

ONTOLOGICAL ENGINEERING AND MAPPING IN MULTIAGENT

SYSTEMS DEVELOPMENT

THESIS

Jonathan M. DiLeo, First Lieutenant, USAF

AFIT/GCS/ENG/02M-03

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date
9 Mar 02

Report Type
Final

Dates Covered (from... to)
Jun 01 - Mar 02

Title and Subtitle
Ontological Engineering and Mapping in Multiagent
Systems Development

Contract Number

Grant Number

Program Element Number

Author(s)
1st Lt Jonathan M. DiLeo, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and
Address(es)
Air Force Institute of Technology Graduate School
of Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 WPAFB, OH 45433-7765

Performing Organization Report Number
AFIT/GCS/ENG/02M-03

Sponsoring/Monitoring Agency Name(s) and
Address(es)
Capt David Marsh Air Force Research Laboratories,
Information Directorate (AFMC) AFRL/IFTB 525
Brooks Road Rome, NY 13441-4505

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract
Multiagent systems have received much attention in recent years due to their advantages in complex,
distributed environments. Previous work at the Air Force Institute of Technology has developed a
methodology for analyzing, designing, and developing multiagent systems, called Multiagent Systems
Engineering (MaSE). MaSE currently does not address the information domain of the system, which is an
integral part of designing proper system execution. This research extends the MaSE methodology to include
the use of ontologies for information domain specification. The extensions allow the designer to specify
information flow by using objects from the ontology as parameters in agent conversations. The developer can
then ensure system functionality by verifying that each agent has the information required to accomplish the
system goals. To fully describe the system design, the developer must describe the relationships between the
system ontology and any agent component ontologies. This research also developed a ranking model to assist
the user with creating such mappings, to show the relationships between the objects in the ontologies.

Subject Terms
Multiagent systems, Ontology, Agents, Software Engineering, System Integration

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
142

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the United States Air Force, Department of Defense or United States Government.

AFIT/GCS/ENG/02M-03

THESIS

Presented to the faculty of the Graduate School of Engineering & Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Jonathan M. DiLeo, B. S.

First Lieutenant, USAF

March 2002

Approved for public release, distribution unlimited

.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my faculty advisor, Lt Col Timothy Jacobs, for his

guidance and support throughout the course of my research effort. I would like to thank Maj Karl Mathias

for his advice and guidance regarding the ranking models used in this thesis and to Dr. Gregg Gunsch for

serving on my thesis committee. I would also like to express my appreciation to my sponsor, Capt David

Marsh, from the Air Force Research Labs for his support in this endeavor.

Finally, I would like to thank my wife for her love and understanding during my graduate studies.

Without her support and tireless proofreading, the last eighteen months would have been impossible.

 iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..IV

TABLE OF FIGURES..IX

TABLE OF TABLES..XI

ABSTRACT... XII

I. INTRODUCTION... 1
1.1 Background .. 1

1.1.1 Definition of an Ontology... 2
1.1.2 Importance of Ontologies in Multiagent Systems... 3

1.1.2.1 Communication ... 3
1.1.2.2 Component Reuse ... 3

1.2 Problem .. 3
1.2.1 Goals... 4
1.2.2 Approach .. 4

1.3 Thesis Scope... 5
1.4 Thesis Overview... 5

II. BACKGROUND... 6
2.1 Ontologies .. 6

2.1.1 Existing Methodologies for Building Ontologies ... 7
2.1.1.1 Uschold and Gruninger ... 7

2.1.1.1.1 Identify Purpose and Scope ... 8
2.1.1.1.2 Building the Ontology ... 8
2.1.1.1.3 Evaluation.. 8
2.1.1.1.4 Documentation... 9

2.1.1.2 Methontology .. 9
2.1.1.3 KBSI IDEF5.. 10

2.1.1.3.1 Organizing and Scoping .. 10
2.1.1.3.2 Data Collection .. 10
2.1.1.3.3 Data Analysis... 11
2.1.1.3.4 Initial Ontology Development ... 11
2.1.1.3.5 Ontology Refinement and Validation .. 11
2.1.1.3.6 Comparison to Methontology .. 12

2.1.2 Specification Languages for Ontologies ... 12
2.1.3 Graphical Toolkits for Building Ontologies ... 13

2.2 Multiagent Systems .. 14
2.2.1 Multiagent Systems Engineering Methodology.. 15

2.2.1.1 Analysis Phase .. 16
2.2.1.2 Design Phase ...18
2.2.1.3 agentTool .. 20

2.2.2 Additional Multiagent Systems Engineering Methodologies ... 20
2.2.2.1 Gaia ... 20

v

2.2.2.1.1 Design.. 22
2.2.2.2 Methodology for Engineering Systems of Software Agents (MESSAGE)............. 23

2.2.2.2.1 Analysis ... 24
2.2.2.2.2 Design.. 24

III. PROBLEM APPROACH... 26
3.1 Requirements for Domain Representation in Multiagent Systems... 26

3.1.1 Requirements for Information Domain Models in Multiagent Systems 26
3.1.2 Requirements for Information Domain Use in Multiagent Systems Development 28

3.2 Methodology for Including the Information Domain in MaSE.. 30
3.2.1 Structure of an Ontology... 30

3.2.1.1 Characteristics of an Ontology .. 33
3.2.2 Methodology for Building System Ontologies ... 34

3.2.2.1 Define Purpose and Scope of Ontology .. 35
3.2.2.2 Collect and Analyze Data.. 36
3.2.2.3 Construct Initial Ontology... 36
3.2.2.4 Refine and Validate Ontology... 36

3.2.3 Methodology for Building Component Ontologies in Multiagent Systems........................ 37
3.2.4 Integrating the Construction of Ontologies into MaSE... 37
3.2.5 Alternatives to Ontologies .. 39

3.3 Geometric Score Reduction Model for Ranking Object Similarity.. 39
3.3.1 Determining the Similarity Score of an Object... 40
3.3.2 Evaluating Ranking Models.. 42

IV. EXTENDED MULTIAGENT SYSTEMS ENGINEERING .. 44
4.1 Capturing Goals.. 44

4.1.1 Identifying Goals .. 44
4.1.2 Structuring Goals .. 45

4.2 Applying Use Cases ... 45
4.2.1 Creating Use Cases ... 46
4.2.2 Creating Sequence Diagrams.. 46

4.3 Developing the System Ontology... 47
4.3.1 Define Purpose and Scope of Ontology.. 49
4.3.2 Collect Data .. 50
4.3.3 Construct Initial Ontology .. 50

4.3.3.1 Reusing Existing Ontologies ... 51
4.3.3.2 Build Class Hierarchy ... 51
4.3.3.3 Add Attributes to Classes .. 52
4.3.3.4 Define Relationships ... 53
4.3.3.5 Define Axioms .. 53

4.3.4 Refine and Validate Ontology .. 54
4.4 Refining Roles.. 55

4.4.1 Creating Roles .. 55
4.4.2 Concurrent Tasks .. 55

4.5 Creating Agent Classes .. 57
4.6 Constructing Conversations ... 59
4.7 Assembling Agent Classes ... 60

4.7.1 Special Case -- Specifying Agent Component Ontologies ... 61
4.7.1.1 Mapping Component Ontologies to the System Ontology...................................... 62
4.7.1.2 Component Ontologies in agentTool... 63

4.7.1.2.1 Mapping Ontologies .. 63

 vi

4.8 System Design.. 64
4.9 Code Generation... 65

V. GEOMETRIC SCORE REDUCTION MODEL .. 66
5.1 Computing the Similarity of Objects.. 66

5.1.1 Object Characteristics Used by the Model.. 66
5.1.2 Object Characteristics Not Used... 68

5.2 Comparing the Attributes of the Objects.. 69
5.2.1 Assigning the Best Value.. 70

5.2.1.1 Determining the Similarity Score of an Attribute ... 72
5.2.2 Comparing Attributes Using an Ordering... 73

5.3 Computing the Similarity of Attributes .. 75
5.3.1.1 Attribute Characteristics Used by the Model .. 75

5.3.2 Attribute Characteristics Not Used by the Model ... 76

VI. RESULTS.. 77
6.1 Evaluation of Ontologies for Domain Representation.. 77
6.2 Evaluation of the Use of the Information Domain in Extended MaSE .. 79

6.2.1 Specifying the Information Domain ... 80
6.2.1.1 Steps .. 81

6.2.2 Using Objects from the Information Domain ... 82
6.2.2.1 Task and Conversation State Diagrams... 83
6.2.2.2 Components...84

6.3 Geometric Score Reduction Model .. 85
6.3.1 Experiment Setup.. 86
6.3.2 Mapping to Identical Ontology... 87
6.3.3 Mapping to Similar Sized Ontology ... 88
6.3.4 Mapping to Larger Ontology .. 90
6.3.5 Analysis of Implementation Approaches.. 90

VII. CONCLUSIONS AND FUTURE WORK ... 92
7.1 Summary and Conclusions... 92
7.2 Future Research Areas.. 93

7.2.1 Automatic Conversion from UML to Ontologies ... 93
7.2.2 Creating Converters from Ontology Mappings... 93
7.2.3 Ranking Model Enhancements ... 94
7.2.4 Transformations.. 94
7.2.5 Improved agentTool Visual Interface ... 95

7.3 Summary .. 95

A. APPENDIX – DESIGNING DISTRIBUTED SCHEDULING SYSTEM USING EXTENDED MASE 96
A.1 Capturing Goals... 97

A.1.1 Produce a Schedule .. 97
A.1.2 Allow User Inputs .. 98
A.1.3 Display the Schedule.. 98
A.1.4 Manage the Existing Schedules ... 98

A.2 Applying Use Cases .. 99
A.2.1 Sequence Diagrams.. 100

A.3 Developing System Ontology.. 101
A.3.1 Define Purpose and Scope ... 101

 vii

A.3.2 Collect Data ... 102
A.3.3 Construct Initial Ontology ... 102

A.3.3.1 Existing Ontologies .. 102
A.3.3.2 Build Class Hierarchy .. 102
A.3.3.3 Add Attributes to Classes ... 103
A.3.3.4 Define Relationships .. 104
A.3.3.5 Define Axioms ... 105

A.3.4 Refine and Validate.. 105
A.3.5 Final Ontology ... 106

A.4 Refining Roles... 108
A.4.1 CourseManager .. 108
A.4.2 InstructorManager.. 109
A.4.3 OutputManager .. 110
A.4.4 ResourceManager .. 111
A.4.5 ScheduleManager... 111
A.4.6 Scheduler ... 112
A.4.7 StudentManager ... 114
A.4.8 User.. 114

A.5 Creating Agent Classes.. 114
A.6 Constructing Conversations... 114
A.7 Assembling Agent Classes .. 116
A.8 System Design... 117

B. EXPERIMENTAL RAW DATA.. 119
B.1 Mapping Same-Size Ontologies .. 119

B.1.1 Best-Value.. 119
B.1.2 Strict Comparator ... 120
B.1.3 Loose Comparator.. 121
B.1.4 Alphabetical ... 122

B.2 Mapping Smaller to Larger Ontologies ... 122
B.2.1 Best-Value.. 123
B.2.2 Strict Comparator ... 123
B.2.3 Loose Comparator.. 123
B.2.4 Alphabetical ... 124

BIBLIOGRAPHY .. 125

VITA .. 128

 viii

TABLE OF FIGURES

FIGURE 1 EXAMPLE INTEGRATION DOCUMENT [FERNÁNDEZ AND OTHERS 1997]... 9

FIGURE 2 PROTÉGÉ 2000 MAIN USER INTERFACE... 14

FIGURE 3 MASE PHASES, STEPS AND MODELS ... 16

FIGURE 4 EXAMPLE GOAL HIERARCHY DIAGRAM [DELOACH 2001] .. 17

FIGURE 5 EXAMPLE MASE ROLE MODEL [DELOACH AND WOOD 2000B].. 18

FIGURE 6 EXAMPLE CONCURRENT TASK DIAGRAM [DELOACH AND WOOD 2000B]..................................... 18

FIGURE 7 EXAMPLE AGENT CLASS DIAGRAM [DELOACH 2001]... 19

FIGURE 8 EXAMPLE CONVERSATION DIAGRAM [DELOACH 2001] .. 19

FIGURE 9 RELATIONSHIPS BETWEEN GAIA MODELS ... 21

FIGURE 10 EXAMPLE GAIA ROLE SCHEMA [WOOLDRIDGE AND OTHERS 2000] .. 21

FIGURE 11 EXAMPLE GAIA INTERACTION MODEL... 22

FIGURE 12 STRUCTURE OF AN ONTOLOGY .. 31

FIGURE 13 STRUCTURE OF A CLASS IN AN ONTOLOGY.. 32

FIGURE 14 STRUCTURE OF A SLOT .. 33

FIGURE 15 EXTENDED MASE METHODOLOGY.. 38

FIGURE 16 GOAL HIERARCHY DIAGRAM... 45

FIGURE 17 EXAMPLE SEQUENCE DIAGRAM... 46

FIGURE 18 VIEWING SYSTEM ONTOLOGY IN AGENTTOOL... 48

FIGURE 19 MAIN WINDOW OF ONTOLOGY EDITOR ... 48

FIGURE 20 METADATA TAB IN ONTOLOGY EDITOR .. 49

FIGURE 21 ADD/MODIFY SLOT WINDOW .. 52

FIGURE 22 AXIOM TAB IN ONTOLOGY EDITOR.. 54

FIGURE 23 EXAMPLE ROLE DIAGRAM... 56

FIGURE 24 EXAMPLE CONCURRENT TASK DIAGRAM .. 57

FIGURE 25 EXAMPLE AGENT CLASS DIAGRAM ... 58

 ix

FIGURE 26 RETRIEVESCHEDULE CONVERSATION INITIATOR ... 59

FIGURE 27 RETRIEVESCHEDULE CONVERSATION RESPONDER .. 60

FIGURE 28 EXAMPLE AGENT ARCHITECTURE DIAGRAM... 61

FIGURE 29 ONTOLOGY MAPPER .. 64

FIGURE 30 EXAMPLE DEPLOYMENT DIAGRAM.. 65

FIGURE 31 IMPERFECT OBJECT MATCH WITH ONE-WAY MAPPING... 71

FIGURE 32 IMPERFECT OBJECT MATCH WITH TWO-WAY MAPPING.. 72

FIGURE 33 POSSIBLE SITUATIONS WHEN COMPARING ATTRIBUTES WITH AN ORDERING 73

FIGURE 34 SAMPLE FINITE STATE AUTOMATA WITH INFORMATION PASSING... 83

FIGURE 35 TASK DIAGRAM WITH UNSPECIFIED VARIABLE ... 84

FIGURE 36 EXAMPLE EXPERIMENT RUN.. 87

FIGURE 37 DISTRIBUTED COURSE SCHEDULING GOAL HIERARCHY.. 97

FIGURE 38 METADATA FOR THE SYSTEM ONTOLOGY ... 101

FIGURE 39 INITIAL CLASS HIERARCHY.. 103

FIGURE 40 FINAL CLASS HIERARCHY FOR THE REGISTRAR ONTOLOGY.. 108

FIGURE 41 MANAGESECTIONINFO TASK... 109

FIGURE 42 MANAGEINSTRUCTORINFO TASK .. 110

FIGURE 43 MANAGESCHEDULES TASK DIAGRAM ... 112

FIGURE 44 FREESCHEDULERESOURCES TASK DIAGRAM .. 113

FIGURE 45 AGENT TEMPLATE DIAGRAM... 115

FIGURE 46 ABORTSCHEDULE CONVERSATION RESPONDER DIAGRAM .. 116

FIGURE 47 FREESCHEDULERESOURCES COMPONENT STATE DIAGRAM.. 117

 x

TABLE OF TABLES

TABLE 1 OBJECT CHARACTERISTICS AND THEIR USE IN THE GEOMETRIC SCORE REDUCTION RANKING

MODEL ... 66

TABLE 2 ATTRIBUTE CHARACTERISTICS AND THEIR USE IN THE GEOMETRIC SCORE REDUCTION RANKING

MODEL ... 75

TABLE 3 DOMAIN REPRESENTATION REQUIREMENTS AND THE ONTOLOGICAL COMPONENTS THAT SATISFY

THEM .. 77

TABLE 4 CRITERIA FOR USING INFORMATION DOMAIN IN MULTIAGENT SYSTEMS DESIGN 79

TABLE 5 CANDIDATE ONTOLOGY TERMS.. 81

TABLE 6 SIMILAR SIZED ONTOLOGIES RANKING MODEL RESULTS... 89

TABLE 7 EXPERIMENT RESULTS FOR SMALLER TO LARGER ONTOLOGY MAPPING 90

TABLE 8 CANDIDATE ONTOLOGY TERMS.. 102

TABLE 9 INITIAL ATTRIBUTE LISTING ... 104

TABLE 10 RELATIONSHIP ATTRIBUTES FOR DISTRIBUTED SCHEDULING ... 105

TABLE 11 FINAL ATTRIBUTE LIST FOR THE REGISTRAR ONTOLOGY ... 107

 xi

AFIT/GCS/ENG/02M-03

ABSTRACT

Multiagent systems have received much attention in recent years due to their advantages in

complex, distributed environments. Previous work at the Air Force Institute of Technology has developed

a methodology for analyzing, designing, and developing multiagent systems, called Multiagent Systems

Engineering (MaSE). MaSE currently does not address the information domain of the system, which is an

integral part of designing proper system execution.

This research extends the MaSE methodology to include the use of ontologies for information

domain specification. The extensions allow the designer to specify information flow by using objects from

the ontology as parameters in agent conversations. The developer can then ensure system functionality by

verifying that each agent has the information required to accomplish the system goals.

To fully describe the system design, the developer must describe the relationships between the

system ontology and any agent component ontologies. This research also developed a ranking model to

assist the user with creating such mappings, to show the relationships between the objects in the ontologies.

xii

ONTOLOGICAL ENGINEERING AND MAPPING IN

MULTIAGENT SYSTEMS DEVELOPMENT

I. Introduction

The Department of Defense is currently integrating its various distributed information systems to

increase information superiority for the warfighter. Joint Vision 2020 specifies the development of a global

information grid as part of information superiority and emphasizes the importance of “information systems

and equipment that enable a common relevant operation picture…that can be accessed by any appropriately

cleared participant” for interoperability between the various services [Shelton 2000]. An appealing

solution to integrating legacy systems into this global grid is the use of multiagent systems. The resulting

system must be robust, reliable, and secure to meet our warfighting needs.

Constructing multiagent systems involves all the problems of traditional distributed systems along

with the problems that arise from the behavior of the individual agents. Designers need an engineering

approach for system development of multiagent systems to address and avoid these problems.

Integrating legacy systems further increases the difficulties of designing multiagent systems due to

the varying semantics of different information systems. Different systems can have different terms that

represent the same concept, introducing a complication in integrating the systems. Any complete

methodology for building multiagent systems must address the data models used by the system and the

individual components in the system.

1.1 Background

In recent years, interest in multiagent systems has increased as designers look for new methods of

solving problems. Growth of the Internet has led to increased distribution of information and system

resources among multiple machines. Agents act as abstractions for the individual components that

 1

coordinate to accomplish tasks in these distributed systems. Distributed environments lend themselves to a

multiagent system design, so system designers have been looking for ways to use multiagent systems to

solve their problems.

Multiagent Systems Engineering (MaSE) has been developed at AFIT to assist in the development

of multiagent systems by leading the designer from the initial system specifications to a set of formal

design documents [DeLoach and others 2001]. The transformations from each step in MaSE are formally

defined and provide the engineering approach needed for multiagent system engineering. Despite its

benefits in multiagent systems design, however, MaSE fails to address the design of the information

domain. The designer constructs a set of design documents that do not address the semantics of the data

passed between the agents.

This research corrects this deficiency by extending MaSE to include steps to specify the

information domain and to use the objects defined in that domain, providing the designer with a complete

set of design documents. This research uses ontologies to specify the classes, properties, object constants,

and axioms that a system and its components use to represent the domain in which they operate.

1.1.1 Definition of an Ontology

The word ontology was taken from philosophy where it represents the study of the nature of being.

There has been much debate on the exact definition of an ontology when used for knowledge engineering

or artificial intelligence. Nicola Guarino compares the various definitions and the differences in their

meaning in [Guarino 1996]. The most common definitions state that an ontology is a specification of a

conceptualization [Gruber 1996] or that an ontology is the shared understanding of some domain of interest

[Uschold 1996]. This research uses the latter definition, specifically that an ontology defines classes,

functions, object constants, and axioms to constrain meaning of some type of world view of a given

domain. The ontology describes the concepts and relationships used to interact in the domain.

 2

1.1.2 Importance of Ontologies in Multiagent Systems

The specification of agent and system ontologies is important for the communication of the agents

in the system and the future reuse of agent components. The benefits are further explained in the following

paragraphs.

1.1.2.1 Communication

Ontologies are the key for exchanging knowledge between agents. Agent communication

languages such as the Knowledge Query and Manipulation Language (KQML) specify the syntax used to

communicate, but the semantics of the message actually represent the knowledge. Without the mutual

understanding that an ontology provides, the knowledge being passed might be misinterpreted by one of the

agents. This is one of the reasons presented in [Huhns 1997] for the use of ontologies in agent systems.

1.1.2.2 Component Reuse

Ontologies also allow for the reuse of agents. Braga, Mattoso, and Werner argue the importance

of ontologies in the reuse of software components [Braga and others 2001]. Ontologies specify the domain

that the component was designed to work in and influence the connectiveness of the components of a

software system. Components that are designed for separate domains will not be able to directly

communicate with each other and some type of translating component must be built. If the initial designer

has not specified the ontology for the component, future designers will not know if a translator is needed

for the component to properly operate once integrated into a new software project.

1.2 Problem

This research focuses on the need for an engineering-based methodology for building

heterogeneous multiagent systems. Any complete methodology should assist the user in developing the

structural, behavioral, and information models of the system from the initial system requirements. This

research provides such a methodology by extending MaSE to include development and use of information

domain specifications.

 3

1.2.1 Goals

The main objective of this research is to develop a methodology for building heterogeneous

systems using ontologies to specify the information domain. This involves the creation of a methodology

for constructing and using ontologies at the system and component level of multiagent systems.

As alluded to in the previous section, the components of a multiagent system can have a data

model different from the system model. In this case, designers must specify the mapping of the classes in

the ontologies. An example mapping is from an Automobile object to a Car object to illustrate that the two

objects represent the same semantic content. As the number of classes in the data models increase, the

process of mapping every class in the component ontology becomes more tedious and difficult. This

research focuses on assisting the designer with this process by suggesting appropriate mappings.

This related goal involves the construction of a ranking model to evaluate the probability that two

classes represent the same semantic content. This model can then rank every class in the system ontology

based on the possibility of it matching an object from the component ontology. This ranking suggests the

most appropriate mapping for the component class.

