of breast cancer exhibit a familial pattern of incidence. Efforts to identify the genetic basis of familial breast cancer reached fruition some 6 to 7 years ago, when the breast-cancer susceptibility genes, \textit{BRCA1} and \textit{BRCA2} were identified through positional cloning. Epidemiological studies sparked by the discovery of \textit{BRCA1} and \textit{BRCA2} have made clear several features of inherited mutations in the genes. The mutations are highly penetrant carrying a lifetime risk of 30 to 85% for cancer incidence, with variation related to genetic background. Thus, identifying individuals predisposed to disease is of central importance towards preventive health strategies. One of the emerging themes in cancer risk assessment has been the enormity of the task of screening for genetic susceptibility. Recent studies have suggested that mutations in \textit{BRCA1} and \textit{BRCA2} are associated with a smaller number (20 to 60%) of hereditary breast cancer families than originally estimated, especially in studies that have been based on population-based family materials. Several groups including ours are searching for additional breast cancer susceptibility genes using whole genome scanning approaches, but the success of many of these approaches depend on the underlying heterogeneity of the remaining cancer susceptibility loci. The failure to date to identify additional breast cancer susceptibility genes associated with a high risk of disease suggests that more than one may exist. To establish a method to effectively detect homozygous deletions in candidate breast cancer susceptibility genes we derived an exon chip and a fluorescent-based DNA microarray assay to identify deletions in tumor DNA.

BODY:

Fifteen invasive breast tumors and 15 malignant epithelial tumors of the ovary were evaluated for genomic rearrangements using custom \textit{BRCA1} and \textit{BRCA2} exon DNA microarrays. The tumor DNA samples were compared to control DNA, which was previously shown to be wild-type for \textit{BRCA1} and \textit{BRCA2}. All sample tumor DNAs were paired with control DNA and hybridized to \textit{BRCA1} and \textit{BRCA2} exon DNA array, containing fragments of 24 exons of the \textit{BRCA1} gene and 27 exons of the \textit{BRCA2} gene. Of the 30 tumors evaluated for genomic rearrangements involving \textit{BRCA1} and \textit{BRCA2}, one (UPN 54) revealed a statistically confident 4.45 ± 0.44 (2.1668)-fold difference in signal intensity from the exon 17 fragment, compared to a mean-fold difference of 0.88 ± 0.175 for all other exons in Figure 1A. This observation was confirmed in a “dye-flip” experiment, where the sample originally labeled with Cy5 was labeled with Cy3, and vice versa. We performed a statistical analysis of the repeated “dye-flip” experiments to evaluate the reproducibility of measurements and calculated the CVs for intensity ratios and for individual channels to evaluate the reproducibility of the replicate spots on the array. We also performed a statistical confidence analysis to omit the data points with less than a 95% probability of having a different signal due to copy number and not experimental conditions, and we were left with only the one ratio—intensity comparison of exon 17. This confidence analysis is a modified version of the method described by Kerr and Churchill (Kerr et al., 2000) and implemented in the GeneSight 3.0.4 software package.

We also used Southern blot analysis to evaluate the 15 tumor samples for gross genomic rearrangements of the \textit{BRCA1} locus. Of the DNAs evaluated, only UPN 54 showed a larger aberrant migrating DNA fragment when digested with \textit{EcoRI} and hybridized with a cDNA probe spanning exons 15-20 of \textit{BRCA1} (Figure 2), due to loss of an \textit{EcoRI} site. As can be seen in Figure 2, both the 9,764 bp and 5,730 bp bands in sample UPN54 containing exons 17-19 and exons 15 and 16, respectively, are greatly reduced in intensity. This region of interest was further refined using a panel of restriction endonucleases and the corresponding normal DNA isolated from peripheral-blood leukocytes to determine the nature and extent of the alteration. Tumor-specific additional bands were readily apparent in DNA digested with \textit{EcoRI}, \textit{PstI}, and \textit{SstI} (Figure 3). A slightly smaller migrating band was evident in the \textit{HindIII} digested tumor DNA lane as compared to normal. However, the alteration in the \textit{BamHI}
digested sample could not be detected because of the difficulty in resolving this large DNA fragment (>23kb). In addition, the intensity of the normal bands was reduced in the tumor sample (C) compared to the corresponding normal DNA (N). Based on these digests and a restriction map of the *BRCA1* gene (GenBank accession no. L78833), we determined that the deletion was approximately 3kb in length and included an *EcoRI* site, a *PstI* site, and two *SstI* sites in intron 16 of *BRCA1*, all of exon 17, and a portion of intron 17. Long-range PCR further confirmed the size and boundaries of the deletion involving exon 17 (data not shown).

