<table>
<thead>
<tr>
<th>Date: 1/22/03</th>
</tr>
</thead>
</table>

Title and Subtitle
Technical Papers

Performing Organization Name(s) and Address(es)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

Distribution/Availability Statement
Approved for public release; distribution unlimited.

Subject Terms

Security Classification of:
<table>
<thead>
<tr>
<th>a. Report</th>
<th>b. Abstract</th>
<th>c. This Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Limitation of Abstract
1

Number of Pages
A

Name of Responsible Person
Leilani Richardson

Telephone Number (include area code)
(661) 275-5015
MEMORANDUM FOR PR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO) 13 Nov 2000

37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (Statement A) (Salt Lake City, UT, 8-11 Jul 2001) (Deadline for Abstract: 08 Nov 00)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity. Comments:

__

__

Signature ________________________________ Date ________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review. Comments:

__

__

Signature ________________________________ Date ________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required Comments:

__

Signature ________________________________ Date ________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability Comments:

__

APPROVED/APPROVED AS AMENDED/DISAPPROVED

______________________________ Date
PHILIP A. KESSEL Technical Advisor
Propulsion Science and Advanced Concepts Division
Powersail High Power Propulsion System Design Study

Frank S. Gulczinski III
Air Force Research Laboratory, Propulsion Directorate
Electric Propulsion Laboratory
Edwards AFB, CA 93524

A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/VSS) is developing Powersail® in a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at ~50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL Propulsion Directorate’s Spacecraft Propulsion Branch (AFRL/PRBS) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study will further identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

DISTRIBUTION STATEMENT A:
Approved for Public Release
Distribution Unlimited

*Research Scientist, AFRL Electric Propulsion Group, Member AIAA