1.2.2 Approach

To accomplish these goals, this research first determines the requirements needed by multiagent

systems for representing and using the information domain. MaSE is then extended to include the

construction of ontologies for the system and components and to use the resulting ontologies throughout the

system design. By modifying existing methodologies, this research creates a methodology for building

multiagent system ontologies. Extended MaSE is used to develop a sample multiagent system to ensure the

resulting design documents fully describe the information, behavioral, and structural domains of the

system.

This research develops a ranking model to compare objects using their underlying characteristics

and attributes. These comparisons yield the probability that two objects represent the same semantic

 4

content. This research also develops three implementations of the model, with each comparing the

attributes in a different manner, and tests them against sample data models to determine which

implementation operates with the most precision.

1.3 Thesis Scope

The scope of this research is limited to integrating the use of ontologies into MaSE and agentTool,

the automated assistant for MaSE. The general concepts of developing and using ontologies as an

information domain specification mechanism can be applied to other existing multiagent system

development methodologies. This research addresses the changes necessary to include these concepts in

MaSE and agentTool to demonstrate that ontologies can fulfill the requirements of an information model in

multiagent systems development.

1.4 Thesis Overview

The remainder of this document is organized as follows. Chapter 2 provides background material

on ontologies and the MaSE methodology. Chapter 3 describes the requirements and evaluation criteria for

using domain representation in multiagent systems and how ontologies are used to fulfill these

requirements. It also discusses the appropriate places to introduce domain representation into MaSE and

the steps taken to develop an information retrieval ranking model to assist with mapping component

ontologies. Chapter 4 describes the extended MaSE methodology, including the creation and use of

ontologies in multiagent systems. Chapter 5 describes the exact characteristics used by the ranking model

to evaluate the probability that two objects represent the same semantic concept. Chapter 6 describes an

example system developed with the extended MaSE methodology and agentTool. The results and

experiences from the process of building this example system provide an evaluation of the extended MaSE.

Chapter 6 also discusses the results from the ranking model experiments to determine the accuracy of the

three implementations. Chapter 7 presents the conclusions reached by this research and describes possible

future research topics.

 5

II. Background

Before considering how to integrate the fields of multiagent systems and ontological engineering,

one should first look at each field separately. This chapter is divided into two main parts to discuss

research in the field of ontological engineering and multiagent systems engineering. The first part

discusses the terms used in an ontology, current methodologies for building domain ontologies,

specification languages for ontologies, and existing graphical toolkits to assist with the construction of an

ontology. The second part discusses existing methodologies for building multiagent systems, including

Multiagent Systems Engineering (MaSE) and agentTool, a tool developed to assist in applying MaSE.

2.1 Ontologies

An ontology is an explicit description of objects (or classes) in a domain, properties describing the

features and attributes (or slots) of the object, restrictions on the slots (also known as facets), and relations

between the objects in a domain [Noy and McGuinness 2001]. Classes are the main building blocks in an

ontology. A class can have subclasses that are objects, which are more specific than the superclass. For

example, a Car class could represent all cars, while CompactCar and SportsCar are subclasses of the Car

class.

Slots describe the properties of objects. A car has a color and a Vehicle Identification Number.

These properties can be defined as slots for the Car class. Cardinality, type, and range are the facets of a

slot. Cardinality refers to the number of values a slot can have, while type refers to the types of values that

can fill a slot. String, Number, Boolean, and Instance are common value types [Noy and McGuinness

2001]. The range of a slot is used for Instance value types and specifies which objects in the ontology can

fill that slot. For example, consider owner a slot of the Car class. The cardinality of the slot is one,

because there is only one owner per car. The type would be an Instance type with a range of the Person

class, where Person is an object used to represent people in the ontology.

 6

Terms used in the Unified Modeling Language (UML) of object-oriented software engineering are

similar to those used in ontological engineering. Classes are analogous in each discipline and attributes of

the class are slots. Relationships in UML are specified as Instance slots with facets used to specify the

cardinality of the relationship.

2.1.1 Existing Methodologies for Building Ontologies

Although ontological engineers have designed numerous ontologies, no robust methodology for

constructing ontologies exists. Uschold and Gruninger first proposed a framework for a methodology to

construct ontologies to encourage research into developing a more detailed and scientific approach to

ontological construction [Uschold and Gruninger 1996]. Methontology and the IDEF5 Method have both

been proposed as general-purpose methodologies for building domain ontologies.

Domain ontologies focus on defining all the concepts and relationships in a specific domain.

Engineering projects such as TOVE [Gruninger and Fox 1995] and Enterprise [Fraser and others 1995]

developed ontologies for the Enterprise domain and the designers then published papers describing their

experiences and the process they followed to construct the ontology. The Enterprise domain consists of the

business domain involving business transactions, inventory, sales, etc. The process used in these projects is

abstracted to the framework presented by Ushcold and Gruninger, as discussed in Section 2.1.1.1. This

section describes the three general purpose methodologies used in constructing domain ontologies.

2.1.1.1 Uschold and Gruninger

Although not designed as a complete methodology, Uschold and Gruninger present a skeleton

methodology for building domain ontologies in [Uschold and Gruninger 1996]. This skeleton is a good

starting point for developing a complete methodology. They propose four stages: identify purpose and

scope, building the ontology, evaluation, and documentation.

 7

2.1.1.1.1 Identify Purpose and Scope

The designer must describe why the ontology is being developed as well as the range of intended

users of the ontology. This facilitates ontology reuse by allowing others to quickly see the reason the

ontology was constructed and what information the ontology contains.

2.1.1.1.2 Building the Ontology

With the purpose and scope of the project defined, the user begins to construct the ontology. This

stage captures the domain and then codes the ontology into a representative language.

Capturing the domain develops the ontology by identifying the key concepts and relationships in

the domain, producing precise unambiguous text definitions for each of them, and identifying the terms to

refer to them. A very important part of capture is that the concepts, definitions, and terms need to be

agreed upon. For a closed multiagent system, the designer can force the agents to follow a specific

ontology, but in an open system people must agree to use a specific ontology. Without agreement on the

capture phase, people will not want to use the results.

Coding takes the concepts and relationships along with the definitions and terms for each from the

developed ontology and represents them in some formal language. This involves committing to a meta-

ontology which be used to specify the output from the capture phase. A representation language is chosen

and then the ontology is written in that language.

2.1.1.1.3 Evaluation

This stage reviews the produced ontology to ensure that it is complete and consistent. Work done

by [Gómez 1995][Gómez 1996][Gruninger 1995] can be used to assess the proposed ontology during this

stage. Gómez and Gruninger recommend a global technical evaluation to ensure well-defined properties in

each of the definitions of the ontology.

 8

2.1.1.1.4 Documentation

Skuce [Skuce 1995] points out that one of the main problems in the effort of knowledge sharing is

the lack of adequately documented ontologies. To properly document the ontology, the designer should

note all assumptions about the ontology and the process used to describe it.

2.1.1.2 Methontology

Methontology is based on Fernández’s experience constructing an ontology for the Chemistry

domain and is a “structured” method to build ontologies [Fernández and others 1997]. In each of the stages

of the methodology, the authors encourage evaluation and documentation of all the outputs from the stage.

The first stage of Methontology is specification. This stage produces a specification document,

which includes the purpose of the ontology under development, the level of formality for coding the

ontology, and the scope, characteristics, and granularity of the ontology. Having defined the project, the

analyst begins the knowledge acquisition stage, obtaining information to help produce a set of terms and

their meanings. Any form of knowledge acquisition is allowed. (such as brainstorming, interviews,

reviewing other ontologies, etc.)

Once the designer constructs a set of terms from the information obtained, the conceptualization

stage structures this domain knowledge in a conceptual model to describe the problem and the solution in

the vocabulary developed in earlier stages. The next step is integration, where the ability to integrate any

existing ontology is considered. The authors highly encourage reusing existing ontological definitions. If

the designer finds an ontology to reuse, he should develop an integration document, as shown in Figure 1.

Meta-Ontology The frame-ontology in Ontolingua
Term in your

Conceptualization
Ontology to be reused Name of the term in

the ontology
Kilometer Standard-Units in Ontolingua Kilometer
Centimeter Standard-Units in Ontolingua Undefined
Exponent KIF-Numbers in Ontolingua Expt

Figure 1 Example Integration Document [Fernández and others 1997]

 9

In the final stage, the analyst implements the ontology, coding it into a formal language. See

Section 2.1.2 for a discussion on formal languages typically used for specifying ontologies. An example

chemical ontology is developed using this methodology in [Fernández and others 1999]. The Ontology

Design Environment, discussed in Section 2.1.3 assists the designer in the development of ontologies using

Methontology.

2.1.1.3 KBSI IDEF5

The IDEF5 method is based on an evolving prototype model designed to assist in the creation and

management of domain ontology models [KBSI 1994]. IDEF5 uses the terms kind to refer to classes and

characteristics to refer to attributes of the kinds. The methodology is divided into five activities:

organizing and scoping, data collection, data analysis, initial ontology development, and ontology

refinement and validation.

2.1.1.3.1 Organizing and Scoping

The designer must first establish the purpose, context and viewpoint for the ontology development

project and assign roles to the team members. The viewpoint describes from what perspective the domain

is being designed, e.g. from the project manager’s viewpoint.

2.1.1.3.2 Data Collection

With the project defined, the designer must now determine what information the ontology should

contain. IDEF5 defines three modes of data collection: observation of activities, interviews and analysis

with domain experts, and direct transcription of data from documents from the domain. Six different types

of forms are used to catalog the source material and term pool. The term pool is similar to a list created by

brainstorming; it represents meaningful terms relevant to the development of the ontology. These terms

might become kinds, relations, or characteristics in the ontology.

 10

2.1.1.3.3 Data Analysis

The goal of this step is to analyze the source material and term set from the previous step and

construct an initial characterization of the ontology. Listing objects of interest in the domain is the first part

of this characterization. The viewpoint and context of the project, as determined in the organizing and

scoping activity, guides the level of detail for specifying objects. The team should then look for systems of

objects that work together to accomplish common goals.

2.1.1.3.4 Initial Ontology Development

The Developing Initial Ontology activity develops proto-kinds, proto-properties, proto-attributes,

and proto-relations. The proto simply refers to the fact that these are the first attempt at specifying these

concepts in the ontology. IDEF5 provides a visual representation of the ontology so that the ontology can

be developed graphically.

2.1.1.3.5 Ontology Refinement and Validation

The designer must now ensure that the developed ontology contains all domain information. This

activity completes the design process by validating and refining the proto-concepts in the developed

ontology. The analyst should make instances of the proto-kinds using examples from data in the domain.

Any information from the domain that cannot be represented by a proto-kind should be analyzed to

determine if it is needed in the ontology. If it is, then a new or expanded kind must be developed to

incorporate the information. Finally, the kinds should be checked to ensure there are no duplicates.

Relations are verified in a similar procedure to ensure that there are no missing, duplicate, or contradictory

relations. The ontology can then be changed from the IDEF5 graphical schematic language to the IDEF5

elaboration language. The elaboration language is a structured textual language with the full power of first-

order logic.

 11

2.1.1.3.6 Comparison to Methontology

IDEF5 is a more mature methodology in that its steps are more detailed than those in

Methontology. The record keeping in IDEF5, however, may become cumbersome to the developer. When

collecting possible terms, the methodology requires the designer to assign each term a tracking number,

along with information regarding how the term was produced. This level of tracking may be appropriate

for critical system development, but some designers may find it a little too involved.

2.1.2 Specification Languages for Ontologies

Each of the methodologies described in the previous section describes the encoding of the

ontology into a formal language. LOOM[MacGregor 1991], Epikit[Genesereth 1990], Algernon[Crawford

and Kuipers 1989], CycL[Lenat and Guha 1990], and KEE[Fikes and Kehler 1985] are all languages that

can be used to represent ontologies, but Ontolingua[Gruber 1992] is used most frequently and

DAML+OIL[van Harmelen and others. 2001] is the most recently developed language. Ontolingua was

built as a language used to translate between the other specification languages. It consists of forms that

allow definition of classes, relations, objects, functions, and theories based on a standard notation and

semantics called Knowledge Interchange Format (KIF) [Genesereth 1998]. The syntax of Ontolingua

definitions consists of a name, argument list, and a documentation string, followed by a set of labeled KIF

sentences. To define a class, a designer uses the form:

(define-class class-name (?instance-variable)

“documentation string”

:def or :iff-def KIF-sentence

:constraints KIF-sentence

:sufficient KIF-sentence

:equivalent KIF-sentence

:default-constraints KIF-sentence)

:axioms KIF-sentence

 12

The benefits of Ontolingua are its expressive power and the large amount of already constructed

ontologies [Ontolingua]. DAML+OIL is part of the DARPA Agent Markup Language Program designed

to provide constructs for creating ontologies and marking information on the web so that it is machine

readable and understandable. DAML+OIL is based on the Extensible Markup Language (XML) [W3C

1998] Uniform Resource Identifiers(URI) [Berners-Lee and others 1998], and the Resource Description

Framework(RDF) [W3C 1999]. The benefit of DAML+OIL is the ability to use XML instead of predicate

logic to specify the ontology. There is also a repository of existing DAML+OIL ontologies that can be

downloaded [DAML+OIL]. To define a class, the designer would use the following form:

<daml:Class rdf:ID=”class-name”>

 <rdfs:label>class-name</rdfs:label>

 <rdfs:comment>

 A Comment

 </rdfs:comment>

</daml:Class>

2.1.3 Graphical Toolkits for Building Ontologies

Graphical toolkits allow the designer to graphically view the information being encoded into the

ontology, thereby reducing information overload. The Ontology Design Environment (ODE), Protégé

2000, and OILEd exist as free software that can be used to develop ontologies. ODE is designed to assist

in the development of ontologies using the Methontology methodology. OILEd is a program that allows

users to develop ontologies and specify them in the DAML+OIL language.

Protégé 2000 is the most robust of the three programs because it allows for plugins to be

downloaded and inserted into the program. These plugins can be used to import and export the ontology

into different ontology specification languages and ontology visualization programs. A screen capture of

Protégé 2000 is shown in Figure 2.

 13

Figure 2 Protégé 2000 Main User Interface

The program has tabs that allow the designer to look at the objects and slots in the ontology. The

objects are ordered by their taxonomy, that is by their subclass/superclass structure. When an object is

clicked, the program displays the information from the object, including the slots for the object and the

facets on the slots.

2.2 Multiagent Systems

An agent is anything that can perceive its environment through sensors and act upon the

environment through effectors [Russel and Norvig 1995]. An intelligent agent is an agent that takes the

best possible action in a situation in order to accomplish its goals. Determining what exactly characterizes

the best possible action splits the field of artificial intelligence into those who feel intelligent agents should

be rational and those that prefer agents to act like humans. The distinction between the way the agents

operate is not important for this research.

 14

A multiagent system consists of multiple intelligent agents interacting to accomplish their goals.

In Multi-Agent Systems, Ferber defines a multiagent system as a system composed of the following

elements:

• An environment, E.

• A set of objects, O. These objects can be perceived, created, modified, and destroyed by
agents.

• A set of agents, A, representing the active entities of the system. (A ⊆ O)

• A set of relations, R, that link objects to each other.

• A set of operations, Op, that allow the agents in A to interact with the objects in O.

This research is concerned with goal-based multiagent systems. Each multiagent system has a set

of goals that the agents in the system are designed to obtain. The exact behavior of the various agents is

determined during the analysis and design of the multiagent system based on the goals required by the

system specification.

Interest in multiagent systems has increased as resources become more and more distributed.

With the advent of the Internet, many problems have become distributed so much that a centralized solution

will no longer work. Some problems such as air traffic control naturally lend themselves to multiagent

systems due to their distributed nature. Various methodologies have been developed to provide an

engineered approach to the development of multiagent systems. Three such methodologies are discussed in

the next sections.

2.2.1 Multiagent Systems Engineering Methodology

The Multiagent Systems Engineering (MaSE) methodology has been a topic of the Agent

Research Group at the Air Force Institute of Technology for the last few years. Research has focused on

developing a robust methodology for constructing multiagent systems. MaSE divides the development of

 15

multiagent systems into analysis, design, and implementation phases [DeLoach and others 2001]. MaSE

consists of three steps in the analysis phase and four steps in the design phase. The phases and their steps

are shown in Figure 3. The implementation phase uses the documents from the previous phases to program

the system into code.

Creating
Agent
Classes

Requirements

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining
Roles

Assembling
Agent
Classes

System
Design

Applying
Use Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

Figure 3 MaSE Phases, Steps and Models

2.2.1.1 Analysis Phase

The analysis phase is concerned with establishing a set of roles and assigning tasks to those roles

to describe the system requirements. The Capturing Goals step consists of transforming the initial system

specification into a goal hierarchy. Goals are used to reflect the purpose of an agent’s actions. This step

 16

allows the designer to organize the goals that the system needs to accomplish. Figure 4 is an example of

the output from this step.

Figure 4 Example Goal Hierarchy Diagram [DeLoach 2001]

The basic scenarios that the system should perform are captured in the Applying Use Cases step.

Use cases are created and then transformed into sequence diagrams. The final step of analysis uses the

outputs from the first two steps to create roles and assign the tasks to be performed by those roles in the

system. Tasks are associated with each role to describe the behavior that the role must have to accomplish

its assigned goals. Concurrent tasks are shown graphically using a finite state automaton.

Figure 5 is an example of a Role Model in MaSE and Figure 6 is an example Concurrent Task

Diagram. Each role is associated with at least one goal from the goal hierarchy. Transitions in the

concurrent task diagrams follow the syntax trigger [guard] ^ transmission(s). This syntax represents that a

transition is enabled only when the event trigger occurs and the condition guard evaluates to true. When

the transition is executed, the specified transmission(s) will be executed by the role. Once in a state, the

task remains in that state until all actions defined in that state have been completed and a transition out of

the state has been enabled.

 17

Figure 5 Example MaSE Role Model [DeLoach and Wood 2000b]

Figure 6 Example Concurrent Task Diagram [DeLoach and Wood 2000b]

2.2.1.2 Design Phase

Once the requirements for the system have been specified, the design of the multiagent system

begins. The first step in the design phase is Creating Agent Classes, where the roles are assigned to

 18

different agent classes. This step creates an Agent Class Diagram that shows the classes in the system and

the conversations between classes. These conversations are defined in the Constructing Conversations step,

where finite state automata are used to show the states in a conversation.

Figure 7 is an example Agent Class Diagram with Figure 8 describing one of the conversations

between agents in the class. Each conversation has two diagrams: one for the initiator and one for the

responder of the conversation.

Figure 7 Example Agent Class Diagram [DeLoach 2001]

Figure 8 Example Conversation Diagram [DeLoach 2001]

 19

The third step in design, Assembling Agent Classes, defines the components of the architecture.

The final step of System Design creates a Deployment Diagram to show the amount and location of each

type of agent in the system. The outputs from the design steps describe the actions and conversations used

in the multiagent systems. The semantics of the parameters passed in those conversations are not currently

defined in the MaSE process.

2.2.1.3 agentTool

agentTool is an automated assistant for the MaSE methodology [DeLoach and others

2001][DeLoach and Wood 2000a]. The program has tabs for each of the outputs from the phases in MaSE,

and currently allows for the automatic generation of design documents based on the role models and task

diagrams. This automatic generation uses transformations from research by Clint Sparkman [Sparkman

2001]. Once the designer specifies the system in agentTool, the program can output Java code for the

system. Because ontologies are not incorporated in the MaSE methodology, the code produced from

agentTool classifies all parameters as Java Objects. The designer must then go through and change the

declarations to the appropriate data structure used to represent the semantic concepts of the parameters.

Including the construction of the system ontology removes the necessity of this step, as the parameters can

automatically be specified as the correct type.

2.2.2 Additional Multiagent Systems Engineering Methodologies

This section discusses two other methodologies for agent-oriented software engineering. Gaia is

one of the earliest developed agent-based software engineering methodologies and MESSAGE is one of the

newest methodologies. As MESSAGE was developed to improve on Gaia, this section first discusses the

Gaia methodology.

2.2.2.1 Gaia

Gaia is specifically tailored for the analysis and design of agent systems. [Wooldridge and others

2000] The authors wanted to develop a way to describe an agent’s autonomous behavior and agent

 20

interactions, which could not be specified using traditional software development techniques, such as

object-oriented development. Figure 9 shows the various models of the methodology and the relationships

between them.

Requirements
Statement

Roles Model Interactions
ModelRoles Model Interactions
Model

Agent Model Services
Model

Acquaintance
ModelAgent Model Services

Model
Acquaintance

Model
Figure 9 Relationships Between Gaia Models

Figure 10 Example Gaia Role Schema [Wooldridge and others 2000]

 21

Permissions describe the rights of the role to access variables in the system. For example, the

CoffeeFiller may read the variable coffeeStatus and change the variable coffeeStock. The permissions are

key to the role accomplishing its responsibilities. In the above example, the CoffeeFiller is responsible for

performing the activity CheckStock and performing the protocols Fill, InformWorkers, and AwaitEmpty,

while ensuring the coffeeStock is always greater than zero. Activities are underlined and represent private

actions while the protocols represent interactions with other roles.

The Interaction Model describes each of these protocols in further detail. Figure 11 graphically

represents the Fill protocol. The diagram indicates that the Fill protocol is initiated by the CoffeeFiller role

and involves the CoffeeMachine role. The protocol involves filling the supplied coffeemaker and

informing the CoffeeMachine about the value of coffeeStock. Each protocol has a purpose, initiator,

responder, inputs, outputs, and processing functions. Figure 11 graphically illustrates all of these attributes,

in a very non-intuitive manner.

Figure 11 Example Gaia Interaction Model

2.2.2.1.1 Design

Once the roles and the interactions between them are specified, the designer then transforms the

models into a level of abstraction such that traditional design techniques can be applied to implement the

 22

agents. This is the goal of the design phase, which consists of three models: Agent, Services, and

Acquaintance.

The Agent Model describes the structural model of the system, defining the agent types in the

system and the roles performed by each type. The model also includes the number of actual instances of

each agent type in the implemented system.

Once the roles are assigned to agent types, the Services Model is built to identify the functions of

the agents. The functions are derived from the activities performed by the roles assigned to an agent. Each

identified service is described in terms of its inputs, outputs, pre-conditions, and post-conditions. The high

level behavior of each service is defined, leaving the implementation details for later specification by the

developers.

The authors describe the Acquaintance Model as the simplest model in the methodology

[Wooldridge and others 2000]. This research considers it the least useful model, defining the

communication links that exist between the agent types. The problem is that the model does not define the

conversations or messages sent between the agent types, only the fact that some type of communication

exists between the two. The model is represented using a directed graph to show the communication flow,

to allow the designer to identify any potential bottlenecks in the system.