To confirm that the 3-kb deletion detected in the ovarian tumor from UPN 54 resulted in a frameshift and thus expression of a truncated protein product, Western blot analysis was performed (Figure 4). The 220-kDa wild-type BRCA1 protein was detected in HeLa cells that contained the wild-type and in two other ovarian tumors (UPNs 0698 and 2061). A smaller protein product was detected in the ovarian tumor from UPN 54, showing that the mutation does indeed result in a truncated product and that the protein is expressed. Interestingly, Western blot analysis detected no full-length BRCA1 protein in the heterogeneous tumor tissue (Figure 4). Thus, inactivation of *BRCA1* in this tumor from UPN 54 conforms to Knudson’s “2-hit” hypothesis of inactivating tumor suppressor genes.

Overall, we have found genomic rearrangements affecting the *BRCA1* gene in a small percentage (7%; 1/15) of the ovarian adenocarcinomas evaluated with a rapid *BRCA1* and *BRCA2* exon DNA array approach. No mutations were discovered in breast tumors in either *BRCA1* or *BRCA2*. Nevertheless, our work has shown that the method we have developed can simultaneously search for DNA rearrangements in the *BRCA1* and the *BRCA2* genes. Furthermore, it can be expanded and applied to the search for large rearrangements in a variety of genes of interest simultaneously. Even though the sensitivity of the method has not been rigorously tested, we have shown that a deletion in a tumor containing ~30% normal DNA could be detected readily. Overall, the method presented has implications for the rapid and simultaneous evaluation of multiple cancer-associated genes in clinical tumor samples as well as in the germline of high-risk families without apparent *BRCA1* or *BRCA2* mutations for large genomic rearrangements.
Figure 2. Southern blot analysis of 15 tumor DNAs for genomic rearrangements in BRCA1. Genomic tumor DNA was digested with EcoRI, separated on a 1% agarose gel, transferred to a nylon membrane, and probed with a ~700 bp cDNA fragment of BRCA1 spanning exons 15 through 20. Asterisk indicates UPN 54 sample showing an aberrant migrating DNA fragment.

Figure 3. Southern blot analysis of UPN54. (A) DNA from patient UPN 54 was extracted from blood lymphocytes (N=normal) or tumor (C=cancer). Restriction enzymes used to digest the DNA are indicated above the panels. The blot was hybridized with an ~700 bp probe containing exons 15-20 of BRCA1 cDNA. Molecular weights (in kb) are to the left of the blot; arrow heads indicate variant bands in the tumor sample. (B) Restriction digest map: boxes represent exons; H, HindIII; E, EcoRI; S, SstI; and P, PstI. The relative position of the genomic deletion is represented below the digestion map.
Figure 4. Western blot analysis of UPN 54 for mutant BRCA1 protein. Extracts from the indicated samples were separated by 6% SDS-PAGE and processed by Western blotting. The blot was probed with the anti-BRCA1 antibody. Lanes 0698, 2061 extracts of sporadic ovarian tumors with wild-type BRCA1; lane UPN 54 extract of sporadic ovarian tumor from UPN54 showing a truncated BRCA1 protein due to deletion of exon 17; lane HeLa, extract from the cervical carcinoma cell line with wild-type BRCA1.
C. KEY RESEARCH ACCOMPLISHMENTS:

C.I. "Identification of candidate breast cancer susceptibility genes using a cDNA microarray/CGH approach”.

1.a. Successfully fabricated a BRCA1 and a BRCA2 exon DNA array.

1.b. Developed a fluorescent-based DNA microarray assay to identify deletions, as small as a single exon, in heterogeneous tumor DNA.

1.c. Identified that exon 17 of BRCA1 was deleted in an ovarian tumor sample.

1.d. Confirmed the presence of the deletion by Southern and Western analysis.

1.e. Published the method in Genes, Chromosomes, and Cancer and presented this method at the 10th Annual SPORE meeting in Washington.
D-REPORTABLE OUTCOMES (1/2002 to present):

D.I. “Identification of candidate breast cancer susceptibility genes using a cDNA microarray/CGH approach”.

*=supported by DAMD17-01-1-0521

1.a. Abstracts

1.b. Publications

E-CONCLUSIONS:

E.1. "Identification of candidate breast cancer susceptibility genes using a cDNA microarray/CGH approach".

In most families with multiple cases of breast and ovarian cancer, the cancer appears to be associated with germline alterations in BRCA1 or BRCA2. However, somatic mutations in BRCA1 and BRCA2 in sporadic breast and ovarian tumors are rare, even though loss of heterozygosity in BRCA1 and BRCA2 loci in these tumors appear frequently. This may be attributed to mutation detection assays that detect alterations in the coding regions and splice site junctions, but that miss large gene rearrangements. To look specifically for mutations such as large gene rearrangements that span several kilobases (kb) of genomic DNA, we have developed a fluorescence DNA microarray assay. This assay rapidly and simultaneously screens for such rearrangements along the entire gene. In our screen of malignant breast and ovarian tumors, we found one sample with a novel 3-kb deletion encompassing exon 17 of BRCA1 that leads to a frameshift mutation. This deletion was not detected in the corresponding constitutive DNA. Our results indicate that the method described in this report has the potential to screen clinical tumor samples for genomic rearrangements simultaneously in a large number of cancer-associated genes.

F-REFERENCES: None

G-APPENDICES: None