The system is now described in enough detail to implement the system using traditional design

techniques. Gaia represents a good stepping-stone for a complete methodology for building multiagent

systems, as it defines the early design stages but finishes without the system fully defined. However, a

complete methodology must provide the designer with a complete design specification. MaSE provides

greater details regarding each of its steps and finishes with a lower level system design than Gaia.

2.2.2.2 Methodology for Engineering Systems of Software Agents (MESSAGE)

MESSAGE is a two-year long project to build upon Gaia and other early multiagent engineering

methodologies and incorporate existing UML development approaches [Evans and others 2001]. In this

 23

manner, MESSAGE guides the user further along in the design, using UML instead of leaving the analyst

to finish using some other technique, as the Gaia methodology does. MESSAGE thus produces a lower-

level design, and is more useful for development than Gaia.

MESSAGE defines five views to describe the data, structural, and behavioral models of the

system: organization, goal/task, agent/role, interaction, and domain view. The organization view shows

the agents in the system and the relationships between them. The goal/task view uses UML Activity

Diagram notation to describe the states that an agent goes through to perform tasks to accomplish goals.

These goals are assigned to roles in the agent/role view. This view describes what roles an agent performs

and what the goals of each role are. To accomplish the goals, the agents have to interact, which is behavior

described in the interaction view. For each interaction, this view describes the initiator, collaborators,

relevant information supplied, and the event that triggers the interaction. The final view, domain, defines

the information domain of the system so that the appropriate objects can be passed during interactions. The

methodology, however, does not address methods to construct the domain view and how to transform the

view into an ontology.

2.2.2.2.1 Analysis

Because the models are interconnected, the methodology recommends starting analysis using three

parallel streams of development that are then reconciled together. One stream creates the entities and

identifies the interactions between the entities in the organization view. The second stream identifies the

goals, tasks and the relationships among them in the goal/task view. The last stream identifies the

information domain entities in the domain view. These three streams provide an initial set of concepts that

are then linked together in the different views and described in detail.

2.2.2.2.2 Design

Once the analyst has fully described the views of the system, he begins the design phase to

produce computational entities to implement the multiagent system described in the analysis phase.

 24

MESSAGE describes two methods of designing the system, without recommending either one. As such,

the methodology leaves the user to choose a design strategy appropriate for the situation. One interesting

item is that one of the design methods discussed in [Evans and others 2001] involves creating use cases and

sequence diagrams, a step which is an analysis step in most software development methods.

MESSAGE provides a set of analysis and design documents that describe the system in greater

detail than the Gaia documents. MESSAGE also uses familiar UML modeling techniques to improve the

information visualization of the analysis and design documents. However, one difficulty with using the

methodology is the parallel development process. Designers must define five different views in a

simultaneous process. The iterative process of MaSE allows the designer to perform the same tasks as in

MESSAGE, but places the analysis and design process in a step-by-step method than can be iterated

through in a manner that may be easier for users to follow.

 25

III. Problem Approach

This research hypothesizes that ontologies developed to represent the information domain of a

multiagent system, when coupled with methods formalizing the behavior of multiagent systems, provide

design documentation that describes the actions of the agents and the view of the domain necessary to

generate a properly functioning system. To evaluate this hypothesis, this research first determines the

requirements needed to represent and use the information domain of a multiagent system. These

requirements are discussed in this chapter along with the type of ontology used to specify the information

domain in MaSE. Finally, this chapter presents a method for constructing ontologies for multiagent

systems based on existing methodologies for building domain ontologies. This ontology building method

is integrated into MaSE, along with additions to use objects in the data model, forming a complete analysis

and design methodology. This chapter presents a discussion of each of these steps.

3.1 Requirements for Domain Representation in Multiagent Systems

3.1.1 Requirements for Information Domain Models in Multiagent Systems

To adequately specify the domain of a multiagent system, a representation must meet certain

requirements. These requirements are based on effective software engineering models and how domains

are used in multiagent systems. This section describes the requirements that ensure the domain

representation is adequately specified in the design of a multiagent system.

The first requirement is that the representation must specify the objects in the domain. The names

of the objects in the domain should be unique, and a description of each object should be included. The

description is used to help future designers understand what the original developers of the representation

meant for the object to semantically represent.

 26

Once the objects are listed, the properties of those objects must also be specified. The properties

further describe the semantic content of the object. Properties, such as has_Color, are often represented as

attributes of an object, but that is an implementation decision.

After the object’s characteristics are specified, the representation must then specify the

relationships between the objects. The relationships show how objects are related and how they interact in

the domain. Relationships are frequently represented as attributes of the object. An example relationship is

Works_for that exists between a Laborer and Manager Object. Works_for illustrates that a Laborer must

work for a Manager, thus restricting the possible interpretations of the objects.

Axioms define further constraints on the domain objects that cannot be described as properties or

relationships. For example, a disjunct axiom between a Beast and Human object would be used to

represent that, although both are a Thing object, something cannot be a Human and a Beast. Other axioms

can be specified using first-order logic. The axioms must describe all restrictions on the domain objects

that the system uses during system execution. If no type of inference or knowledge-based system is used in

the multiagent system, the axioms in a domain representation can be omitted. Axioms specify the

preconditions required for proper system execution.

The domain representation must also contain metadata about the domain itself. This metadata aids

future developers in understanding the objects, properties, relationships, and axioms. The designers

develop the representation to meet a certain goal, and to fit the needs of the system being developed. As

such, it is important to describe the system under development. The metadata also includes information for

software maintenance such as the name of the representation, names of the original developers, version

number, date of creation, etc.

Each specification regarding the domain, objects, relationships, axioms, and metadata must be

clear, consistent, and concise. This is necessary so others can easily comprehend the documented aspects

of the software system. Clear requires the use of unambiguous terms to describe the domain. If a term can

have multiple definitions, the surrounding description should ensure that future readers can easily

 27

understand which definition is desired. Concise balances out clear, by describing the domain with the least

amount of terms necessary. The description of each object should be long enough to aid understanding

without being so perfuse as to hinder the future readers of the domain representation. The system should be

concise in the number of terms used to describe the objects, as well as the number of objects, properties,

relations, and axioms specified for the domain. Consistent requires designers to specify objects in the same

level of detail. Axioms are consistent if they are not contradictory. If the objects and axioms are not

consistent, the system may malfunction and future developers may not understand the domain

representation.

The final requirement is that the representation should be built to only include information that is

used by the system. This aids reuse of the software system, because the domain representation acts as a

type of precondition for the proper execution of the system. In order to reuse a multiagent system, the

larger system must either have the same view of the domain, or the designer must provide a mapping

between the representations of its components. If a multiagent system over-specifies its domain, future

reuse could require additional work mapping to objects in the representation that the component system

never uses.

3.1.2 Requirements for Information Domain Use in Multiagent Systems Development

Along with the requirements on the domain specification, there exist certain criteria that a

methodology for developing a multiagent system should meet when describing the information domain.

This section discusses each of the criteria and its importance.

A methodology for designing multiagent systems should include a step to allow for the

specification of the information domain of the system. Just as it is important to specify the data model in a

traditional software development process, the data model for a multiagent system must also be specified.

The agents in the system interact by passing messages and these messages frequently involve passing

parameters. These parameters are objects of some sort, and without an information domain specification,

the methodology cannot address the information contained in these parameters.

 28

The development of this system data model should occur at a logically appropriate time in the

multiagent system design methodology. The development should occur prior to describing any information

passing by the agents, since the data models are used in specifying the types of objects passed. The

construction of the data model should also occur after the designer evaluates the problem domain enough

so that he knows what information must be included in the data model.

The methodology used to create the information domain specification should be an iterative

process to match the iterative nature of software development. If the designer discovers missing or

inappropriate information later in the system development, he should have the ability to modify the

information domain specification appropriately.

Once the system data model is constructed, the multiagent system design methodology should

allow the analyst to specify objects from the data model as parameters in the conversations between the

agents. To ensure the proper functionality of the multiagent system, the designer must be able to verify that

the agents have the necessary information required for system execution. Since the information is

represented in the classes of the data model, the design of the methodology must show the classes passed

between agents to allow the designer to verify the proper flow of information in the system.

Along with building a system data model, the multiagent system design methodology should allow

agents to have their own individual data models. By addressing this capability, the methodology allows for

the development of heterogeneous systems. The requirement for a multiagent system to integrate with

existing systems often creates such heterogeneous systems. With the various data models comes the

requirement to show how the information models relate.

The methodology should provide the ability for the designer to show the relations between the

data models in some manner. Showing the relationships indicates to the code developers what information

from one model is required to create objects in the other model. Without describing these relations, the

developers may not be able to code the conversations between two agents with separate data models, as

each agent uses different classes to describe the information.

 29

3.2 Methodology for Including the Information Domain in MaSE

This section discusses the approach of this research to fulfilling the criteria for building and using

information domain specifications in multiagent systems. Ontologies will be used to specify the

information domain, requiring extensions to MaSE to address the development and use of the developed

information model. The rest of this section discusses the type of ontologies used, the methods for building

them, and the necessary additions and modifications to MaSE.

3.2.1 Structure of an Ontology

Chapters I and II outlined the various definitions of an ontology. One consequence of varying

definitions is that the structure of an ontology can vary from application to application. A comprehensive

ontology structure is devised by performing a union on the capabilities of the various structures discussed

in Chapter II. The resulting structure, represented by the UML model in Figure 12, contains the expressive

power to represent any of the ontologies presented in ontological research. Each part of the structure is

discussed in this section.

The Ontology object contains the metadata about the ontology. This data contains the name of the

ontology, the designers, version number, the language the ontology was developed in, an identifier, and the

description of the ontology. The description field is designed to explain the purpose for which the ontology

was originally designed and any other information the designers feel that people should know about the

ontology. The ontology is composed of a collection of classes (or objects) and axioms.

Axioms allow the ontology to describe characteristics of objects using first order logic. The

Axiom object is an abstract class from which the various types of axioms inherit. The three types of axioms

identified are: equivalence, disjoint, and covered. Equivalence is self-explanatory: it allows for the

ontology to specify that two classes represent the same semantic idea in the ontology. This type of axiom

occurs when two ontologies are imported to form a larger one. The two imported ontologies can use

different objects to represent the same semantic ideas, so designers use equivalence axioms to illustrate the

similar objects from the imported ontologies. Two classes are disjoint if a domain object cannot

 30

simultaneously belong to both classes. As an example, consider the herbivore and carnivore classified

objects with a disjoint axiom between them. This indicates that an animal can be a herbivore or carnivore,

but can not be both. The covered axiom allows for restrictions and other characteristics to be specified for

an object using first order logic or a natural language. It consists of a list of statements (coverers) and the

class that the statements restrict or describe. For example, a covered axiom for an adult_elephant class

would be that the age attribute has to be between 5 and 8 years of age. Any elephant younger would be

considered a youth_elephant and any elephant older would be a senior_elephant, and appropriate covered

axioms would be defined for those objects. Designers use these axioms to specify additional information

about the classes.

Disjoint
Disjoints

Covered
Covered
Coverers

Equivalence
Equivalents

Slot
Name
Description
Values
ValueType
Allowed_Classes
Minimum
Maximimum
Inverse_Slot
Required
Multiple
At_Least
At_Most

Class
Role
Name
Description
Slots
Constraints

1..n

0..n

1..n

0..n

Axiom

Instance
Instance_Name

0..n1 0..n1

Ontology
Title
Designer
Description
Version
Identifier
language

1..n

1

1..n

1

0..n

1

0..n

1

0..n

1

0..n

1

Figure 12 Structure of an Ontology

 31

Classes are the main building blocks of an ontology. The structure shown in Figure 13 describes

the structure of a Class object. A class can be abstract or concrete, which is the role of the class. An

abstract class cannot be instantiated and is used to group related classes under one class that defines the

similarity between the classes.

Class
<<St ring>> Role
<<St ring>> Name
<<St ring>> Descript ion
<<List>> Slots
<<List>> Cons traint s

Figure 13 Structure of a Class in an Ontology

The name and description fields are used to uniquely describe the class and what it represents in

the domain. The class has a collection of slots (or attributes) and a collection of constraints. Constraints

define the axioms that apply to the class. Slots describe the various attributes of the class in the domain.

These attributes represent properties, characteristics, and states of the object or relationships between

classes in the domain.

The structure of a Slot is illustrated in Figure 14. Each slot has a name and description, similar to

a class object in the ontology. The ValueType field defines the type of slot. The most common types of

slots are: Number, Boolean, String, Instance and Enumerated. Enumerated slots have a list of allowed

values. An example would be Color as a slot with the enumerated values red, blue, or green. These

enumerations are saved as a list in the Values field for the slot. An instance slot shows relationships

between classes in the ontology. An instance slot can have one or more specified classes from the ontology

as values. The allowed values of an instance slot are saved in the Allowed_Classes field. An example of

an instance slot is has_Parent. This slot belongs to a Person class and the Allowed_Classes field shows

that the slot can point to any instance of a Person. The instance slot has_Parent illustrates that there is a

 32

relationship that can exist between two Person objects, where one class is the parent of the other. Other

information such as the minimum and maximum number of classes that the slot can contain or the

minimum and maximum value for an integer or float slot can be specified. The designers can also set the

Required field to specify whether the slot is required for a class. The Inverse_Slot shows the inverse

relationships in the ontology. For example, the slot has_Parent could be defined to specify the parent of a

Person object. The inverse for this slot would be has_Child slot.

Slot
Nam e
Description
Values
ValueType
Allowed_Classes
Minim um
Maxim im um
Inverse_Slot
Required
Multiple
At_Least
At_Most

Figure 14 Structure of a Slot

The classes, their axioms, and their instantiations all combine to form an ontology. A

specification of an ontology contains these components and must be concise, complete, clear, and

consistent.

3.2.1.1 Characteristics of an Ontology

The methodologies for building domain ontologies described in Chapter II contain an evaluation

section that examines the ontology to ensure it is concise, clear, consistent, and complete. These

characteristics ensure that the ontology is well defined for future reuse and comprehension. The terms

concise, clear, and consistent represent the same concept in ontologies as in the requirements for domain

representation discussed earlier.

 33

To be concise requires that every piece of information in the ontology, such as names and

definitions of classes, contain the least amount of information necessary for describing the domain. This

characteristic is balanced by the necessity for the ontology to be complete.

All terms used in describing the ontology must be clear. The terms should be unambiguous and

easily understood by others. This characteristic is key to reuse as future developers will not reuse

ontologies that contain aspects that cannot be easily understood.

Another key to reuse is the consistency of the ontology. Consistent ontologies provide no

contradictory or overlapping terms. This is particularly important for ontologies that are frequently used in

knowledge-based systems that contain forms of machine reasoning. If reasoning over the ontology yields

contradictory results, the system will not perform well.

To be complete requires that the ontology describe the domain to the level of granularity specified

by the designers in the metadata description of the ontology. This definition does not mean that everything

in the domain should be covered. For example, when constructing an ontology based on the domain of Air

Traffic Control, the ontology should not describe an Airplane object as a collection of Nuts, Bolts, and

Aircraft_Parts. Although those classes are the building blocks of an Airplane, they are not necessary to

describe the domain in terms of scheduling and directing the airplanes in flight. An ontology is complete

when it covers all objects in the detail necessary for the designer’s purpose.

3.2.2 Methodology for Building System Ontologies

So designers can use ontologies to specify domain representations in multiagent systems, an

appropriate methodology for developing ontologies must be specified. The existing methodologies for

designing domain ontologies are built to describe everything about a specific domain. This is not

appropriate for multiagent systems because one of the requirements is that designers only specify

information required for proper system execution. The existing methodologies work for multiagent

systems after slight modifications.

 34

Reinventing the wheel, by developing a whole new methodology, does not make sense, because

many years of research have gone into developing the domain ontology methodologies mentioned in

Chapter II. Instead, this research extracts the main parts common to the methodologies. Thus, the

important parts of the methodologies are included without the administrative overhead, such as tracking all

possible classes or documenting every little step, as is the case in the IDEF5 method [KBSI 1994].

The resulting methodology is an iterative process that matches the iterative nature of multiagent

system design. Methodologies such as MaSE allow designers to iterate through various steps, thus

providing more flexibility than a sequential step-by-step methodology. Changes can be made to previous

steps without having to start the whole process again.

Four main steps can be extracted from the existing methodologies for building domain ontologies.

These steps are used as the foundation to create a methodology to construct ontologies for use in multiagent

systems. The four steps are:

• Define Purpose and Scope of Project

• Collect and Analyze Data

• Construct Initial Ontology

• Refine and Validate Ontology

The remainder of this section is devoted to briefly discussing these steps and the general activities

that fall into them. Chapter IV presents detailed descriptions of each step, along with directions, principles

and hints for each phase of the ontology development process.

3.2.2.1 Define Purpose and Scope of Ontology

As discussed earlier, the metadata for an ontology should describe the purpose and scope of the

project. This data aids future designers in understanding the ontology based on the goals for which it was

developed. This phase describes the purpose of the ontology based on the system requirements and

 35

software engineering documents that are used to develop multiagent systems. For example, when building

a multiagent system to play poker in a distributed network, the purpose of the constructed ontology is to

describe the objects in the poker domain. The scope of the system is to describe all objects necessary to

permit the development of a distributed poker game.

3.2.2.2 Collect and Analyze Data

This step involves analyzing data in the problem domain along with the system requirements to

discover terms that may later become part of the ontology. There are many methods with which the

designer can extract candidate terms for the ontology. Sample methods include: brainstorming, interviews

with users, and reviewing project documents. The collected terms are analyzed to determine those that are

needed for proper execution. Those not required are removed from the list. The remaining terms are used

as possible classes, relations, and characteristics for the initial ontology. For the poker example, the list of

possible terms includes: hand, cards, player, bet, fold, raise, call, money, and pot.

3.2.2.3 Construct Initial Ontology

The possible terms are organized into an ontology that describes the nature of the domain needed

by the system to meet its requirements. The methodology provides hints to the designer to help determine

proper classes, properties, and relationships based on the terms collected in the previous step. The

construction step also addresses the use and integration of previously built ontologies. In the poker system,

the initial ontology could define a player object that had money and a hand of cards along with the other

necessary system classes.

3.2.2.4 Refine and Validate Ontology

This final step is an iterative process that occurs throughout the development of a multiagent

system. The initial ontology can be validated through the creation of instances of the objects in the

ontology to ensure the system can execute properly using the data. Throughout the multiagent system

development process, refinements to the ontology may arise. Within this step, the designer can modify the

 36

ontology to meet added system requirements at any point in the multiagent system development. To

validate the poker example, the designer would step through the use cases to ensure they can be completed

using the data objects in the ontology. As the designer continues to build the system, changes to the

ontology are made as necessary.

3.2.3 Methodology for Building Component Ontologies in Multiagent Systems

Along with developing the system ontologies, the designer must develop the component ontology.

The component ontologies specify the data models of any agents that do not have the same data model as

the system ontology. Agents built to interact with legacy systems or reused from previous development

projects may not use the same data model as the system. Developing the ontologies for the agent

components is analogous to the development of the system ontology; the scope is just at a lower level. The

only added step in creating component ontologies is to map the terms in the ontology to the corresponding

terms in the system ontology. If the component ontology is the same as the system ontology, no mapping is

required. If not, each component term should match to a term in the system ontology. This allows the

developers to see how the designers want the systems to match up in terms of the system data.

3.2.4 Integrating the Construction of Ontologies into MaSE

The steps in MaSE contain detailed explanations, descriptions, and examples not found in either

the Gaia [Wooldridge and others 2000] or MESSAGE [Evans and others 2001] methodologies. For this

reason, this research integrates ontological engineering into MaSE. The methodologies built to construct

and use ontologies can work in Gaia and MESSAGE by integrating them in a manner consistent with the

models of each methodology. This research shows the integration of the concepts into MaSE as an

example implementation of integrating ontological engineering into multiagent systems development

methodologies.

To integrate ontological engineering into MaSE, this research introduces a new step in which the

designer constructs the ontology for the system in the MaSE analysis phase. This research determined the

 37

step should occur after the creation of use cases. This placement allows the designer to use terms from the

goal hierarchy, use cases, and sequence diagrams as possible concepts in the ontology and the resultant

ontology can be used to create tasks in the Refining Roles step of MaSE. Tasks often indicate parameter

passing, so the step is placed after the construction of the ontology to allow the designer to specify the type

of the parameters as classes from the ontology. The extended MaSE diagram is shown in Figure 15.

Creating
Agent
Classes

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining
Roles

Assembling
Agent
Classes

System
Design

Applying
Use Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Requirements

Building
Ontolgy

System
Ontology

Analysis
Design

Figure 15 Extended MaSE Methodology

It is possible to place the ontological construction before the use cases step to allow the actors in

the sequence diagrams to pass objects from the ontology. With this placement, however, the designer

cannot use the sequence diagrams as a tool in validating the ontology. By constructing the ontology after

the sequence diagrams are created, the developer can ensure that the ontology describes the required

information for the sequence of events in each of the sequence diagrams. If the ontology is missing

 38

information or contains extraneous information, the developer can take the appropriate actions to fix the

ontology. The benefit of being able to pass objects from the ontology in the sequence diagrams is

outweighed by the benefit of using the diagrams to validate the ontology.

The agent architecture step is modified to include the ability for designers to specify ontologies for

the different agent components and to map them to the overall system ontology. The ranking model

discussed in Section 3.3 assists the user with mapping the various ontologies. This research modifies the

Refining Roles and Constructing Conversations steps, which involve message passing, to include

specification of the types for the parameters passed in the messages. When combined with the additional

step of constructing the system ontology, these extensions augment MaSE to include domain

representation. The extended MaSE is presented in more detail in Chapter IV.

3.2.5 Alternatives to Ontologies

One alternative to using ontologies for domain representation in multiagent systems is the use of

Unified Modeling Language (UML) data models. Although UML is a feasible alternative, it minimizes the

benefit obtained by using the existing libraries of constructed ontologies and services for ontologies that

currently exist in agent architectures, such as FIPA [FIPA TC B 2001]. In an open system environment,

multiagent systems involve the interaction of agents that may not know anything about the domain

representation of the other agents in the system. FIPA provides an ontology lookup service that allows

agents to request the ontology used by other agents. The existing libraries and ontology lookup services

allow for the agents to obtain knowledge about the domain representations and to allow them to

communicate. The use of ontologies for domain specification in this research enables these benefits, while

such services or libraries are not widespread for sharing UML models.

3.3 Geometric Score Reduction Model for Ranking Object Similarity

Mapping the component ontologies to the system ontology can be a monotonous and difficult task.

As the number of objects in the ontologies increase, the user must map and distinguish between more

 39

objects. To assist the user with this endeavor, this research developed an Information Retrieval ranking

model that ranks the objects in the component ontology based on their similarity to a specified object in the

system ontology.

In Information Retrieval, a user needs a certain semantic content in a collection of documents.

The ranking model of the information retrieval engine ranks the documents based on their similarity to the

semantic content that the user is trying to find. When mapping an object from an ontology, the user looks

for the object that represents the same semantic meaning in the target ontology. The Geometric Score

Reduction Model developed in this research ranks the objects in the target ontology based on each object’s

probability of representing the same semantic concept as the selected object. The probability is set as the

similarity score for the object and used to sort the objects from highest to lowest for presentation to the

user.

3.3.1 Determining the Similarity Score of an Object

The ranking model uses the fact that the probability of two objects matching is the same as the

probability that all characteristics of the objects match, represented by Equation 1. The term match will

represent the fact that two items (objects, properties, or characteristics) represent the same semantic

concept in a domain. This research considers the name, attributes and role of an object as appropriate

characteristics to use when comparing objects. Thus, the equation for computing the probability of

matching objects is transformed, as shown in Equation 2.

(1)
)...

...()(

,2,1,2,1

1,21,121

nnii sticCharacteristicCharacteristicCharacteristicCharacteri
sticCharacteristicCharacteriPObjectObjectP

=∩∩=
∩∩===

(2)
)

()(

21

212121

RoleRole
AttributesAttributesNameNamePObjectObjectP

=
∩=∩===

If matching characteristics are considered independent from one another, the probability of the

objects matching is computed as the product of the probabilities that each characteristic matches. The

 40

characteristics are clearly not independent, because if the names of the objects match, there is more chance

that the other characteristics will match, too; however, the correlation between the events will be constant

among each object compared in the target ontology, so we can ignore the correlation altogether. Thus, the

probability of two objects matching can be computed as shown in Equation 3. Equation 4 shows the

formula used by this research to compute the similarity of two objects based on their name, attributes and

roles.

(3)
)(...)(

...)()(

,2,1,2,1

1,21,121

nnii sticCharacteristicCharacteriPsticCharacteristicCharacteriP
sticCharacteristicCharacteriPObjectObjectP
=∗∗=

∗∗=≈=

(4)
)(

)()()(

21

212121

RoleRoleP
AttributesAttributesPNameNamePObjectObjectP

=
∗=∗=≈=

A number of factors must be considered when deciding the degree to which two characteristics

match. Even if two objects match, that does not necessarily mean the characteristics represent the exact

same semantic concept in the domain. For example, if the name Smoke was used by two objects, one

object might represent the action of smoking while the other object might represent smoke from a fire.

Similarly, if the characteristics do not match exactly, they can still represent the same concept. An example

is an object Class and an object Course used by two ontologies to represent the same concept. When

comparing the two names, the ranking model would not see an exact match, but the objects do match

semantically. As a result, the similarity value of two characteristics that do not match is set to a value that

represents how important that characteristic is in defining the actual semantic representation of the object.

For example, because designers can develop ontologies in different languages, such as French or English,

the name of an object does not have an extreme importance on the semantic content of the object. So, the

similarity value for the name characteristic of two objects when the names are not exactly the same can be

set to 40%, or some other coefficient above zero.

The coefficients for the characteristics in the object similarity score were initially set based on the

characteristic’s importance, when compared to the other object characteristics, in influencing the semantic

 41

content of an object. The coefficients are fined tuned, based on experiments with test data, so that the

ranking model operates with the most precision. The coefficients for each characteristic can be fine tuned

for a specific collection of objects, or could be adjusted based on user-feedback, which is a future research

area discussed in Chapter VII.

Chapter V discusses the implementation of the ranking model, including a discussion on the

characteristics of an object and why each one is or is not used in the ranking model. The ranking model

considers the attribute structure of an object as the most defining aspect in distinguishing the semantic

content of one object from another object. The algorithms used to compare the attribute structure of the

objects are discussed in Chapter V.

3.3.2 Evaluating Ranking Models

Traditional methods of evaluating information retrieval models use the metrics of precision and

recall. A ranking model returns a set of documents, called the relevant set, from the collection of

documents. Using this set, the analyst determines the recall as the number of documents, deemed relevant

by an expert, that appear in the set divided by the total number of relevant documents. Recall, as shown in

Equation 5, represents the percentage of documents accurately found by the ranking model. Precision

represents how many non-relevant terms are included in the relevant set. The precision is the number of

actual relevant documents in the set divided by the size of the relevant set, as shown in Equation 6.

(5)
DoucmentsRelevant ofNumber Total

Returned DocumentsRelevant ofNumber =R

(6)
Returned DocumentsofNumber Total

Returned DocumentsRelevant ofNumber =P

When mapping between data models, however, these metrics are not appropriate. There is only

one relevant object per query, so the recall is zero or one, based on whether or not the model returns the

object. Recall is useful in situations when there is more than one relevant document as a method of

 42

illustrating how many of the relevant documents were returned. With only one relevant document, recall is

not as meaningful a metric.

This research uses the rank of the relevant object as the metric for evaluating the Geometric Score

Reduction Model. This metric is meaningful in that it demonstrates the number of objects the designer

must look at before finding the relevant object. For example, when searching for a match for a Cat object,

the ranking model returns the sorted list: Person, Car, Tuba, Feline, and Automobile. The designer is

looking for the relevant object of Feline, which is ranked fourth by the ranking model. Recording the rank

as a metric shows that the user must look at four objects before finding the relevant one.

Time is another consideration when evaluating ranking models. For example, a ranking model

might be 100% accurate, but take four days to execute. This is not acceptable for use when mapping

between data models. As such, Chapter VI evaluates the Geometric Score Reduction Model based on the

average rank of relevant objects and the time to rank the objects for three experiments.

 43

IV. Extended Multiagent Systems Engineering

Extended MaSE is a complete methodology for building multiagent systems that guides a designer

through software development by describing the structure, behavior, and data model of the system. This

chapter describes the extended MaSE methodology in detail. The sections of MaSE not modified are

summarized from [DeLoach and others 2001] to present the whole methodology.

agentTool automates the design of multiagent systems using the MaSE methodology. To support

extended MaSE, this research augmented agentTool with an ontology builder and mapper. Also, the

existing software now supports passing ontology objects between agents. The functionality was added

while maintaining the original workflow model of agentTool. Following any modified MaSE step, this

section discusses the changes made to agentTool to support the activities of that step.

4.1 Capturing Goals

The first step of MaSE captures the goals of the system, developing a structured set of goals from

the initial system specification. This involves identifying the goals and then structuring them into a

hierarchy. Goals are extracted from the system’s functional requirements, which specify the services the

system must provide and the actions the system should perform. MaSE uses goals as the basis of the

analysis phase since goals are more stable than requirements that tend to change over time [Kendall and

others 1998].

4.1.1 Identifying Goals

To capture the goals, the analyst must first extract them from the functional requirements. Goals

represent what the system is trying to accomplish. The designer must modify the functional requirements

from a do this, do that type statement to the overall essence of what the system is trying to accomplish. For

example, in a distributed course scheduling system the designers determine the following goals:

 44

• Produce Schedule

• Display Schedule

• Manage Existing Schedules

4.1.2 Structuring Goals

The goals are structured to show their sub-goal relationships with one another, based on the inter-

relationships and importance of the goals. To aid user understanding, the Goal Hierarchy Diagram divides

the goals into levels of detail and importance. Figure 16 is an example showing a partial Goal Hierarchy

from the course-scheduling example.

Figure 16 Goal Hierarchy Diagram

4.2 Applying Use Cases

Once the goal hierarchy is complete, the analyst captures use cases from the system requirements

and develops sequence diagrams to help identify an initial set of roles and communications paths in the

system. The use cases define scenarios that the system must handle, and sequence diagrams represent the

use cases as events between roles in the scenarios. The analyst will use these event sequences to define the

tasks of the system roles.

 45

4.2.1 Creating Use Cases

Use cases are examples of how the user thinks the system should work. The designer can develop

use cases from the requirement specifications or by interviewing the system’s users. This step identifies

paths of communication, so the analyst should design use cases that cover varying event sequences, without

repetition. The use cases should not describe every sequence of events the system must handle, but should

show how the system accomplishes each goal in the hierarchy.

4.2.2 Creating Sequence Diagrams

A sequence diagram depicts the sequence of events from the scenarios described in the use cases.

Roles are created, based on the use cases, and placed at the top of the diagram. Figure 17 shows an

example sequence diagram, with the arrows between lines representing events passed between the roles.

The order of events proceeds from the top to bottom, so to generate a schedule the Scheduler first passes a

retrieve_requirements event to the RequirementsManager.

Figure 17 Example Sequence Diagram

 46

To transform the use cases into sequence diagrams, the analyst uses entities named in the use case

as roles. Any communication or information passing in the use case becomes an event in the sequence

diagram. This information passing also yields possible terms for the system ontology, developed next in

the methodology.

4.3 Developing the System Ontology

This step represents the first addition made by this research to the original MaSE and uses

concepts from the previous steps as a basis for constructing the ontology of the system. The designer first

determines the purpose and scope of the ontology and then collects and analyzes data from the information

domain for possible use in the ontology. Finally, the analyst constructs the initial ontology and refines,

validates, and matures the model into a complete ontology.

To support the ontology creation steps of MaSE in agentTool, this research built an ontology

builder program and integrated it into agentTool. The main window of agentTool contains tabs for each

MaSE step. This research added a tab for the system ontology after the sequence diagram tab, so that the

order would match the steps of the Extended MaSE methodology. The system ontology tab displays the

metadata for the system data model and allows users to launch the Ontology Editor to modify or further

view information about the ontology, as shown in Figure 18. With this approach, the user can view a quick

summary of the data model and can receive more detailed information if interested.

The designer uses the ontology builder, shown in Figure 19, to view additional information or to

edit the ontology. The Ontology Editor program design is based on Protégé 2000 to shorten the learning

curve of users that are accustomed to Protégé 2000 [Noy and others 2001]. The main window consists of a

tree view of the objects in the data model, organized by their inheritance, and three tabs: Classes, Axioms,

and Metadata. Each tab contains the information regarding that section of the ontology. Designers create,

modify and view classes, slots, and axioms in this program.

 47

Figure 18 Viewing System Ontology in agentTool

Figure 19 Main Window of Ontology Editor

 48

4.3.1 Define Purpose and Scope of Ontology

Designers specify the purpose, scope, and general information regarding the ontology in the

metadata tab of the ontology builder. Figure 20 shows the metadata tab with an example ontology. Each

ontology has a unique identifier and the location on disk or the URL where the ontology can be found. The

metadata tab allows the user to describe the general purpose and description of the ontology and provide

contact information.

Figure 20 Metadata Tab in Ontology Editor

By describing the purpose of the ontology, the designer limits its scope. For example, when

designing a multiagent system to perform course scheduling, the ontology must define classes regarding

courses, quarters, instructors, classrooms, etc. The software requirements and the goal hierarchy help

define the purpose of the ontology, as the purpose of the ontology is to fulfill the information needs of the

multiagent system. The purpose describes why the ontology exists, such as to list all classes in the

 49

education domain required when scheduling courses. This description of the purpose determines the scope

and the domain that the ontology will reside in. The scope defines the level of detail to which the ontology

describes the objects, such as defining only the semantic ideas necessary to schedule courses in a

distributed network environment.

To further define the scope, the designer can utilize the previously identified use cases to

determine the types of data that the system will use. For example, a use case may describe one agent

passing another agent a specific course to schedule. The designer uses this situation to determine the level

of detail necessary to describe a course so that the system can execute the events described in the use case

appropriately.

4.3.2 Collect Data

Having defined the scope, the analyst knows the level of detail and domain the ontology

represents and can start building the model. The designer first creates a list of possible terms that the

ontology must contain. Designers form this list by examining the goal hierarchy, use cases, and sequence

diagrams from the previous MaSE steps. In Figure 17, for example, the Scheduler role requests instructors,

students, and resources in the system execution. From this diagram, the designer knows that the ontology

must include concepts to represent these items and adds their names to the list as possible terms for the

ontology.

4.3.3 Construct Initial Ontology

This step takes the list of concepts and organizes them into classes and attributes and produces an

initial draft of the data model. When creating the ontology, the analyst must remember to only specify the

concepts that the system needs to accomplish its goals. The ontology should not specify all attributes of a

Human, such as height, age and weight, when the system only requires the name of a Human to function.

 50

4.3.3.1 Reusing Existing Ontologies

The designer must first decide whether any existing ontologies will meet the system needs. The

user reviews ontology libraries and existing company data models looking for objects that resemble the

concepts listed in the term list built earlier. The benefit to using an existing ontology is that the system is

interoperable, in terms of passing data, with any other system that uses the same data model. If no existing

ontologies fully specify the information needed for the system, the designer must build a new ontology. If

the designer finds an ontology that partially satisfies the system needs, that ontology can be used as a

starting point for the new ontology. Users should post created models in some shared repository so that

others can reuse the data model, increasing the interoperability of future systems.

4.3.3.2 Build Class Hierarchy

The first step in the construction of an ontology from scratch creates classes from selected terms in

the term list, created in the collect data step, and organizes the classes into a hierarchy. The hierarchy is

based on subclasses and every class is a subclass of Thing.

Analysts can build the hierarchy using a top-down, a bottom-up, or a middle-out approach. The

designers start by selecting terms from the list that are independent objects. In other words, they do not

describe other objects. The user must ask if the term represents a characteristic of another term or if the

term is described using other terms as its characteristics. For example, an Animal is an object while Age is

an attribute of the object. In a middle-out approach, the designer takes the terms and selects those thought

to occur in the middle of the hierarchy, allowing the designer to increase detail while creating subclasses

and abstract details while creating parent classes. For example, to represent the similar attributes in an

Instructor and Student class, the analyst can create a Person class as a parent class of both. The designer

can also further specify the Student class by creating a Part-time Student and Full-time Student subclasses.

The hierarchy is complete once the designer identifies and structures all the objects needed by the system.

 51

The main window of the Ontology Editor allows for the creation of classes. The user can then

specify information about the class by determining the role of the class, adding or removing inherited

classes, and providing a description of the object.

The Teacher class is displayed in Figure 19. This is a concrete object with three attributes: Name,

hasParents, and teachesCourses. There are no axioms regarding this class in the ontology, since none are

displayed in the axiom list.

4.3.3.3 Add Attributes to Classes

The analyst now defines the attributes (also known as slots) of the classes identified in the

previous step. The attributes should describe the properties of the class at the level of detail required by the

system to accomplish its goals. Each attribute is described in terms of its data value, name, description, and

cardinality. For example, a Person class has the attribute age. The cardinality of the age slot is one and is

required for every Person object.

Designers use the Modify Slot window, shown in Figure 21, to view and modify the

characteristics of an attribute in agentTool. The user inputs the name and description of the attribute and

chooses the data type from the drop-down box.

Figure 21 Add/Modify Slot Window

 52

The allowed values list displays the possible classes that can fill this slot. If the data type is a

string, integer, or float, this list is not displayed. The user also specifies whether the slot is required and if

there can be more than one instance to fill this slot. In Figure 21, the slot hasParents is defined as a

multiple slot that has at least two instances. Users can add the slot’s inverse, such as hasChildren, if

appropriate. The Values and Default lists are not implemented at this time. With the values list, users can

specify instances of a class and with the default list the user can specify the default value of the slot. This

implementation does not support instances, as designers rarely hard code specific instances into the data

model. The lists are left in the window for future development, if necessary.

4.3.3.4 Define Relationships

The attributes of a class define the properties and relationships of the class. This step encodes all

necessary relationships between classes as attributes of the class. For example, a Person owns a Car. The

designer can represent this relationship with an attribute of the Person hasCar, which is of type Car. If the

system needs to know the inverse of the relationship, the analyst uses an inverse slot. The Car class would

contain the slot hasOwner, with type Person, as the inverse slot of hasCar.

4.3.3.5 Define Axioms

Once classes and their attributes have been defined, the designer specifies the domain axioms. As

discussed in Chapter III, axioms can specify restrictions on the classes and attributes. If the system requires

any restrictions on the data that cannot be represented by the attribute characteristics, the designer must

develop the appropriate axioms. Using a banking system as an example, an Account class will have an

attribute balance. The value of this field can never be less than zero. To represent this in the ontology, the

designer constructs an axiom BalancesMustBeGreaterThanZero, which states that balance of the Account

must be greater than or equal to zero at all times.

The axioms tab, shown in Figure 22, allows for the creation and deletion of axioms in the

Ontology Editor. The program organizes the axioms by their type: Equivalence, Covered, or Disjoint.

 53

Users can view selected axioms in the right panel of the window. Figure 22 shows the axiom that defines

when a person is considered old. The axiom concerns the Person class and contains a short description and

the statement that a person is old if the value of the age slot is greater than 65.

Figure 22 Axiom Tab in Ontology Editor

4.3.4 Refine and Validate Ontology

Once the designer defines the classes, attributes, and axioms of the ontology, he must validate that

the ontology meets the system requirements. Any missing information is added to the ontology, and any

extraneous information is removed from the ontology. If any information is incorrectly specified, the

designer makes the necessary corrections to the ontology. To validate the model, the analyst examines the

situations described in the use cases and sequence diagrams to ensure that the ontology describes all the

information needed in those scenarios.

This step is repeated throughout the development of the system. If at any time the designer

realizes that some piece of information is missing from the ontology, the ontology is modified to include

 54

this information. The ontological construction is complete once the analyst is satisfied that the ontology

represents all the necessary information from the sequence diagrams and use cases.

4.4 Refining Roles

The last step in the analysis phase of MaSE, Refining Roles, transforms the goals and sequence

diagrams into roles and tasks. Roles form the foundation for agent classes in the Design phase, and each

role is assigned at least one goal from the Goal Hierarchy Diagram. The analyst can combine related goals

into a single role for efficiency, if desired.

4.4.1 Creating Roles

The analyst must take the initial set of roles developed from the sequence diagrams and assign

goals to them from the goal hierarchy. Then, the designer adds roles for each goal that does not have a role

assigned to it. In this manner, the analyst ensures proper system execution by assigning every system goal

to a role. Once every goal is assigned to a role, the analyst must look at how that goal is accomplished in

the system. If a role exists that does not have a goal, it is either superfluous and can be removed or a goal

is missing from the hierarchy. The analyst must decide which is the correct action to take.

4.4.2 Concurrent Tasks

Once roles have been created, the analyst designs tasks to describe the behavior necessary for the

role to accomplish its goals. An example of roles and their tasks is shown in Figure 23. The roles are

represented in the boxes along with the numbers of the goals assigned to it. Tasks are shown in ovals

attached to the role they belong to. The arrows show the flow of communication between the tasks. Each

task is a single thread of control and is represented graphically using a Concurrent Task Diagram, an

example of which is shown in Figure 24.

 55

Figure 23 Example Role Diagram

The Concurrent Task Diagram is a finite state automaton representing the role’s behavior

throughout the task. The transition between states uses the syntax trigger [guard] ^ transmission(s). The

trigger portion specifies what event can allow the transition to occur. If a guard is specified, not only must

the trigger event occur, but the guard statement must also evaluate to true before a state transition occurs.

Upon the transition, the event transmission(s) will occur. This event frequently involves sending messages

to other tasks. In Figure 24, the reception of an abort message from another role enables the first transition.

The abort message contains a single parameter named schedule. Previously, MaSE required only the name

of the parameter. Now with the inclusion of the information domain, each parameter lists the name and

data type. The analyst uses the system ontology to specify the types of the parameters. Upon receiving the

abort message, the role will send a message to resourceManager. The message will have the request to

unscheduleClassrooms and it includes the schedule that the system is erasing.

 56

Figure 24 Example Concurrent Task Diagram

The analyst can use sequence diagrams as an aid in constructing concurrent task diagrams.

Sequence diagrams describe the minimal set of messages necessary to complete the various scenarios. The

analyst can take the messages received by the role in the sequence diagrams and ensure they are in a

concurrent task diagram for that role to accomplish the scenarios. The Analysis phase is complete once

concurrent task diagrams have been provided to describe how each role will meet its goal.

4.5 Creating Agent Classes

The first step in the Design phase creates agent classes from the roles in the Analysis phase. This

step defines agent classes in terms of the roles they will play and their conversations. To ensure the system

functions appropriately, each role must be assigned to at least one agent class. Once roles are assigned to

 57

agent classes, the analyst can determine the conversations between agent classes by consulting the Role

Model diagram.

The Role Model diagram, as shown in Figure 23, defines the tasks of each role and the

communication between tasks. These communications must be assigned to the corresponding agents. If

two agents contain tasks that communicate in the Role Model diagram, there must be a conversation

between the two agents. Figure 25 is an example Agent Class Diagram. Each box contains the name of the

agent and the roles of the agent. In Figure 25, the UserAgent fulfills the roles Scheduler and

OutputManager. From the Role diagram in Figure 23, the communication between the GenerateSchedule

task and the FreeScheduleResources task is represented as the conversation abortSchedule in the Agent

Class Diagram between the agents that play the roles Scheduler and ScheduleManager.

Following through this transformation from the task communication in the role diagrams, the

analyst can identify the necessary communication between agents. Once the Agent Class Diagram is

complete, the designer has identified the agents and the conversations in the system.

Figure 25 Example Agent Class Diagram

 58

4.6 Constructing Conversations

Now that the conversations are identified, the analyst must specify the behavior of each

conversation. This step describes the details of all system conversations in terms of a finite state

automaton. Each conversation consists of two Communication Class Diagrams, one for the initiator and

one for the responder of the conversation. The diagrams describe the communication states of the two

agent classes participating in the conversation. The syntax for a transition in the Communication Class

Diagram is:

rec-mess(args1) [cond] / action ^ trans-mess(args2)

A transition is enabled when the agent receives the message rec-mess with the parameters args1

and the guard condition cond holds. Similar to the transitions in the Task Diagrams, this research modifies

MaSE so that the parameters for messages have the syntax name:Type, where name is the name of the

variable and Type is the class type from the system ontology. When the transition is executed, the agent

will perform the specified action and transmit the message trans-mess with the arguments args2. Every

field in a transition is optional.

Figure 26 is an example of the Communication Class Diagram for the initiator of the

retrieveSchedule conversation. The agent sends the message retrieveSchedule to request the schedule for a

specific course type and then waits for the schedule to be returned by the other agent. This response comes

in the form of the message returnSchedule, with the requested schedule as the parameter sched.

Figure 26 retrieveSchedule Conversation Initiator

 59

Figure 27 shows the responder Communications Class Diagram for the same conversation. The

conversation starts when the agent receives a request to retrieve the schedule. The agent then returns the

schedule to the requesting agent.

Figure 27 retrieveSchedule Conversation Responder

Designers construct conversations based on the tasks developed in the Concurrent Task Model.

Each task that defines external communication will yield at least one conversation. The analyst can trace

through the task model to ensure that messages sent and received in the task model correspond to those in a

conversation.

4.7 Assembling Agent Classes

This step adds the internal details to the agent classes identified in the Creating Agent Classes

step. Designers can choose an existing architecture, such as Belief-Desire-Intention [Georgeff and others

1996], or can develop their own. Once the architecture is built, the designer specifies the components of

each agent in the Agent Architecture Diagram.

Figure 28 is the Agent Architecture Diagram from the UserAgent class in the example. Four agent

components combine to form this agent class. Each box represents one component and contains a list of

the attributes and methods of the component. The lines represent internal communication, such as method

calls, between the various components. In Figure 28, the GenerateSchedule component must communicate

with the DisplaySchedule component to display the schedule once it is complete.

 60

Figure 28 Example Agent Architecture Diagram

Designers can describe the internal behavior of the components with state-diagrams and formal

definitions for the operations. Complex components may even have sub-components. One typical agent

architecture defines a component for each task the agent performs. In this manner, the behavior of the

agent is compartmentalized by tasks.

4.7.1 Special Case -- Specifying Agent Component Ontologies

Agent components will typically use the system ontology defined in Step 3, however, there are

cases when the components will use a separate ontology. This research extended MaSE to accommodate

these occasions. The first case occurs when the system interacts with a legacy system, such as an existing

database. The multiagent system data model frequently will not match the legacy system’s model. The

agent component that interfaces with the legacy system must use the ontology of the legacy system. The

designer can then provide a mapping from the legacy system’s model to that of the multiagent system, with

the component responsible for translating between the two models.

The second case occurs when an agent component is reused from a previous system. The reuse of

agent components is similar to Component Based Software Engineering. Designers can build components

 61

to provide frequently needed services, which can then be built into future systems. Each component is

designed with its own ontology that is then integrated into the systems. The developer must map the

component data model to the system model to ensure proper performance. The data model for reusable

components should be much smaller than the system data model. As discussed in Chapter III, a small

ontology aids reuse because the domain representation acts as a type of precondition for the proper

execution of the system. With a smaller ontology, there are fewer conditions that future systems must

obey. Only the information required by the component is specified in its data model.

Designers create component ontologies in the same manner as system ontologies. Using

techniques discussed in Section 4.3, the analyst can fully specify the component ontology.

4.7.1.1 Mapping Component Ontologies to the System Ontology

The analyst must provide a mapping for any component ontology that does not match the system’s

ontology. During implementation, the programmers use these mappings to create translators, or other

similar programs, to convert the data between the models. In distributed systems, this is frequently called

marshalling the data. Each attribute and class in the component ontology should be paired to an attribute or

class in the system data model. This ensures the multiagent system will convert data appropriately when

passed between the agents.

Component ontologies are mapped to the system ontology to reduce the number of mappings. An

alternative is to map the data model of each component to every component it interacts with. The problem

with this approach is it increases the number of mappings required. If each component interacted with

every other component, this could result in n! mappings for n agent components. Instead, the system data

model is used as the universal language for the components to reduce the number of mappings in the

system.

 62

4.7.1.2 Component Ontologies in agentTool

In MaSE, agent components may have different data models than the system. To support this

capability, this research augmented the Agent Architecture Panel in agentTool to allow the user to add,

delete and modify component ontologies.

Designers can set the component ontology to the system ontology or to another ontology. The

developer can also edit the component ontology directly from this panel with the appropriate menu

selection. When adding attributes to the components, users may choose from the object types in the

specified ontology. If the component ontology is different than the system ontology, the user must map the

component ontology to the system ontology.

4.7.1.2.1 Mapping Ontologies

Designers map the ontologies in agentTool through the Ontology Mapper program. This program

displays the component ontology in a tree structure on the left side of the panel, as shown in Figure 29.

The mapper displays the slots of the selected object in the list below the ontology. When the user selects a

slot in the component ontology, the program ranks the objects in the system ontology based on the ranking

model discussed in Chapter V. The mapper program then lists the ranked objects in the suggested class

mapping list, as shown in Figure 29.

In the center of the window, the mapper program displays the existing mapping for the selected

object. If the user selects any slots from the object, the existing mapping for that slot is displayed in the

lower middle of the window. The program displays the class and slot the attribute is mapped to, as slots

from the same object may be mapped to different classes in the system ontology. This occurs when the

designer represents an object in the component ontology as two or more objects in the system data model.

The user can modify the mappings of objects and slots by selecting the class and slot desired in the system

ontology and pressing the appropriate button. The program suggests candidate objects based on the

similarity values returned by the ranking model.

 63

Figure 29 Ontology Mapper

4.8 System Design

The final step in the MaSE methodology instantiates actual agents from the agent classes defined

in earlier steps. The Deployment Diagram shows the numbers, types and locations of the agents in the

system, as shown in Figure 30. The shadowed boxes represent the agent instances and describe the agent

name and type. The dashed lines in the diagram represent a single computing platform. In our example,

none of the agents execute on the same platform. The SchedManager and ResManager reside on dedicated

servers and the UserAgents can be on multiple machines. The solid lines represent the communication

between the agents and platforms.

Designers use the Deployment Diagram to describe the location of agents so that information such

as the hostname or network address of the platforms can be specified for implementation. The Deployment

Diagram allows for multiple configurations of the multiagent system, giving designers the flexibility to

adapt to various sets of resources. For example, if network bandwidth is limited, the designer should place

as many agents as possible on the same platform to reduce network communication. This must balance

 64

with the fact that each agent requires a different amount of processing power and the designer must not

overload individual platforms. Using the Deployment Diagram, the analyst can balance network

communication with processing limitations of individual platforms. Upon completion of this step, the user

is finished with the multiagent system design, having analyzed and designed the behavioral, structural and

information models of the system. The development team must now code the system based on the design

documents.

Figure 30 Example Deployment Diagram

4.9 Code Generation

agentTool generates Java code for the multiagent system based on the design documents created

from the MaSE steps. This research modified the code generator so that agentTool produces Java code for

every class in the ontology. These classes are then used by the agent code to pass messages in the system,

as described in the MaSE design. The resultant code provides a shell for the agents consistent with the

developed data, structural and behavioral models.

 65

V. Geometric Score Reduction Model

5.1 Computing the Similarity of Objects

As discussed in Chapter III, this research uses the characteristics of the objects to compute the

similarity of one object to another. A significant part of developing the ranking model is to determine

which characteristics should be used. The decision of whether to include a characteristic in the similarity

equation is based on how significant the characteristic is in defining the semantic content of the object.

This section discusses the inclusion of the characteristics of an object, as shown in Table 1, in the similarity

equation for comparing objects.

Characteristic Included or Not Included in Ranking Model

Name Included

Attribute Structure Included

Role (Concrete or Abstract) Included

Number of Children Not Included

Number of Axioms Not Included

Number of Parents Not Included

Level in the Object Hierarchy Not Included

Description Not Included

Table 1 Object Characteristics and Their Use in the Geometric Score Reduction Ranking Model

5.1.1 Object Characteristics Used by the Model

The similarity score of an object is calculated using Equation 7. Equation 7 is originally presented

in Chapter III as Equation 4 and is reprinted here for review. The ranking model uses the characteristics in

the equation to rank the objects in the most precise manner possible. To obtain a precise ranking, the

characteristics chosen for the equation must have a significant impact on the underlying semantic content

 66

the object represents. The attribute structure, name, and role characteristics of an object all meet this

requirement.

(7)
)(

)()()(

21

212121

NameNameP
RoleRolePAttributesAttributesPObjectObjectP

=
∗=∗=≈=

Attribute Structure. This research considers the attribute structure the most distinguishing

characteristic of an object. In other words, if the attributes of two objects match, there is a good chance the

objects represent the same content. There are cases when one designer may choose to include more

attributes of the object than the other designer. In this case, the ranking model will identify the attributes

that do match and will penalize the similarity score because not all objects match. Using the attribute

structure, either in a best-value or comparator method, the ranking model can obtain an effective similarity

score. Section 5.2 discusses these two methods of attribute comparison in greater detail.

Role. To further differentiate between objects, the ranking model compares the roles of the object.

As discussed in Chapter III, the role of an object signifies if the class is abstract or concrete. If one object

is concrete and the other abstract, the ranking model reduces the similarity score. Including this

characteristic introduces the assumption that designers will design similar objects with the same role. This

is an appropriate assumption under most circumstances. Because an abstract class cannot be instantiated,

designers will represent abstract concepts as abstract classes. So, if the roles of two objects do not match,

they are not likely to match semantically.

Name. The ranking model compares the names of the objects to differentiate between objects that

match in attribute structure and role characteristics but do not represent the same semantic idea. For

example, a class Person contains an Age attribute and a class Dog contains an Age attribute. Both classes

are concrete, and without comparing the names, the ranking model would indicate that the objects are

similar. So the ranking model reduces the similarity score when the names of the objects do not match.

The fact that the names of two objects do not match does not mean that the objects do not represent the

same content, so the penalty for names not matching should not be large.

 67

Currently, the ranking model performs a string comparison to determine if the names match. A

future enhancement could include a thesaurus to look for similar words that match based on a lookup in the

thesaurus.

5.1.2 Object Characteristics Not Used

This research designs the ranking model for mapping from one data model to a larger data model.

The ranking algorithm works for data models with a similar number of objects, but the algorithm does not

include characteristics that might improve the precision of the model when used on similar sized

ontologies. The characteristics not used in the similarity equation are either inappropriate when mapping

from a data model to a larger one or are too computationally intensive when evaluating the possibility of a

match. Each characteristic is described below along with why the ranking model does not use it in the

computation of the similarity equation.

Number of Children. The number of objects that inherit from the object, also known as the

number of children of the object, would be an appropriate characteristic to compare if the ontologies were

the same size. In the case of system design, where the system data model will typically contain more

objects than the component data model, this characteristic is not appropriate. For example, the component

data model might contain an object Airplane while the system data model has an object Aircraft. Aircraft

has Fighter Aircraft and Support Aircraft as children, while Airplane has no children. This can happen

when the component is a take-off manager component that only cares that the object is an aircraft in order

to handle it taking off. Because the system data model will frequently contain more detailed information

than the component ontology, the number of child objects of a class is inappropriate for computing the

similarity function in the ranking model.

Number of Parents. The number of objects that the compared objects inherit from, or number of

parents of the objects, is similarly not an adequate characteristic for inclusion in the similarity equation.

The system data model will contain more objects, and as the number of objects increases, the probability of

additional parents for the objects in the system data model increases. Also, since most objects will

 68

normally only have one parent, this characteristic will rarely not match the same characteristic of another

object. As such, the inclusion of the number of parents into the similarity equation would rarely influence

the results of the model.

Number of Axioms. Comparing the axioms that pertain to the selected objects could improve the

precision of the results from the ranking model, but the comparison is a difficult task. If all axioms are in

first order logic, the ranking model could determine if the axioms regarding each object are contradictory.

If so, the objects are not similar and the similarity score can be set to zero. The ranking model does not

perform this check due to the complexity of the logic inferences, such as keeping track of all the possible

assignments between which variables might correspond to the variables in the other axioms. This step

alone could take as long as the computation of all the other characteristics combined. As such, it is left as a

possible addition in the future.

Description. The description of each object is difficult to compare. Designers will not write the

descriptions exactly, so a simple string matching does not work. One of the most accurate comparisons

treats the description fields as two documents and computes the similarity of the two. The ranking model

would use a thesaurus to ensure similar words are included. The model would add synonyms of words in

the descriptions and then compare the two. The number of words contained in both divided by the total

number of words is the similarity of the description fields. This additional computation will have minimal

impact on results, however, as designers frequently leave this field blank due to their impression that the

semantics of the name and attributes of the object fully describe the object. This creates problems when

comparing a data model that has descriptions with one that may or may not have descriptions as objects

that match might be penalized if one of them does not contain a description. The ranking model does not

use the description field for all of these reasons.

5.2 Comparing the Attributes of the Objects

As discussed in the previous section, the ranking algorithm uses the attribute structure as part of

the similarity score between two objects. To compute the level of similarity in the attribute structure, the

 69

algorithm must compare the attributes in some manner. When comparing the attribute structure, the ideal

outcome would determine the optimum matching of attributes that maximize the similarity score, finding a

set of attribute pairs where each pair consists of an attribute from each of the objects and every attribute

appears in exactly one pair. The similarity value of each pair is computed using the ranking model

discussed in Section 5.2.1.1. The optimal set would maximize the sum of the similarity values of the pairs.

Finding the optimal matching is a combinatorial problem that takes a non-polynomial amount of

time to compute. Thus, an approximation must be found such that the running time of the model remains

polynomial while the ranking results remain accurate.

To improve running time, the ranking model algorithm compares the attributes in one of two

ways. The first method simply pairs each attribute from the mapped object to the attribute of the target

object that has the highest similarity value. However, this method can allow attributes to appear in more

than one pair. This relaxed restriction yields a polynomial time algorithm for the ranking model. The

second method for comparing attributes is to sort the list of attributes from each object in a pre-defined

order and then compare them one-to-one. The algorithm keeps track of the number of matching attributes

and computes the score based on the number of matches.

5.2.1 Assigning the Best Value

Relaxing the requirement that the model ensures each attribute is mapped to only one other

attribute simplifies calculation. The model compares each attribute to those of the other object and assigns

it to the attribute that maximizes the similarity score. The model must consider several problematic

situations with this best-value approach in order to maintain good performance.

The first situation is when the attributes of the mapped object match a subset of the attributes of

the target object. In this case, the model could return that attributes match up exactly while there exist

attributes that do not match up. Figure 31 is an example of this situation. Attributes 1-3 each obtain the

best similarity score when paired with Attribute A. If each attribute received a perfect score match with

 70

Attribute A, the ranking model would return a perfect score. To avoid this problem, the ranking model

looks for the best mapping for each of the attributes of the mapped object and for each of the target object.

Attribute 1

Attribute 2

Attribute 3

Mapped Object

Attribute A

Attribute B

Attribute C

Target Object

Attribute 1

Attribute 2

Attribute 3

Mapped Object

Attribute A

Attribute B

Attribute C

Target Object

Figure 31 Imperfect Object Match with One-Way Mapping

By comparing the mapped object and the target object to each other, the model avoids returning a

perfect score because the values obtained from Attributes B and C when compared to the attributes from

the mapped object will not return a perfect score. The ranking model determines the similarity of the

attributes by looking at the values in a bi-directional mapping.

Even though a bi-directional mapping improves the precision of the ranking model, the number of

attributes must also be considered. If the ranking model did not consider this, it could return a perfect

match for the situation illustrated in Figure 32. In Figure 32, each attribute can be matched to one in the

other object, but multiple attributes are matched to the same object. Because there are more attributes in

the mapped object, however, the target object is not an exact match.

The ranking model adjusts the similarity scores of the attributes to prevent the situation in Figure

32 from receiving a perfect score. The ranking model multiplies the probability that the attributes match by

the ratio of the number of attributes in each object. For example, if one object had five attributes and the

 71

other had four, the model multiplies the score by 4/5. The ratio is always less than or equal to one, so that

it never raises the score.

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Attribute 6

Mapped Object

Attribute A

Attribute B

Attribute C

Target Object

Figure 32 Imperfect Object Match with Two-Way Mapping

The benefit of comparing the attributes using the best-value method is that the model can consider

partial matches. A mapped attribute does not have to match exactly to be considered into the score. This

allows for the possibility that designers may decide to represent two attributes that are semantically the

same in different ways. For this benefit, the ranking model makes additional calculations to ensure the

problems discussed earlier, lack of a bi-directional mapping and differing numbers of attributes, do not

improperly influence the score of the object. To decrease the number of calculations, the ranking model

could choose to only evaluate exact matches, instead of the partial matches considered with this method.

5.2.1.1 Determining the Similarity Score of an Attribute

As mentioned in the previous section, the best-value approach sets the mapping for an attribute to

the attribute in the target object to which it is the most similar. The approach uses a ranking model to

determine the similarity score of one attribute to another in order to determine the most similar attribute.

The mathematical foundation of this model is analogous to that of the model for object

similarities. The probability that an attribute matches another is approximately the probability that each of

 72

the characteristics of the attribute match. So, the equation used to compute the similarity value of two

attributes is the same as Equation 3, with attribute substituted for object. Section 5.3 discusses the

characteristics of attributes and why each was or was not chosen to compute the similarity of the attributes.

5.2.2 Comparing Attributes Using an Ordering

An alternative method to comparing attributes is to develop a comparator that takes two attributes

and returns whether they are equal or if one is greater than the other. The ranking model uses fewer

comparisons with this method, however this method relies on some assumptions regarding how the

designers develop ontologies.

This method orders the set of attributes in a sequence of increasing order, based on the results of

the comparator. When comparing the attributes of the object, the ranking model retains a pointer into the

sequence of attributes for each object. The pointers act as placeholders in the sequences for comparison. If

the attributes match, the score for the attribute comparison increases and both pointers increment.

Otherwise, the pointer of the smallest attribute advances to the next attribute in its sequence. Figure 33

illustrates the possible situations and the resulting pointer modifications.

Figure 33 Possible Situations When Comparing Attributes With an Ordering

 73

In Figure 33(a), attribute AC is less than attribute A2, so the pointer moves to AD. The

subsequent comparison would then be between A2 and AD. In Figure 33(b), the attributes are equal, so

both pointers are incremented. Finally, Figure 33(c) illustrates the process when A2 is less than AC. The

pointer is incremented so that the next comparison will compare attributes A3 and AC.

Comparing the attributes in a sorted order reduces the number of comparisons needed to compute

the similarity of the attributes. In this method, the number of comparisons between the attributes of each

object is O(n+m), where one object has n attributes and the other has m attributes. Since the ranking model

orders the attributes into a sequence, the total running time must include the sorting algorithm. If an

O(nlogn) search is used, the overall comparison of the similarities of the attributes is O(nlogn + mlogm + m

+ n) which can be reduced to O(plogp), where p is the larger value of n and m. This running time is better

than the O(nm) running time of the best-value approach.

Although this method provides for faster computation, it does not allow for partial matches. The

attributes have a strict ordering and the development of the comparator requires a decision on what

constitutes equal attributes. The answer to this question depends on what assumptions are made about the

designers of ontologies.

The ordered ranking model will use a strict and a loose comparator. The loose comparator simply

compares the data type of the attributes. If the data types match, the comparator returns that the attributes

are equal; otherwise, the comparator uses a pre-defined ordering on the data types to return which attribute

is larger. One problem with this approach, however, is that an attribute such as children’s_ages could be

returned equal to Age because both are represented as integers, while they do not represent the same

attribute.

The strict comparator attempts to reduce this error by first comparing the data types and then

comparing the other characteristics of the data type. By using the other characteristics, the comparator

attempts to eliminate false matching. The underlying assumption for the strict comparator is that designers

of ontologies will specify the characteristics of the attributes identically when representing the same

 74

semantic content in the domain. In the above example, the strict comparator will not return Age equal to

children’s_ages because Age is a single attribute while children’s_ages can have multiple values.

5.3 Computing the Similarity of Attributes

Similar to the characteristics the ranking model uses to evaluate the similarity between objects, the

ranking model only uses some of the characteristics of an attribute to compute the similarity between

attributes. Table 2 provides a summary of attribute properties along with whether the ranking model

includes each in the computation of the attribute similarity score.

Characteristic Included or Not Included in Ranking Model

Name Included

Data Type Included

Required Attribute Included

Multiplicity Included

Description Not Included

Table 2 Attribute Characteristics and Their Use in the Geometric Score Reduction Ranking Model

5.3.1.1 Attribute Characteristics Used by the Model

Name. The ranking model uses the attribute’s name field in a similar manner to the name field of

an object. The name is a way of improving the scores of attributes that have similar names, while not

heavily penalizing the scores of attributes that do not match on their name characteristic. A case insensitive

string comparison is used to determine if the names match.

Data Type. This research considers the data type of an attribute to be the most distinguishing

feature when comparing attributes. If the data types do not match up, there is not a high probability that the

attributes represent similar semantic ideas. To allow for the possibility that one designer may represent an

attribute as a float while another designer chooses to use an integer, the ranking model reduces the

similarity score of the attributes based on what the two data types are. For example, if one attribute is an

 75

integer while the other attribute is of a type Class, defined elsewhere in the data model, the ranking model

will set the similarity score to zero. This is because the probability that designers might switch these two

data types is low. When comparing a float to an integer, however, the ranking model will reduce the score

less than the previous example, as it is more likely for designers to interchange floats with integers than

floats with Class objects. Through this method, the ranking model allows for the possibility that attribute

types might be represented differently by designers, while ensuring perfect matches still receive the best

similarity score.

Required Attribute. A required attribute must be contained in every instance of an object. This

is a significant characteristic that the ranking model uses to decrease the scores of those attributes that do

not match exactly. The ranking model only penalizes the similarity score by 35% for a non-match, because

designers may choose to represent an attribute as required while another would not.

Multiplicity. An object can have an attribute that contains multiple instances. The ranking model

uses this important characteristic in computing the similarity score. If one attribute can be multiple and the

other cannot, there is a low probability that the attributes represent the same semantic content. If the

attributes do match, the ranking model compares the minimum number required and the maximum number

of instances allowed. The ranking model reduces the similarity score of the attributes if either one or both

of these sub-characteristics do not match. The penalty for each is less than the penalty for the multiplicity

characteristic not matching.

5.3.2 Attribute Characteristics Not Used by the Model

The ranking model does not use the description field of an attribute for the same reason the

description field is not used for computing the similarity of objects. The difficulty in accurately

determining the similarity of this field outweighs the benefits from including this field into the similarity

calculations.

 76

VI. Results

This chapter discusses the evaluation of the additions to MaSE and the performance of the

Geometric Score Reduction Model based on the measurement criteria defined in Chapter III. The first part

of the chapter evaluates the use of ontologies to represent the information domain. The second part then

compares the MaSE extensions to the criteria for using information domain specifications in multiagent

system specifications. The final section evaluates the precision and time performance of the Geometric

Score Reduction Model under various operating conditions.

6.1 Evaluation of Ontologies for Domain Representation

The characteristics and structure of ontologies described in Section 3.2.1 satisfy the requirements

for an information domain representation in multiagent systems discussed in Section 3.1.1. Table 3

summarizes the requirements from Section 3.1.1 along with the ontological component that satisfies the

requirement. The satisfaction of each requirement is discussed below.

Domain Representation Requirement Satisfying Ontology Component

Define and Describe Objects used by the system Classes

Specify Properties of the Objects Slots

Specify Relationships between the Objects Slots

Specify Axioms Regarding the Objects Axioms

Specify Domain Metadata Metadata

Clear, Concise, Consistent Clear, Concise, Consistent

Only Specify Required Information Complete

Table 3 Domain Representation Requirements and the Ontological Components that Satisfy Them

Define and Describe the Objects used by the system. The Class structure in an ontology defines and

describes the objects in the domain. The structure allows for the object to have a name and a description of

what the object represents.

 77

Specify Properties of the Objects. Class objects can have multiple Slots. The Slots describe the

properties and attributes of the object. For properties, the Slot can be named has_property to illustrate that

an object has a particular property. The description of the slot allows the designer to explain the property

even further.

Specify Relationships between the Objects. The Instance type of Slots can be used to specify

relationships among objects. The instance defines a relationship by its name and description. The allowed

values of the Slot can specify the other objects involved in the relationship. For example, the relationship

works_for can be defined between a Worker class and a Manager class. The Worker class has an instance

slot named works_for. The allowed values of the slot are instances of the Manager class. In this manner,

using Slots with the type Instance allows the designer to specify relationships among objects in the domain.

Specify Axioms Regarding the Objects. This requirement maps directly to the axioms in an ontology.

Contain Metadata about the Domain. The domain representation must contain basic information about

the purpose for which the representation was designed. Similarly, ontologies require the same information

to facilitate future reuse. This desire for reuse in both ontologies and multiagent systems requires designers

to document their projects well to allow for greater understanding in the future. Ontologies and multiagents

systems both require a name, designer names, description, version number, etc. The metadata required for

an ontology meets all the requirements for a domain representation.

Clear, Concise and Consistent. This requirement matches perfectly with the characteristics of an

ontology. Both multiagent systems and ontologies are designed for future reuse and predictable results, so

these characteristics are required in each. They ensure that the system or ontology can be understood in the

future and that neither can produce inconsistent or undesired results.

Only Specify Information Necessary for System Execution. In a domain representation, it is important

that the designer only specify the minimum requirements necessary for proper execution of the multiagent

system. With ontologies, designers are often told “The ontology should not contain all the possible

information about the domain: you do not need to specialize (or generalize) more than you need for your

 78

application” [Noy & McGuinness 2001]. The ontology should be complete to the level of granularity

specified in the metadata for the ontology, so for multiagent systems the designers can set the granularity to

that required for the proper execution of the system being designed. This requires the designer to describe

what type of multiagent system is under development to allow future reviewers to understand the purpose

for which the ontology was built. By setting the level of granularity of the ontology appropriately,

ontologies ensure that only the minimum amount of information required for proper system execution is

specified.

6.2 Evaluation of the Use of the Information Domain in Extended MaSE

Chapter III also defined requirements for using the information domain in multiagent systems

development, and this section discusses the extensions to MaSE and how well they meet the requirements

described in Section 3.1.2. Table 4 summarizes the criteria and whether extended MaSE fulfills them. The

table also specifies whether Gaia and MESSAGE, the two other multiagent systems engineering

methodologies discussed in Section 2.2.2, fulfill these criteria.

Domain Representation Requirement Met by
Extended

MaSE

Met by Gaia
Methodology

Met by
MESSAGE

Allow for Specification of the Information
Domain

Yes No Yes

Specification Should Occur Before Designing
any Information Sharing in the System

Yes No Yes

Allow Designer to Specify Objects to Pass
between Agents

Yes No Yes

Allow for Agent Data Models Yes No No

Allow Designer to Specify Relationships
between Data Models

Yes No No

Table 4 Criteria For Using Information Domain in Multiagent Systems Design

As one of the first agent oriented methodologies, the developers of Gaia address the behavior of

agents that make the system development different from traditional software development. The resulting

 79

documents describe variables, but the methodology does not discuss how to specify the type of variables or

the specification of the information domain. This development is left to the user, in a manner similar to the

low-level design, as discussed in Section 2.2.2.1.

Section 2.2.2.2 discussed how MESSAGE uses a domain view to represent the information

domain of the system. This view is developed in parallel with the behavioral and structural models. This

parallel development allows the user to modify the information domain specification to include any object

found to be necessary while designing the structural and behavioral models. While this satisfies the first

three criteria in Table 4, the methodology does not allow for agents to have a different model than the

system data model. Without the ability to specify agent data models, MESSAGE does not fulfill the last

two criteria in Table 4.

The results for the Table 4 regarding MaSE come from the experience of using extended MaSE to

develop a distributed course scheduling system. The purpose of the system is to allow for the scheduling of

classes for instructors and students. Various individuals can schedule simultaneously using the distributed

information sources of the system. Appendix A further describes the requirements and development of the

system throughout the MaSE process, while the rest of this section discusses how extended MaSE fulfills

the criteria based on the experience of developing the course scheduling system.

6.2.1 Specifying the Information Domain

The first extension to MaSE involves creating the system ontology. This extension meets the

criteria for allowing the designer to specify the information domain at the appropriate time in the design

process. The previous steps in MaSE, Goal Hierarchy and Use Cases, provide a set of terms for

consideration as possible objects in the ontology. Table 5 shows the terms for the scheduling project

derived from previous steps. Seven of these nine terms become part of the ontology, providing useful

information to assist the designer in developing the data model.

 80

Terms Derived From
Schedule
Course
Section
CourseType
CourseOffering
Room
Student
Instructor

User
Sequence
Diagrams

System
Requirements

System Goals

Table 5 Candidate Ontology Terms

The creation of the system ontology occurs at the appropriate time in the development process.

Earlier steps analyze the goals and situations the system will encounter. The step after the ontology

creation passes messages and information amongst the roles. This information passing occurs with

parameters that are specified as objects from the ontology. By placing ontology creation right before task

creation, the methodology allows the user to analyze the problem domain thoroughly before creating the

data model. Designers can determine exactly what information is necessary for the system while creating

the data model before it is required for the rest of the development process, meeting the criteria to develop

the model before designing information sharing in the system.

One alternative is to place the ontology creation before the creation of use cases and sequence

diagrams. This placement, however, would require the designer to specify the information domain before

fully analyzing the sequence of events that occurs in the system. This location allows for the objects in the

ontology to be included as parameters in the sequence diagrams, but the use cases and sequence diagrams

provide important details regarding exactly what information must be included in the objects, which

outweighs the benefit of placing the ontology creation before the sequence diagrams.

6.2.1.1 Steps

Not only does the placement of the Create Ontology phase logically flow with the software

development process, but the steps within the phase also flow from one to other. At each step, the inputs of

 81

the previous step are used to continue the development of the ontology. The steps are also an iterative

process, allowing the designer to make modifications at any time during analysis, design, and development

The first step creates the class hierarchy and provides the designer with a skeleton framework for

the rest of the ontology development. This framework then expands with the addition of the attributes of

the objects. One development hurdle with creating attributes is that some users may find it difficult to

separate between defining attributes that strictly describe the object and those that describe relationships in

the information domain. The designer can combine these two steps, if desired, to reduce confusion over

which type of attributes to create at each step.

Once the user specifies the information domain in terms of objects and their attributes, the next

step records the requirements on the data in the form of axioms. Considering the functions the system

performs on the data aids in the development of the axioms. In the course scheduling system, for example,

the scheduling agents compare the ScheduledEvents of a Person to ensure that the person is not required in

two different places at the same time. The ontology describes this axiom to ensure later developers know

to code the system appropriately to prevent the situation from occurring.

Existing use cases simplify the final step of refining and validating the ontology. The designer

iterates through the sequence diagrams or use cases, and ensures that the created data model contains all the

information needed to accomplish the described events. If there are any problems with the data model, the

appropriate modifications are made. Once the designer tests the data model against all the use cases, the

ontology creation step is finished.

6.2.2 Using Objects from the Information Domain

Once the designer specifies the information domain for the system, the objects in the model

describe the information passed throughout the rest of the MaSE process. The classes become parameters

in the task and communication state diagrams, as well as attributes and parameters to methods in the

components. This section evaluates the benefits of including the information domain in behavior

 82

specifications of the system, meeting the criteria of allowing the developer to use the data objects in the

design specifications.

6.2.2.1 Task and Conversation State Diagrams

MaSE describes tasks and conversations using finite state automata, so the experience with using

the ontology is the same for each case. With the existing data model, the designer can specify the type of

objects passed between agents, as shown in Figure 34. This is an immense improvement over the previous

version of MaSE, as designers can now observe the flow of information in the system. In Figure 34, the

agent will receive a Schedule object. The developer knows the appropriate object to cast the received

parameter to when this conversation is implemented in code. Without the ability to specify the object type,

the person responsible for coding has to guess at the appropriate object.

Figure 34 Sample Finite State Automata with Information Passing

With the ability to specify parameter types, designers also know the exact structure of the

information passed between agents and can verify that each agent has all the information needed to

accomplish its goals. Previously, the designer passed in a parameter assuming the developers would realize

to code that information into that object. With a specified data model, the user can specify the object and

ensure the information is an attribute of the object. If the information does not appear in the ontology, the

designer adds it to the data model.

 83

One issue that still exists within MaSE is that the diagrams use local variables, as shown in Figure

35. In the state LoadFile, the agent has a local variable data, which is not defined in previous documents.

Designers do not define local variables until the next-to-last step in MaSE, Constructing Agent

Components. This requires the designer to either skip ahead to define the variable in a component or

remember the type of each variable for specification in the documents developed later. The fix for this

problem is to include some type of section attached to the finite state automaton for the conversation or task

which lists the variables and functions included in the state machine. In this manner, the designer could

describe that data is a list of Instructor objects so that the variable can be carried through the rest of the

design documents with a data value description.

Figure 35 Task Diagram with Unspecified Variable

6.2.2.2 Components

The MaSE extensions also assist the user with creating the component architecture. Previously,

the designer could define an attribute as any data type. If this type was not a programming language data

 84

type, such as int, the object type was not specified anywhere in the design documentation. Now, the

designer can choose the variable’s data type from the component ontology or a system type. When it is

time to code the system, the developer now knows exactly how to code up the types developed for the

system and which components use those types.

To fulfill the criteria of allowing agent data models, extended MaSE includes component

ontologies. These ontologies further increase the usefulness of MaSE, allowing designers to integrate

interface agents to legacy systems. The user can create component data models based on the system the

agent interfaces with and describe how the model relates to the system data model by specifying which

classes and attributes correspond to one another.

The final requirement, to allow the designer to illustrate the relationships between the data models,

is satisfied by the development of a mapping between the system and component ontologies. The

implementation of this step in agentTool assists the user by suggesting objects to map to based on the

ranking of objects by the Geometric Score Reduction Model.

6.3 Geometric Score Reduction Model

The metrics of time and rank of the relevant object, discussed in Section 3.3.2, provide a method

for comparing the performance of the ranking model with three different implementations against a

baseline alphabetical model. The control set is a model that returns the objects sorted in alphabetical order.

This research uses this model because when mapping, an alphabetical listing is preferred to a hierarchical

tree structure. A tree structure requires the designer to remember the parents of a class instead of simply

the name of the class. With an alphabetical listing, on the other hand, the designer can scroll through the

list to find the appropriate object, without having to navigate through a tree-like structure. This

alphabetical model provides a baseline for comparing the various implementations of the Geometric Score

Reduction model.

As discussed in Chapter V, the ranking algorithm uses two methods to compare attribute structure.

The first method, best-value, computes the similarity score between attributes and matches the attributes to

 85

maximize the total similarity score. The comparator method orders the attributes based on their

characteristics and then matches two attributes if they are equal. This research develops a strict and a loose

comparator, where the loose simply uses the data type to decide whether two attributes are an exact match

while the strict uses additional characteristics, such as the required and multiplicity characteristics of an

attribute. Each experiment evaluates the performance of the baseline model along with the performance of

the best-value, strict comparator, and loose comparator methods of the Geometric Score Reduction Model.

6.3.1 Experiment Setup

This research runs three experiments to test the models. The first experiment ensures the ranking

model operates as designed by mapping an ontology to itself. The second experiment tests a general case

of mapping between same-sized ontologies to evaluate possible future use of the ranking model. The final

experiment tests the ranking model when mapping from a smaller ontology to a larger ontology, the

condition that occurs when mapping from component to system ontologies.

Each experiment involves two ontologies: from and target. Every object in the from ontology is

mapped to the target ontology. Figure 36 demonstrates a sample run in the experiment. In this sample run,

the ranking model ranks the objects in the top right list based on their similarity to the Advisor object. The

relevant object in the target ontology is the Advisor object, ranked ninth in the list. The experiment records

this ranking and then ranks the AFITForm51 object. At the end of all the runs, the average rank is

determined along with the standard deviation of the ranks. The ranking model ranks the objects in less than

one millisecond, so each run is executed 1000 times to obtain a time measurement to compare the time

metric.

Choosing which ontologies to use was a complex task as most of the available ontologies are

either very small or do not provide many attributes to the objects in the domain. For example, some

available ontologies create a hierarchy of objects to distinguish between objects in the domain and rely on

the user to understand what the object represents by the name of the object. Computer-based systems

cannot use these types of ontologies, as the objects must contain attributes to actually pass information in

 86

the system. After a long search, two ontologies for the smaller to larger case were located in the DAML

Ontology Library. The similar-sized case experiment uses data models created by students at AFIT for a

software engineering project. The data models represent the same domain, but the students chose to

represent some overlapping semantic concepts while also representing some concepts not represented by

the other groups.

Figure 36 Example Experiment Run

6.3.2 Mapping to Identical Ontology

The first experiment shows that the three versions of the ranking model work perfectly under the

optimal condition of mapping to identical objects. This experiment maps the four ontologies identified

above to themselves. For each run, the ranking model returned the identical object as the number one

ranked object based on similarity.

This is expected because an identical object receives a similarity value of 100% due to the name,

role, and attributes matching exactly. The only way the relevant object would not be returned number one

is if another object receives a perfect similarity score, also. For that to happen, however, the other object

 87

would have to match the original object’s name, role, and attributes. If so, the ontology contains two

objects that are exactly the same, which is not possible in properly constructed ontologies. Therefore, when

mapping an ontology to itself, a correct implementation of the ranking model will always return the

relevant object as the number one ranked object.

6.3.3 Mapping to Similar Sized Ontology

After verifying that the versions of the ranking model perform correctly in optimal situations, this

research tested them using two ontologies with the same number of objects. As discussed earlier, this

thesis tunes the parameters of the Geometric Score Reduction Model to work best when mapping a smaller

ontology to a larger ontology. However, testing against similar sized ontologies can illustrate performance

in a broader case.

For this test, the research uses two data models developed by different teams for the same software

project. Each model contains the information necessary to construct a registrar system for the term project

in a software engineering course. The system ontology was constructed by Chad Harris, Nate Jensen, and

Choung Kil while Eric Trias, Rick Rapallo, and Rick Day constructed the component ontology. Each data

model is described in detail in Appendix B.

The experiment runs every object through the ranking model for comparisons with the objects in

the target ontology. In the case when an object was not in the target ontology, the run was omitted from the

experiment since there is no correct answer for the ranking model to find. The development teams used

these ontologies to design the system, but did not actually implement the system, so the teams do not

describe the same set of semantic concepts. If the project included coding the system, the data models

would have been refined to include the same semantic concepts.

Table 6 presents the experimental results from the various versions of the ranking model. The

control case of the alphabetical model averages a rank of 13. This is no surprise as there are 26 objects in

the target ontology. Since every object is tested, the expected rank is half the number of objects. Every

 88

version of the Geometric Score Reduction Model is slower, but outperforms the alphabetical model in

ranking the objects.

Best-Value Strict Comparator Loose Comparator Alphabetical
Average Rank 6.238095 7 7.428571 13.14286
Standard Deviation 5.448897 6.778467 5.143651 7.525196

Average Ranking Time
for 1000 Ranks (ms)

1157.3333 396.8095 340.6667 31.4286

Table 6 Similar Sized Ontologies Ranking Model Results

The best-value approach averages a rank of approximately 6, or 24% of the number of objects in

the target ontology. This approach has the largest run time of 1.157 seconds to return the ranked objects

1000 times. This increased execution time is due to the polynomial running time of the algorithm that

compares the attributes of the object, as discussed in Chapter III. Using this version of the ranking model,

the designer looks at 24% of the objects in the target ontology, on average, before finding the correct

mapping. This is a definite improvement over the alphabetical model.

Using a strict comparator to evaluate the attribute similarities, the ranking model averages a rank

of 7, or 27% of the number of objects in the target ontology. This accuracy is slightly less than the best-

value approach, but executes in approximately one-third the time, based on the average results from

ranking objects 1000 times. The reduced running time is a product of the n*log n running time of the

attribute comparison algorithm, as discussed in Chapter III.

The loose comparator method performs slightly lower than the strict comparator in this

experiment. The method averages a rank of almost 7.5, a significant improvement over the alphabetical

model. The loose comparator method performs worse because it only looks at the data types of the

variables. With this method, it can yield false positives, non-relevant objects that it thinks are relevant.

Because the algorithm compares fewer characteristics, however, it executes slightly faster than the strict

comparator method.

 89

6.3.4 Mapping to Larger Ontology

The final experiment simulates the intended use of the Geometric Score Reduction model. A

smaller ontology, consistent with that of a component, is mapped to a larger ontology, consistent with a

system ontology. The system data model is the general concept model built by Jeff Heflin [Heflin 2000].

The component data model is the GEDCOM ontology, a genealogy-based data model built by Marti Hall

[Hall 2001]. The ontologies can be found online [DAML+OIL], and the exact website of each is discussed

in Appendix B.

This experiments uses these ontologies because the general concept model includes a majority of

the semantic concepts of the GEDCOM ontology, while containing many more concepts than the

GEDCOM model. Table 7 shows the results from the experiment.

Best-Value Strict Comparator Loose Comparator Alphabetical
Average Rank 2.166667 2 2 15.5
Standard Deviation 2.401388 2.44949 2.44949 7.342797
Average Ranking Time for
1000 Ranks (ms) 1076.1667 428.8333 352 35.3333

Table 7 Experiment Results for Smaller to Larger Ontology Mapping

Unlike the previous experiment, the best-value method performs slightly worse than the

comparator methods. The performance of each of the methods is an average rank of two, or 6.666% of the

total number of objects in the target ontology. This is a huge improvement over the traditional alphabetical

listing that averaged approximately 51%. Using the ranking model, the designer looks at less than one-

seventh of the number of objects required using the alphabetical ranking model.

6.3.5 Analysis of Implementation Approaches

Comparing the average rank of the implementations to the baseline model, using hypothesis

testing on paired data, shows that the experiments yield a p-value of less than one percent. This signifies

that the experiments present enough data to conclude that the implementations of the Geometric Score

 90

Reduction Model have a higher precision than the baseline model. However, the experiments find no

statistically significant difference among the precision of the three implementations.

Situations exist where one implementation is better suited than the others. The best-value method

allows for partial matches when comparing attributes and is built to allow designers to specify similar

attributes as different data types, as discussed in Section 5.2.1. This capability does not exist in the

comparator implementations, so the best-value method is recommend for most situations.

When mapping to an ontology with a large number of objects, however, the user may find the

best-value approach takes too long to rank the objects. In this situation, the comparator implementations

should be used. The choice between the strict or loose comparator is determined by the designer’s

perception of whether or not the two ontologies are specified in the same level of detail. For example, if

one model describes attributes with their multiplicities while the other model simply lists the attribute’s

names and data types, the user should use the loose comparator. If the characteristics are well-defined in

each ontology, however, the strict comparator should be used to take advantage of these characteristics.

 91

VII. Conclusions and Future Work

The previous chapters describe the extensions added to MaSE to address the information domain

of multiagent systems and the Geometric Score Reduction Model developed to assist designers in mapping

between ontologies. This chapter summarizes the results from the previous chapters and suggests possible

areas for future work to enhance MaSE and the ranking model.

7.1 Summary and Conclusions

This research fulfills all the goals described in the introduction by maturing MaSE to address the

information domain, providing a methodology to develop the structural, behavioral, and information

models of heterogeneous multiagent systems. To fulfill the goals, the research identifies the requirements

for constructing and using information domain specifications in multiagent systems. MaSE now includes

the development and use of ontologies to define the information domain of the system. This research

shows that ontologies can fully describe the information domain as needed in the development of

heterogeneous multiagent systems.

These additions to MaSE lead the user through the creation of the system ontology and use of data

model objects in agent behavior. The extensions mesh with the previous version of MaSE to ensure the

MaSE steps logically flow through a software development process where the outputs of one step become

inputs to the following steps. As part of the MaSE process, the designers now construct system and

component ontologies by creating and structuring classes and attributes using terms extracted from the goal

hierarchy, system requirements, and use cases. Agents can then use these classes to share information with

one another.

By adding these steps that address the information domain, this research matures MaSE towards a

complete methodology for building multiagent systems. MaSE now addresses the system’s behavioral,

structural, and data models, thus defining the aspects required to ensure a coded system will fulfill the

 92

initial requirements. With these models, the designer can ensure that each agent has the required

information to fulfill all of the system requirements.

Part of the information domain model of the system describes the mapping between the system

ontology and the ontologies of the agent components. To assist with creating these mappings, this research

develops an information retrieval ranking model, the Geometric Score Reduction Model, which computes

the probability that two object classes represent the same semantic content in the information domain. This

research programmed the ranking model into agentTool, as a proof of concept, and showed that the ranking

model can reduce the development time of these mappings to one-seventh of the normal development time.

The experiments in Chapter IV also indicate that the ranking model can be expanded to assist designers in

mapping any two data models while integrating systems.

7.2 Future Research Areas

7.2.1 Automatic Conversion from UML to Ontologies

The development of automatic transformations to translate UML specifications into an ontological

format would help with the expansion of existing ontology libraries. With an automatic translator,

designers could use existing UML data models without having to convert them manually into ontology

specifications. This is particularly useful when integrating legacy systems, whose data models are

specified in UML. Part of the research would include developing a standard ontology application

programming interface (API). The current DAML+OIL API provides a starting point, but the API is new

and needs to mature to input and output other ontology specification languages.

7.2.2 Creating Converters from Ontology Mappings

Currently, designers must develop code to implement the mappings between ontologies specified

in MaSE. More research could develop automatic transformations to generate translators to implement the

mappings. These translators would perform similar data marshalling to that done by distributed operating

 93

systems. They could take the objects from the system ontology and create the appropriate objects from the

component ontology and vice versa.

The current mappings contain all the information necessary to create these translators. Future

research must develop the proper architecture for the translators and develop the transformations to specify

code to fit into the architecture to perform data marshalling for the multiagent systems. This future

research would further assist the developers by reducing the amount of code necessary for them to

complete.

7.2.3 Ranking Model Enhancements

While this research shows that the ranking model performs well, user-feedback could improve the

results of the model. User-feedback improves the precision of returned results in Information Retrieval

systems, and can be applied to the Geometric Score Reduction Model. As the designer maps the objects of

an ontology, the ranking model uses the selected objects to fine-tune the parameters of the model. These

adjustments should improve the precision of any future rankings the model performs on the ontologies. To

modify parameters, the model adjusts the probabilities used to compute similarity values based on the

model’s performance.

7.2.4 Transformations

There are also topics in MaSE for future research. Previous research by Clint Sparkman addressed

the development of semi-automatic transformations to construct the design models from the analysis

models in MaSE; however these transformations currently do not work consistently in agentTool. Future

research should make these transformations more robust and include error catching so that any problems

are properly reported to the user.

Constructing the design models from the analysis models is a straightforward transformation, so it

is logical to have an automated transformation of this process. The automated process ensures that the

design models represent all the concepts described in the analysis models, while a manual process might

 94

miss some concepts. The automated process also saves the designer the work of creating these design

models, which can be a lengthy development process. The development of reliable, robust transformations

for MaSE is the research area that provides the most benefits to users.

7.2.5 Improved agentTool Visual Interface

Another research area pertains to improving the visual interface of agentTool. The current tabbed

interaction in agentTool fails to take advantage of the flow of information through the MaSE process. For

example, to view an agent architecture, the user must click on the agent and then on the agent architecture

tab. An improved interface would allow for the user to drill-down into the agent through a double-click, or

some other method. This research area would require identifying and specifying the flow of information

throughout the MaSE process and then constructing an interface to visualize this information and its flow in

agentTool.

7.3 Summary

Designers will integrate many different automated systems to develop the global information grid

called for by Joint Vision 2020. The Geometric Score Reduction model can aid this process, as this

integration involves mapping the various data models of each system.

This research also addresses the need for a complete methodology for constructing reliable

multiagent systems. MaSE provides designers with an engineering methodology to develop the

information domain, behavioral and structural models for multiagent systems. Using MaSE, developers

can construct the secure, reliable, and robust systems necessary to provide information superiority for our

warfighters.

 95

A. Appendix – Designing Distributed Scheduling System Using Extended

MaSE

The goal of the project is to develop a semi-automatic course-scheduling program to allow users to

organize the time and location of classes. The system is representative of a university-type environment for

which the registrar’s office develops a quarterly schedule. Within the university, there are multiple

departments offering courses of differing types. Students may take courses from any department, and

classrooms are shared resources between all departments.

The generic network system described by the requirements has the required scheduling data

resident on up to four separate computers and allows any number of concurrent schedulers from network

machines. The system must fulfill the following requirements:

• Each database can be resident on any network computer, but the design must be robust
enough to consider that the databases may be moved.

• There may be any number of schedulers required to schedule all the courses for a single
quarter.

• There are 15 course types, each with a 4 character identifier. Each course has a three
digit identification number and a two digit section number. A course may have multiple
sections determined by class enrollment. A particular class offering is designated by the
course type, course number and section number.

• Any scheduler can choose to schedule any one or more class types.

• Only one scheduler may schedule any given course type at once.

• Any scheduler should be able to print a copy of the current scheduling of any (one or
more) course types.

• There should be only one master schedule resident on the system.

• The system should produce an integrated schedule that includes course type, course
number, section number and time blocks consisting of day, start time, end time and room.

 96

This appendix describes the development of this system using extended MaSE and discusses each

step along with the results of the step and how the designer reached those results.

A.1 Capturing Goals

The first step translates the functional requirements into the goals of the system. The main goal

for this system, based on the requirements, is to perform AFIT scheduling activities. The requirements then

describe four subgoals: producing, displaying/outputting and managing schedules and handling user input.

Figure 37 shows the complete goal hierarchy for the system. Every system requirement is met by one of

these goals and the rest of this section describes each of the goals in detail.

Figure 37 Distributed Course Scheduling Goal Hierarchy

A.1.1 Produce a Schedule

This goal represents all the activities required to create the schedule for a specified course type.

As the main system activity, producing the schedule is the most extensive goal. The first sub-goal, Verify

the Components, is a partitioned goal since it is divided into sub-goals relating to particular schedule

requirements. These subgoals ensure there are enough students for each course and that there are

instructors to teach each course. Once the sub-goals are met, the Verify the Components goal is satisfied,

also.

 97

Prepare the Components encompasses all the goals relating to splitting class offerings into the

proper number of sections, based on student enrollment and determining the available resources for

scheduling. The Schedule the Sections goal contains all the goals relating to the actual scheduling of the

courses; assigning a time and classroom to sections and assigning students and instructors to these sections.

A.1.2 Allow User Inputs

This goal handles all user input, allowing the system to interact with the user. The goal allows

users to create and modify the schedules and to instruct the system how to handle any scheduling conflicts

that may arise. Creating a separate goal for user input allows all the other goals to not have to handle the

user input required for system execution.

A.1.3 Display the Schedule

This goal fulfills the requirement of allowing the user to view or print schedules. The goal

contains a sub-goal for each of these two methods of viewing schedules. The goals pertain to both new and

existing schedules, so the system does not handle the displaying separately for each of these cases. By

adding an overall goal for displaying the schedule, the design reduces the number of goals needed when

producing new or managing existing schedules.

A.1.4 Manage the Existing Schedules

Once schedules are created, the system must retain them for future modification or viewing.

Manage the Existing Schedules handles this requirement by storing the goals and ensuring that multiple

schedulers do not simultaneously schedule the same course type. Another subgoal is to unschedule the

various sections in a schedule if a user decides to cancel an existing schedule. The goal is a partitioned

goal, as it is satisfied by the combination of the three subgoals.

 98

A.2 Applying Use Cases

After analyzing the system requirements, four use cases describe the scenarios in which the system

participates. The first use case, Produce Schedule, is the scenario where the user tells the scheduler to

schedule a set of course types. The scheduler displays the existing schedules for the course types and asks

the user if the existing schedules should be discarded. If the user responds with an affirmative, the

scheduler enters the Erase Schedule use case.

Erase Schedule frees up the resources used by the schedule. The system notifies the managers for

the students, classrooms and instructors that the schedule is no longer valid and that the time and resources

used by the schedule are now available. In this manner, the system updates all data to reflect the

cancellation of the schedule.

Once the system erases the existing schedule, the Automatically Generate Schedule use case

begins. This use case involves the scheduler first obtaining a lock on the course type to be scheduled. This

allows the schedule manager to prevent simultaneous scheduling of the same course type. Once the

manager grants a lock, the scheduler retrieves the data on all the sections needed for the course types, along

with the information regarding the students and instructors for these classes. The system creates the

schedule once it receives the availability of the classrooms. Because multiple schedulers can run at once,

the system must check the new schedule with each of the managers to ensure the schedule is feasible. Each

manager checks the schedule against the current state of the resources and replies whether the schedule is

approved. If approved, the manager’s resources are adjusted to reflect the times in the new schedule. This

commit protocol can create a race condition when scheduling, as the first user to finish is more likely to

have the schedule approved. This protocol balances the need for distributed scheduling with the

requirement to not double-book resources. The schedulers can obtain the data, but the data may change

during scheduling, requiring the system to receive the approval of the managers once the schedule is

created.

 99

Another option is to lock each resource, but then the system could only allow schedulers to

execute one at a time. As a result of the need for simultaneous scheduling, the system will now have

situations where the created schedule is not valid and must be rebuilt. If any of the managers disapprove

the schedule because of conflicts, the system notifies any managers that have approved the schedule to free

up the resources used by that schedule.

Once the system creates a valid schedule, the system shows the new schedule to the user and asks

if the user accepts the schedule. If so, the schedule is passed to the schedule manager to save. If not, the

schedule is passed to the schedule manager to have all the resources used by the schedule released.

The last use case, Output Schedule, is the scenario of the user wanting to view or print a schedule.

The use case also contains the situation when the system initiates the display before and after creating a

new schedule. Once the use cases describe all the system scenarios, the designer converts the use cases

into sequence diagrams.

A.2.1 Sequence Diagrams

The sequence diagrams flow directly from the use cases. The Produce Schedule and Erase

Schedule use cases each have one sequence diagram that fully describes their scenarios. The Automatically

Generate Schedule has two sequence diagrams to illustrate the scenario when the schedule is approved and

disapproved by the user. The last use case, Output Schedule, has three sequence diagrams for its three

scenarios; user requests display to screen, system requests display to screen, and user requests print out.

The construction of the diagrams from the use cases is straightforward and is not described in this

research. The main decision in creating the sequence diagrams is the creation of roles for the system. This

research developed a manager for the instructors, classrooms, students, courses and schedules. These

manager roles come from the requirement that the source data may be located on separate servers. These

roles act as an interface to the service providing the data for the individual resources. The user role

represents the user in the various scenarios. Because the system encompasses all of the roles, the role of

scheduler represents the part of the system that performs the scheduling algorithm. Similarly, the output

 100

manager handles the displaying and printing of the schedules. The analyst used these roles to construct the

sequence diagrams for the use cases.

A.3 Developing System Ontology

Before further specifying the system behavior, the designer constructs the ontology for the project.

The system uses this data model to share information between agents to accomplish the systems goals.

This section discusses the development of a data model for this multiagent system.

A.3.1 Define Purpose and Scope

The system requirements determine the purpose and scope of this ontology, and Figure 38 shows

the metadata for the developed data model. The ontology contains only the information needed to schedule

classes, with this scope leaving out information such as the address of individuals or the grades received by

the students. Once the scope and purpose, along with the other metadata, are accurately described, the

designer can start the construction of the ontology.

Figure 38 Metadata for the System Ontology

 101

A.3.2 Collect Data

The first step is to create the list of candidate terms for the data model. Table 8 shows the list of

candidate terms derived from the system requirements, goals, and sequence diagrams. This list acts a basis

for objects and attributes of the ontology, but designers frequently expand the list throughout the

development process. The next section illustrates the expansion and use of the candidate list.

Terms Derived From
Schedule
Course
Section
CourseType
CourseOffering
Room
Student
Instructor

User
Sequence
Diagrams

System
Requirements

System Goals

Table 8 Candidate Ontology Terms

A.3.3 Construct Initial Ontology

A.3.3.1 Existing Ontologies

If the developed system was part of a larger school wide information system, it is beneficial to use

the data model from that larger system. For example, if a college-wide ontology existed, using that

ontology the system could integrate easily into any other information system using the college-wide model.

This section builds an ontology from scratch to demonstrate the methodology, but for an actual registrar

system it is recommended to build an ontology that discusses more than just the registrar portion of

academia.

A.3.3.2 Build Class Hierarchy

Figure 39 shows the initial class hierarchy for the registrar system. The terms course type and

course offering from the term list are not included in the ontology. Course type defines the type of a course

 102

and is appropriate as an attribute of the Course object. A Section represents the specific offering of a

course, so a course offering object is redundant and not included in the data model. Along with not

including some terms, the ontology includes terms not originally in the candidate list.

Figure 39 Initial Class Hierarchy

These additional objects stratify the objects and hold redundant information. Students, Instructors,

and Users will all have similar attributes and so the Person class acts as a super class to hold these common

attributes. DateAndTime holds the information regarding the start/end date and times of the courses. The

initial ontology required that classes occur only in classrooms, but since there are other types of resources,

such as lecture halls or auditoriums, a Resource class is added. The system will use this class to schedule

sections in any type of room.

A.3.3.3 Add Attributes to Classes

Once the initial class structure is complete, the data model can add attributes to the classes. Table

9 shows the attributes of each object and the attributes’ semantic representation. The question for creating

attributes is What information must the objects contain for the system to function properly. Table 9 shows

the attributes in the highest level they occur. For example, name and idNum occur in Student, Instructor

and User, but are not shown in the table. The attributes represent the same semantic content in all of the

 103

subclasses of the objects in Table 9. The first pass in creating attributes involves those attributes that do

not specify relationships among objects. The relationship attributes are added in the next step.

Object Attributes Attribute Description
name Name of the individual

idNum
Social Security or other identification number of the
person.

date Date of the instance
time Time of the instance

duration
Duration of the object. So the stop time is this many
hours from the start time/date specified in this object

coursetype
The string defining the type of course (per system
requirements)

number The course number (per system requirements)
description Brief description/name of the course

numHours
Number of hours the class meets. System needs to
know how many hours to schedule a week.

Resource name Name of the resource
Section number Section number (per system requirements)

Schedule courseTypes

List of course types the schedule contains. Reduces
the time necessary to determine what type of sections
are in the schedule.

Person

DateAndTime

Course

Table 9 Initial Attribute Listing

A.3.3.4 Define Relationships

Designers sometimes merge the previous step and this step into one, as both involve adding

attributes to the objects. This step specifies the relationships between objects as attributes. A single

attribute can represent a relationship, such as the fact that a Section is an offering of a Course represented

as an attribute of the Section. In some instances, however, two attributes represent the relationship, such as

a student registers for a section and the section must know all the students registered for it. This requires an

attribute in both the Section and Student objects. Table 10 shows the attributes added to the objects and

why the system needs the attributes. By recording the instructor, students, and classrooms in the Section

object, the system can easily erase a schedule. Using these references the system knows exactly which

objects to update. After describing all the attributes, the designer specifies any axioms regarding the

attributes and objects.

 104

Object Attributes Attribute Description

coursesToTake
The Courses the student needs to register for. Once
registered, the course is removed from this list

registeredSections

The Sections the student is currently enrolled in.
System will use to determine the available times for the
student.

canTeach The courses the instructor is qualified to teach.
registeredSections Same as Student.registeredSections

Schedule composedOfSections The list of Sections contained in the schedule

Resource
usedBy

The sections currently using this room. Allows the
system to determine the open time for this classroom.

course The Course object the section is an offering of.
taughtBy The Instructor object teaching the section.
location The classrooms that will hold the section.
dateandTime The times for the sections.
registeredStudents The Students that are registered for this section.

Section

Student

Instructor

Table 10 Relationship Attributes for Distributed Scheduling

A.3.3.5 Define Axioms

The first system axiom requires that the sections of an instructor or student cannot overlap. In

other words, a person cannot have two events scheduled at the same time. A similar requirement is that

two sections must not occur in the same room at the same time. These two axioms specify the situations

that cannot occur with the system data. With the axioms fully specified, the project can now validate the

ontology using test cases.

A.3.4 Refine and Validate

Using the use cases, the designer simulates system behavior to ensure that the ontology contains

all necessary information. If the project needs additional information, the designer modifies the ontology to

meet the need. For this project, the ontology does not fulfill all the needs for the Generate Automatic

Schedule use case. The first problem arises when the SectionManager creates the appropriate number of

Section objects for the courses based on the student enrollment. The ontology does not describe the

maximum number of students allowed in the course offerings. To fix this problem, the project adds the

 105

maxNumberofStudents attribute to the Course object. This attribute allows the system to know the

maximum number of students that can occur in a section of the course, so that seminar classes can have

smaller numbers than a lecture class.

The next problem occurs during the actual scheduling of the sections by the Scheduler. Instructors

and students might have other events that conflict with the scheduling of sections, such as department

meetings, but the ontology is incapable of representing these events. The project adds a ScheduledEvent

object as a parent of a Section to represent these other events. A Person then has a scheduledEvents

attribute that contains a list of all events that individual is required to attend. With these additions, the

scheduler can verify that an individual has no activity scheduled during a specific time frame.

The final problem is a design issue, instead of the lack of information issues discussed above. The

DateAndTime object currently represents the end time by the duration from the start time and date. This

will require the system to compute the end time for every comparison while scheduling. This increased

computation outweighs the extra memory needed to keep the end date and time. By adding an endDate and

endTime attribute, the system can schedule the sections with less processor use.

A.3.5 Final Ontology

The ontology is validated once the designer is comfortable that the ontology includes all the

information needed to execute the use cases. Figure 40 and Table 11 show the attribute list and the final

class hierarchy for the system data model. At anytime in the MaSE process, the designer may identify

additional information required by the system and make the appropriate changes to meet this need. Like

the other steps in MaSE, the construction of the system ontology is iterative and can be revisited at any

point in the development cycle.

 106

Object Attribute Description
name Name of the individual

scheduledEvents List of events the person participates in. System
uses this list to term free times for the individual.

idNum Social Security or other identification number of
the person.

registeredSections
The Courses the student needs to register for.
Once registered, the course is removed from this
list

coursesToTake
The Sections the student is currently enrolled in.
System will use to determine the available times
for the student.

Instructor canTeach The courses the instructor is qualified to teach.
composedOfSections The list of Sections contained in the schedule

courseTypes
List of course types the schedule contains.
Reduces the time necessary to determine what
type of sections are in the schedule.

dateandTime The time window the event occurs in.

location The location (Resource Object) where the event
occurs.

course The Course object the section is an offering of.
taughtBy The Instructor object teaching the section.
number Section number (per system requirements)

registeredStudents The Students that are registered for this section.
startDate Start date of the event
endDate Ending date of the event
startTime Start time of the event
endTime Ending time of the event

courseType The string defining the type of course (per
system requirements)

number The course number (per system requirements)

description Brief description/name of the course

numHours
Number of hours the class meets. System
needs to know how many hours to schedule a
week.

maxNumberofStudents Needed to calculate the necessary number of
sections based on enrollment

name Name of the resource

usedBy
The sections currently using this room. Allows
the system to determine the open time for this
classroom.

ScheduledEvent

Schedule

Student

Person

DateAndTime

Section

Resource

Course

Table 11 Final Attribute List for the Registrar Ontology

 107

A.4 Refining Roles

This step starts with assigning goals to the roles from the sequence diagrams and then constructing

tasks for the roles to accomplish the goals. This section discusses the goals and tasks of each role and why

the analyst chose each assignment.

A.4.1 CourseManager

The course manager creates the appropriate number of sections for each course of a specified

course type, based on the number of students enrolled. Because of this function in the sequence diagram,

the role is responsible for accomplishing the Prepare Sections for Scheduling goal. The role accomplishes

this goal through the ManageSectionInfo task, shown in Figure 41.

Figure 40 Final Class Hierarchy for the Registrar Ontology

The task begins by loading the data for the courses into memory from persistent memory.

Persistent memory is necessary in case of improper shutdown of the system, ensuring the data in the system

remains consistent. Once the data is loaded into memory, the task then listens for requests from other tasks.

 108

When the task receives a request for the sections of a specific course type, the role requests the

student data from the StudentManager. The task then creates the appropriate number of sections for each

course and returns the list of sections to the requesting Scheduler role.

Figure 41 ManageSectionInfo Task

A.4.2 InstructorManager

The InstructionManager role is responsible for retaining the instructor information and the

availability of each instructor. The analyst assigned the Verify Instructor-Course goal because this role will

handle the information that tells what instructors can teach which courses. The role must also ensure that

instructors are never scheduled to be in two different places at the same time. To accomplish its goal, the

role performs the ManageInstructorInfo task shown in Figure 42.

The task begins by loading the instructor information and availability from persistent storage.

Once loaded, the role will respond to any one of three requests from the other roles. The first request is for

the information about instructors for a specific course type. The manager constructs a list of all instructors

qualified to teach courses of that type and returns the list. The second request is to free the resources used

by a schedule. The manager uses the schedule to determine what instructors should be modified. The

 109

manager changes the instructors so that they are no longer unavailable during the times of classes in the

schedule. The manager then saves the instructor availability to persistent memory and returns an

acknowledgement to the role that sent the message.

Figure 42 ManageInstructorInfo Task

The final request asks the manager to approve a schedule. The manager checks for any conflicts

with the instructors in the schedule and their current free-time, and returns whether the schedule is valid or

not. If valid, the manager updates persistent memory to reflect the new schedule.

A.4.3 OutputManager

This role is responsible for handling the output of schedules in the sequence diagrams. This

function pertains to all the sub-goals of the Display Schedule goal. The design includes a task for each of

the sub-goals. Although one task could handle both the printing and the displaying to the monitor, different

tasks are used to simplify the internal task states.

 110

The DisplaySchedule task waits for a request to display a new schedule or an existing schedule to

the monitor. If an existing schedule is requested, the task requests the schedule from the ScheduleManager.

The schedule is formatted to fit on the screen and then displayed.

The PrintSchedule task waits for a request to print an existing schedule to the printer. The task

requests the schedule from the ScheduleManager, formats it for the printer and then places the schedule in

the print queue.

A.4.4 ResourceManager

The ResourceManager maintains all the information regarding the classrooms in the system. This

function maps to the Prepare Resources goal. To maintain when the classrooms are available, the manager

performs the ManageSectionInfo task. This task is analogous to the ManageInstructorInfo task, only the

task handles classroom, instead of instructor information.

A.4.5 ScheduleManager

This role retains all accepted schedules in persistent memory and ensures that only one person is

scheduling a course type at any one time. This role logically contains all the sub-goals of the Manage

Existing Schedule goal. This research designed two tasks, as the freeing of resources is separate from

storing and adding schedules.

The ManageSchedules task, shown in Figure 43, loads the schedules from persistent memory and

then handles messages from the other roles. If the task receives a request for a schedule of a specific course

type, the manager returns the appropriate schedule to the role. If the request is to save a schedule into the

system, the manager adds the schedule to the master schedule and saves it to memory.

The task can also handle lock requests. Locks are used to ensure that only one agent in the system

is scheduling a course type at any one time. Before scheduling a set of courses, the Scheduler must obtain

a lock on that course type. The ScheduleManager checks if that course type is currently locked. If not, it

 111

approves the lock request. If a lock already exists, the manager returns that a lock on that course type

already exists.

Figure 43 ManageSchedules Task Diagram

If after receiving a lock the Scheduler wants to cancel trying to schedule the course type, the role

passes an abort message to the ScheduleManager. The manager updates its memory to show that that

course type is no longer locked.

The FreeScheduleResources task returns all the resources used by a schedule into an available

state. The task contacts the InstuctorManager, StudentManager, and ResourceManager; asking each to

update their memory based on this schedule being removed from the system.

A.4.6 Scheduler

The Scheduler role is responsible for creating a schedule for a course type when requested. Thus,

this role meets all goals related to the creation of a schedule and performs the GenerateSchedule task to

meet all of these goals.

The GenerateSchedule task is the most involved of all the tasks in the system. The task waits for a

request from the User to schedule a specific course type. The task obtains a lock for that course type from

the ScheduleManager. If the lock is denied, the task notifies the User role and goes back to waiting. If the

 112

lock is granted, the task obtains the sections needed and all the information regarding the classrooms,

students and instructors for courses of that type.

Figure 44 FreeScheduleResources Task Diagram

Now that the task knows all the information, it attempts to create a schedule. If the system cannot

create a schedule, due to the existing schedules in the system, it notifies the User and aborts creating the

schedule. If a schedule is found, the task asks the InstructorManager, ResourceManger and

StudentManager to approve the schedule. If any of the managers do not approve the schedule, those

managers that have approved it are notified to free up the resources used by the schedule and the task

begins from the point where the lock was granted earlier.

Once a schedule is found and approved by the manager roles, the schedule is passed to the

OutputManager to display to the user. The system then asks the user to accept the schedule. If accepted,

the schedule is saved in the ScheduleManger. If not, the schedule is passed to the FreeScheduleResources

task and the whole process starts over.

 113

A.4.7 StudentManager

The StudentManager maintains all the information regarding the students in the system, which

maps to the Prepare Resources goal. To maintain when the classrooms are available, the manager

performs the ManageSectionInfo task. This task is analogous to the ManageInstructorInfo task, only the

task handles classroom, instead of instructor information.

A.4.8 User

The User role is responsible for handling all inputs from the user and translating them into the

proper requests to the various roles. The Allow User Input goal is met by the HandleUserInput task. This

task waits for user input, parses it and performs the appropriate system call.

A.5 Creating Agent Classes

The next step involves taking the roles and turning assigning them to agent classes. For this

project, the design uses one agent class for each of the manager roles. The design combines the roles of

User, Scheduler and OutputManager into a single agent class. These roles reside on the same system to

reduce network traffic and so including them in the same agent class reduces the number of agents in the

system. The InstructorManager, StudentManager, ResourceManager and ScheduleManager will reside on

separate systems and must have separate agent classes. Figure 45 shows the agent classes and their

assigned roles.

A.6 Constructing Conversations

Figure 45 also shows the conversations between the agent classes. This research constructed these

conversations using the tasks for each role. In the tasks, the role sends and receives messages. Once the

design assigns a role to an agent class, these messages become internal or external messages. For every

send in a task diagram, the designer finds the corresponding receive transition. If the roles reside in the

same agent class, no conversation is needed. If the roles are in separate agent classes, the designer creates a

new conversation.

 114

Figure 45 Agent Template Diagram

For example, in the FreeScheduleResources task there are four send messages. The first three are

to the InstructorManager, StudentManager and ResourceManager, which are all in separate classes. A

conversation exists for each of these sends: unscheduleStudents, unscheduleInstructors and

unscheduleClassrooms. The SchedManager is the initiator for each of these conversations, as the agent

starts off the conversation by requesting that the other agent free up the resources used by that schedule.

The other agent replies once complete and the conversation is finished. In this system, most conversations

are: send a message and wait for the response.

Some conversations, such as abortSchedule, are more complex. After the start of the

conversation, the responder must start additional conversations, as shown in Figure 46. This conversation

accounts for the last send from the FreeScheduleResources task. When asked to abort the passed-in

schedule, the agent starts the three conversations described earlier to free the instructor, student and

 115

classroom time. Once the conversations are complete, the agent responds that the schedule has been

aborted.

Figure 46 abortSchedule Conversation Responder Diagram

Using the procedure of matching sends to receives and ensuring every message sent to a task

located in a separate agent class occurs in a conversation, the designer specifies every needed conversation.

A.7 Assembling Agent Classes

The designer must now specify the agent behavior by describing the internal components of each

of the agent classes. As the conversations came from the tasks, so do the internal components. This system

uses the typical MaSE design of having one component for each of the tasks an agent performs. Each

component is then responsible for accomplishing the task it derives from.

This simplifies the design of the agents by compartmentalizing the agent behavior into parts that

contain a single task to accomplish. Without separating the tasks, the designer must integrate the behavior

of the two tasks into one single thread of control. This is a difficult and unnecessary process. With each

component performing a single task, the designer can easily transform the task behavior into the component

behavior. Now, however, the component starts specific conversations instead of sending messages.

Figure 47 is the component state diagram for the FreeScheduleResources component of the

SchedManager agent and shows how the task is transformed into the component behavior. In the task

 116

diagram, the role received a request and then sent a message to each of the managers. These send messages

are included in conversations, so when the agent receives the request, the agent starts the conversations and

then completes the initial conversation.

Figure 47 FreeScheduleResources Component State Diagram

The designer specifies the attributes and functions of each component after completing the state

diagrams for the component. These methods come from the actions performed in the state diagrams. In the

ManageSchedules task, one state has the action allowed = lockCourses(courseType:String). This action

became part of the lockSchedule conversation, started by the ManageSchedule component of the

SchedManager agent. As such, the component must contain an attribute allowed of type Boolean and a

function lockCourses that returns a Boolean and receives a String as a parameter. This project completes

this step by specifying the behavior, attributes, and methods of all system components.

A.8 System Design

The System Design step assigns agents to different computing platforms on the network. The

distributed course scheduling system has the design of one instance of each agent, except the UserAgent

that has multiple instances. Each agent resides on its own platform, as the system requirements dictated

 117

that each of the resources could be on a separate computer. Since each agent is responsible for one of those

resources, the agents must be on different platforms. Once the agents are placed on platforms, the

communication between platforms flows from the conversations between the agents.

With all of the MaSE steps complete, the analysis and design documents describe the system’s

behavior, architecture and information domain. The plans describe the agent classes, conversations and

their location in the system, providing the details necessary to code the multiagent system.

 118

B. Experimental Raw Data

This section contains the raw data from the experiments on the Geometric Score Reduction Model.

Each table has the object tested on, the correct object for mapping and the position in the ranked list of that

object.

B.1 Mapping Same-Size Ontologies

This section lists the results from the mapping of the Trias, Day and Rapallo version of the

Registrar Ontology to that of Harris, Jensen and Kil.

B.1.1 Best-Value

From To Rank
Time (ms) to
Rank 1,000

Times
Thing Thing 1 145
Advisor Advisor 9 1032
AFITform51 Form51 8 2824
AFITform69 From69 10 611
AFITGradList GraduationList 2 841
Course Course 13 2258
Database Database 1 140
Dean Dean 11 375
Department Department 1 1452
DepartmentHead DepartmentHead 11 626
DeptCatalog DeptCatalog 21 1442
DeptGradList GraduationList 1 846
Edplan edplan 1 2599
Grade GradeList 2 831
GradProgram GradProgram 2 2528
Instructor Instructor 12 611
QuarterCourseOffering CoursesOfferedList 6 1081
Registrar Registrar 8 1032
Requirements Requirements 4 641
Schedule ClassSchedule 1 646
Student Student 6 1743

AVG= 6.238095 1157.333333
STD= 5.448897 802.4071494

 119

B.1.2 Strict Comparator

From To Rank

Time (ms) to
Rank 1,000

Times
Thing Thing 1 281
Advisor Advisor 10 385
AFITform51 Form51 5 621
AFITform69 From69 6 320
AFITGradList GraduationList 2 340
Course Course 2 517
Database Database 1 284
Dean Dean 6 330
Department Department 1 443
DepartmentHead DepartmentHead 5 350
DeptCatalog DeptCatalog 25 425
DeptGradList GraduationList 2 344
Edplan edplan 2 520
Grade GradeList 16 331
GradProgram GradProgram 4 596
Instructor Instructor 12 351
QuarterCourseOffering CoursesOfferedList 3 390
Registrar Registrar 8 393
Requirements Requirements 20 320
Schedule ClassSchedule 2 351
Student Student 14 441

AVG= 7 396.8095238
STD= 6.80441 95.85855155

 120

B.1.3 Loose Comparator

From To Rank

Time (ms) to
Rank 1,000

Times
Thing Thing 1 250
Advisor Advisor 15 331
AFITform51 Form51 9 553
AFITform69 From69 11 272
AFITGradList GraduationList 5 301
Course Course 5 461
Database Database 1 245
Dean Dean 16 278
Department Department 1 362
DepartmentHead DepartmentHead 15 294
DeptCatalog DeptCatalog 9 375
DeptGradList GraduationList 6 301
Edplan edplan 5 454
Grade GradeList 1 292
GradProgram GradProgram 4 481
Instructor Instructor 14 293
QuarterCourseOffering CoursesOfferedList 7 328
Registrar Registrar 15 326
Requirements Requirements 5 286
Schedule ClassSchedule 3 294
Student Student 8 377

AVG= 7.428571 340.6666667
STD= 5.143651 82.66579301

 121

B.1.4 Alphabetical

From To Rank

Time (ms) to
Rank 1,000

Times
Thing Thing 25 30
Advisor Advisor 1 40
AFITform51 Form51 13 30
AFITform69 From69 14 30
AFITGradList GraduationList 19 30
Course Course 4 30
Database Database 6 40
Dean Dean 7 30
Department Department 8 30
DepartmentHead DepartmentHead 10 30
DeptCatalog DeptCatalog 9 30
DeptGradList GraduationList 13 30
Edplan edplan 19 30
Grade GradeList 15 30
GradProgram GradProgram 17 30
Instructor Instructor 20 30
QuarterCourseOffering CoursesOfferedList 5 30
Registrar Registrar 22 30
Requirements Requirements 23 30
Schedule ClassSchedule 2 30
Student Student 24 40

AVG= 13.14286 31.42857143
STD= 7.525196 3.585685828

B.2 Mapping Smaller to Larger Ontologies

This test involved mapping objects from the genealogy-based ontology [Hall 2001] to the general

concept ontology [Hefflin 2000]. The following tables show the results using each of the versions of the

ranking model.

 122

B.2.1 Best-Value

From To Rank

Time (ms) to
Rank 1,000

Times
Thing SHOEEntity 1 120
Person Person 1 1733
Individual Person 7 2483
PhysicalAddress Address 1 938
Family SocialGroup 2 752
Event Event 1 431

AVG= 2.166667 1076.166667
STD= 2.401388 879.2358993

B.2.2 Strict Comparator

From To Rank

Time (ms) to
Rank 1,000

Times
Thing SHOEEntity 1 210
Person Person 1 581
Individual Person 7 851
PhysicalAddress Address 1 310
Family SocialGroup 1 361
Event Event 1 260

AVG= 2 428.8333333
STD= 2.44949 243.5137915

B.2.3 Loose Comparator

From To Rank

Time (ms) to
Rank 1,000

Times
Thing SHOEEntity 1 185
Person Person 1 476
Individual Person 7 636
PhysicalAddress Address 1 285
Family SocialGroup 1 285
Event Event 1 245

AVG= 2 352
STD= 2.44949 169.9105647

 123

B.2.4 Alphabetical

From To Rank

Time (ms) to
Rank 1,000

Times
Thing SHOEEntity 22 36
Person Person 18 35
Individual Person 18 35
PhysicalAddress Address 2 35
Family SocialGroup 23 35
Event Event 10 36

AVG= 15.5 35.33333333
STD= 8.043631 0.516397779

 124

Bibliography

ARPA Knowledge Sharing Initiative. “Specification of the KQML agent-communication language,”
ARPA Knowledge Sharing Initiative, External Interfaces Working Group working paper.
Available as http://www.cs.umbc.edu/kqml/papers/kqml-spec.ps, December 1992.

Berners-Lee, T., R. Fielding, and L. Masinter. “Uniform Resource Identifiers (URI),” Generic Syntax.
IEDTF Draft Standard (RFC 2396), August 1998.

Crawford, J and B. Kuipers. “Toward a theory of acess-limited logic for knowledge representation,”
Proceedings of the First International Conference on Principles of Knowledge Representation.
Morgan Kaufmann, 1989.

DAML+OIL. DAML ontology library. http://www.daml.org/ontologies

DeLoach, S., M. Wood, and C. Sparkman. “Multiagent Systems Engineering,” The International Journal
of Software Engineering and Knowledge Engineering. Volume 11 no. 3, June 2001.

DeLoach, S. “Analysis and Design using MaSE and agentTool,” 12th Midwest Artificial Intelligence and
Cognitive Science Conference (MAICS 2001). Miami University, Oxford, Ohio, March 31 - April
1, 2001.

DeLoach, S. and M. Wood. “Developing Multiagent Systems with agentTool,” Intelligent Agents VII.
Agent Theories, Architectures, and Languages – 7th International Workshop, ATAL-2000, Boston,
MA. July7-9, 2000. Lecture Notes in Artificial Intelligence. Springer- Verlag, Berlin,
2001.(2000a)

DeLoach, S. and M. Wood. “Multiagent Systems Engineering: the Analysis Phase.” Technical Report, Air
Force Institute of Technology, AFIT/EN-TR-00-02, June 2000. (2000b)

Evans, R., P. Kearney, J. Stark, G. Caire, F. Garijo, J. Gomez Sanz, F. Leal, P. Chainho, and P. Massonet.
“MESSAGE: Methodology for Engineering Systems of Software Agents.” EURESCOM Project
P907. September 2001.

Ferber, J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Harlow, England:
Addison-Wesley, 1999.

Fernández, M., A. Gómez-Pérez, and N. Juristo. “METHONTOLOGY: From Ontological Art Towards
Ontological Engineering.” Ontological Engineering: Papers from the 1997 AAAI Spring
Symposium. Technical Report SS-97-06, AAAI Press, 1997.

Fernández, M., A. Gómez-Pérez, J. Sierra, and A. Sierra. “Building a Chemical Ontology Using
Methontology and the Ontology Design Environment.” IEEE Intelligent Systems, Vol.14, No.1,
pp.37-46, 1999.

FIPA TC B. “FIPA Agent Management Specification.” http://www.fipa.org/specs/fipa00023/. August 15,
2001.

Fikes, R. and T. Kehler. “The role of frame-based representation in reasoning.” Communications of the
ACM, 28(9):904-920, 1985.

Genesereth, M. “The Epikit manual.” 1990.

Genesereth, M. “Knolwedge Interchange Format: draft proposed American Standard.” NCITS.T2/98-004.
1998.

 125

http://www.cs.umbc.edu/kqml/papers/kqml-spec.ps
http://www.fipa.org/specs/fipa00023/

Georgeff, M., D. Kinny, and A. Rao. “A Methodology and Modeling Technique for Systems of BDI
Agents,” in Agents Breaking Away: Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’96. Lecture Notes in
Aritificial Intelligence, vol. 1038. Speringer-Verlag, Berlin Heidelberg, 1996.

Gómez-Pérez, A. “Some ideas and examples to evaluate ontologies.” Proceedings of the Eleventh
Conference on Artificial Intelligence Applications. IEEE Computer Society Press, 1995.

Gómez-Pérez, A. “Guidelines to verify completeness and consistency in ontologies.” Third World
Congress on Expert Systems. 1996.

Gruber, T. “Toward Principles for the Design of Ontologies Used for Knowledge Sharing.”
IJHCS,43(5/6):907-928.

Guarino, N. “Understanding, Building, and Using Ontologies.” Technical report, LADSEB-CNR,
National Research Council, 1996.

Gruber, T. “Ontolingua: A Mechanism to Support Portable Ontologies.” 1992.

Gruninger, M. and M. Fox. “Methodology for the design and evaluation of ontologies.” Workshop on
Basic Ontological Issues in Knowledge Sharing. International Joint Conference on Artificial
Intelligence, 1995.

Hall, M. GEDCOM data model. http://orlando.dr.com/daml/Ontology/Genealogy/current/. 2001

Heflin, J. General concept ontology. http://www.cs.umd.edu/projects/plus/DAML/onts/general1.0.daml.
2000

Huhns, M. and M. Singh. “Ontologies for Agents.” IEEE Internet Computing, November-December 1997.
81-83.

KBSI. “The IDEF5 Method Report.” KBSI Report, 1994, Texas.

Kendall, E. A., U. Palanivelan, and J. Kalikivayi. “Capturing and Structuring Goals: Analysis Patterns,”
Proceedings of the Third European Conference on Patter Languages of Programming and
Computing, Bad Irsee, Germany, July 1998.

Lenat, D. and R. Guha. Building Large Knowledge-based Systems: Representation and Inference in the
Cyc Project. Addison-Wesley, 1990.

MacGregor, R. “The evolving technology of classification-based knowledge representation systems.”
Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan
Kaufmann, San Mateo, CA. pp.385-400, 1991.

Noy, N. and D. McGuinness. “Ontology Development 101: A Guide to Creating Your First Ontology.”
2001

Noy, N., M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen. “Creating Semantic Web
Contents with Protege-2000.” IEEE Intelligent Systems 16(2):60-71, 2001

Ontolingua. Online ontology library. http://ontonlingua.stanford.edu

Russel, S. and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. New Jersey,
1995.

Shelton, H. “Joint Vision 2020”. US Government Printing Office. Washington, DC, 2000.

Skuce, D. “Conventions for reaching agreement on shared ontologies.” Proceedings of the 9th Knowledge
Acquistion for Knowledge Based Systems Workshop, 1995.

 126

http://orlando.dr.com/daml/Ontology/Genealogy/current/
http://www.cs.umd.edu/projects/plus/DAML/onts/general1.0.daml

Sparkman, C. Transforming Analysis Models Into Design Models for the Multiagent Systems Engineering
(MaSE) Methodology. MS thesis, AFIT/GCS/ENG/01M-12. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, 2001.

Uschold, M. and M. Gruninger. “ONTOLOGIES: Principles, Methods and Applications.” Knowledge
Engineering Review. Volume 11 Number 2, June 1996.

W3C. “Extensible Markup Language (XML) 1.0”. W3C Recommendation. Feb, 1998.

W3C. “Resource Description Framework (RDF) Model and Syntax Specification”. W3C Consortium
Recommendation. 1999

Wooldridge, M., N. Jennings, and D. Kinny. The Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and Multi-Agent Systems, vol. 3(3), 2000.

 127

VITA

First Lieutenant Jonathan M. DiLeo was born on 3 June 1976 in Hahn, Germany. He graduated

from the International Baccalaureate Program of Saint Petersburg High School in Saint Petersburg, Florida

in June 1994. He entered undergraduate studies at Duke University, Durham, North Carolina where he

graduated with a Bachelor of Science in Computer Science in May of 1998. He was commissioned through

the Detachment 585 AFROTC at Duke University where he was recognized as a Distinguished Graduate.

In July 1998, Lt DiLeo attended the Basic Communications and Information Officers Training

Course at Keesler AFB, Mississippi. Upon graduating as a Distinguished Graduate, he was assigned to the

6th Communications Squadron, MacDill AFB, Florida. He served as the Squadron Section Commander and

Chief of the Network Control Center. In August 2000, he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology. Upon graduation, he will be assigned to the College of

Aerospace Doctrine, Research and Education, Maxwell AFB, Alabama.

 128

phardin
3 June 1976

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

09-03-2002
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Jun 2001 – Mar 2002

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ONTOLOGICAL ENGINEERING AND MAPPING IN MULTIAGENT
SYSTEMS DEVELOPMENT

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Jonathan M. DiLeo, First Lieutenant, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/02M-03

10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL/IFTB

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Capt David Marsh
 Air Force Research Laboratories, Information Directorate (AFMC)
 525 Brooks Road, Rome, NY 13441-4505
 (315) 330-2885 david.marsh@rl.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Multiagent systems have received much attention in recent years due to their advantages in complex, distributed
environments. Previous work at the Air Force Institute of Technology has developed a methodology for analyzing, designing, and
developing multiagent systems, called Multiagent Systems Engineering (MaSE). MaSE currently does not address the information
domain of the system, which is an integral part of designing proper system execution.

This research extends the MaSE methodology to include the use of ontologies for information domain specification. The extensions
allow the designer to specify information flow by using objects from the ontology as parameters in agent conversations. The
developer can then ensure system functionality by verifying that each agent has the information required to accomplish the system
goals.

To fully describe the system design, the developer must describe the relationships between the system ontology and any agent
component ontologies. This research also developed a ranking model to assist the user with creating such mappings, to show the
relationships between the objects in the ontologies.

15. SUBJECT TERMS
 Multiagent systems, Ontology, Agents, Software Engineering, System Integration

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Lt Col Timothy M Jacobs

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

142
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4279

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	ACKNOWLEDGMENTS
	TABLE OF FIGURES
	TABLE OF TABLES
	ABSTRACT
	Introduction
	Background
	Definition of an Ontology
	Importance of Ontologies in Multiagent Systems
	Communication
	Component Reuse

	Problem
	Goals
	Approach

	Thesis Scope
	Thesis Overview

	Background
	Ontologies
	Existing Methodologies for Building Ontologies
	Uschold and Gruninger
	Identify Purpose and Scope
	Building the Ontology
	Evaluation
	Documentation

	Methontology
	KBSI IDEF5
	Organizing and Scoping
	Data Collection
	Data Analysis
	Initial Ontology Development
	Ontology Refinement and Validation
	Comparison to Methontology

	Specification Languages for Ontologies
	Graphical Toolkits for Building Ontologies

	Multiagent Systems
	Multiagent Systems Engineering Methodology
	Analysis Phase
	Design Phase
	agentTool

	Additional Multiagent Systems Engineering Methodologies
	Gaia
	Design

	Methodology for Engineering Systems of Software Agents (MESSAGE)
	Analysis
	Design

	Problem Approach
	Requirements for Domain Representation in Multiagent Systems
	Requirements for Information Domain Models in Multiagent Systems
	Requirements for Information Domain Use in Multiagent Systems Development

	Methodology for Including the Information Domain in MaSE
	Structure of an Ontology
	Characteristics of an Ontology

	Methodology for Building System Ontologies
	Define Purpose and Scope of Ontology
	Collect and Analyze Data
	Construct Initial Ontology
	Refine and Validate Ontology

	Methodology for Building Component Ontologies in Multiagent Systems
	Integrating the Construction of Ontologies into MaSE
	Alternatives to Ontologies

	Geometric Score Reduction Model for Ranking Object Similarity
	Determining the Similarity Score of an Object
	Evaluating Ranking Models

	Extended Multiagent Systems Engineering
	Capturing Goals
	Identifying Goals
	Structuring Goals

	Applying Use Cases
	Creating Use Cases
	Creating Sequence Diagrams

	Developing the System Ontology
	Define Purpose and Scope of Ontology
	Collect Data
	Construct Initial Ontology
	Reusing Existing Ontologies
	Build Class Hierarchy
	Add Attributes to Classes
	Define Relationships
	Define Axioms

	Refine and Validate Ontology

	Refining Roles
	Creating Roles
	Concurrent Tasks

	Creating Agent Classes
	Constructing Conversations
	Assembling Agent Classes
	Special Case -- Specifying Agent Component Ontologies
	Mapping Component Ontologies to the System Ontology
	Component Ontologies in agentTool
	Mapping Ontologies

	System Design
	Code Generation

	Geometric Score Reduction Model
	Computing the Similarity of Objects
	Object Characteristics Used by the Model
	Object Characteristics Not Used

	Comparing the Attributes of the Objects
	Assigning the Best Value
	Determining the Similarity Score of an Attribute

	Comparing Attributes Using an Ordering

	Computing the Similarity of Attributes
	
	Attribute Characteristics Used by the Model

	Attribute Characteristics Not Used by the Model

	Results
	Evaluation of Ontologies for Domain Representation
	Evaluation of the Use of the Information Domain in Extended MaSE
	Specifying the Information Domain
	Steps

	Using Objects from the Information Domain
	Task and Conversation State Diagrams
	Components

	Geometric Score Reduction Model
	Experiment Setup
	Mapping to Identical Ontology
	Mapping to Similar Sized Ontology
	Mapping to Larger Ontology
	Analysis of Implementation Approaches

	Conclusions and Future Work
	Summary and Conclusions
	Future Research Areas
	Automatic Conversion from UML to Ontologies
	Creating Converters from Ontology Mappings
	Ranking Model Enhancements
	Transformations
	Improved agentTool Visual Interface

	Summary

	Bibliography

	VITA

