I*I Defence Research and Recherche et développement
Development Canada pour la défense Canada

DEFENCE B%;)VDEFENSE

Sub-Network Access Control Technology
Demonstrator: Software Design of the
Network Management System

H. Lukasik

The work described in this document was sponsored by the
Department of National Defence under Work Unit 1BB22.

Defence R&D Canada - Ottawa
TECHNICAL REPORT
DRDC Ottawa TR 2002-073

Communications Research Centre
CRC-RP-2002-003

AiJgU;t 2002 Canadlaﬂ.

OIS TRISBUTION STATEMENTA
proved for Public Release
Distribution Unlimited

Sub-Network Access Control Technology
Demonstrator : Software Design of the Network

Management System

Lukasik. H.
Communications Research Centre

The work described in this document was sponsored by the Department

of National Defence under Work Unit 1IBB22

Defence R&D Canada - Ottawa
Technical Report
DRDC Ottawa TR 2002-073

Communications Research Centre
CRC-RP-2002-003

AUGUST 2002

Y& 150 21112002

A0 F03-01-0149

© Her Majesty the Queen as represented by the Minister of National Defence, 2002

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2002

e

Abstract

This final report provides a record of the results of the network management portion of the Sub-
Network Access Control Technology Demonstrator project. It summarises the concepts behind this
development effort, and describes the completed design and implementation work. This project is part of an
on-going effort to build an IP based network using wireless technologies. However, the goal behind this
project remains the production of an exploratory prototype. In other words, it is one more step towards the
goal of transitioning wireless technologies to the Canadian Operational Fleet.

The proposed IP network presents several unique challenges to network management, due to its
low bandwidth wireless links and continually changing topology, that existing products have not been
designed to handle. These challenges are explored in order to provide a better understanding of the
requirements they impose on network management. A network management tool design is then proposed
and the implementation of its prototype is described.

Résumé

Ce rapport vise a préserver les réalisations des travaux reliés a la gestion de réseaux informatiques
du projet de démonstrations de la technologie de contrdle d’acces a des réseaux subordonnés. Il enregistre
les concepts reliés a ces travaux et présente la conception et la mise en oeuvre qu'ils ont engendrés. Ce
projet fait partie d'efforts soutenus visant construire avec des technologies radio un réseau informatique
basé sur le protocole IP. Cependant, le but de ce projet demeure la création d’un prototype exploratoire. En
d'autres mots, ce projet est une étape supplémentaire dans le dessein de migrer ces technologies radio vers
la Flotte Opérationnelle Canadienne.

Le réseau informatique base sur le protocole IP en développement possede les caractéristiques d'avoir des
liens radio & bande passante restreinte ainsi qu'une topologie qui change constamment. Ces caractéristiques
propres 2 ce réseau constituent des obstacles qui ne permettent pas d'utiliser les produits de gestion de
réseau existants puisque ces derniers n'ont pas été congus pour y répondre. Ce document commence par
scruter ces obstacles afin d'en déduire les besoins spécifiques qu'ils exigent d'un systéme de gestion de
réseaux informatiques. La conception d’un outil de gestion de réseaux informatiques est ensuite proposée et
la mise en oeuvre d'un prototype décrite.

iii

iv

This page intentionally left blank

e

Executive Summary

This final report provides a record of the results of the network management portion of the Sub-
Network Access Control Technology Demonstrator project. It summarises the concepts behind this
development effort, describes the completed design and implementation work, and concludes by
speculating on future research areas. This project is part of an on-going effort to build an IP based network
using wireless technologies.

Military Significance

The overall goal for the proposed network is to provide improved information exchange between
military units by promoting Command, Control, Communications, and Computers (C4) inter-operability
through the extension of IP based networking both at sea and in the littoral regions. This network will have
a continually changing topology as it is divided into several sub-networks each of which are frequently
added or removed from the network. Each of these sub-networks belongs to its own military unit, and is
added or removed from the network as the unit deploys or scales down its actions during the different
phases of an operation. Furthermore, the network is being built with low bandwidth wireless links, which
can easily be overwhelmed by peaks in messaging requests.

The characteristics of the proposed network present several unique challenges to network
management that existing products have not been designed to handle, as they assume that the network
being managed consists of high bandwidth links and has a slowly evolving topology. Existing network
management products often use continual polling to detect new or no longer active devices, or they make
many Simple Network Management Protocol (SNMP) requests to gather performance statistics. This is
especially true during the initialisation of the network management stations. These mechanisms cannot be
used in the proposed network as they would consume too much of the low bandwidth links' capacity. The
general guideline used in this design, is that management traffic, just as any other type of traffic, must be
minimised as much as possible on low bandwidth links. Generic solutions, such as using multicast
addresses, cannot be used, as they do not prevent a network manager from overwhelming a link with
requests. The particular nature of the proposed network has necessitated the development of a special
network management solution.

The basis for this project was to make a preliminary attempt to provide network management tools
that would allow the deployment of Sub-Network Access Controllers (SNAC)' card technology in the field
while keeping in mind the limitations of the proposed network. The tools available at the start of the project
for controlling and monitoring SNAC cards didn’t allow the user to easily obtain a view of the cards’ status
and performance, as they required detailed knowledge of the technology beyond what can be expected of
operators in the field. Nevertheless, the goal for this project remained the production of an exploratory
prototype; as such a prototype would also provide a platform on which to test potential solutions to the
issues that limit the use of commercially available network management systems in the target network. In
other words, this project is one more step towards the goal of transitioning wireless technologies to the
Canadian Operational Fleet.

Requirements
The proposed network management solution must provide the normal monitoring and

configuration mechanisms generally found in existing products. However, experimental devices such as the
SNAC cards must also be supported, along with specific mechanisms to enforce military policies, such as

! The SNAC is a specialised card that manages access to lower bandwidth communication links. It
implements the layer two of the wireless link it supports and it is thus responsible for managing the link’s
communication such as managing transmission collisions, retransmissions, or adding/removing remote
devices etc.

the ability to take offline only the outgoing side of specific radio links. The goal of such a mechanism is to
allow the reception of information downloads while avoiding detection by enemy forces due to a unit's
radio emissions. Furthermore, each deployed unit must be able to function independently, and in so doing
must manage their own network. Each unit thus requires it’s own network management console. Any
solution must therefore also provide the ability to remotely assist the troubleshooting of deployed units’
local networks.

Results

In order to fulfil these requirements a design for a special network management tool is proposed,
and the initial implementation of its prototype is outlined. The design places elements in three distinct
locations in the network, each element having its own responsibilities. The three locations are: the network
management Agents on the devices themselves, the Local Management Console on the Local Area
Network (LAN) of the managed devices, and the Remote Management Application (which can reside
anywhere in the network). In each of these locations tasks are allocated to different design elements. The
network management Agents have two design elements: the Agent itself, and the SNAC controller that
implements the existing control functions of the card upon which the Agent has been added. The Agent
also has a data repository known as the Management Information Base (MIB). On the Local Management
Console the responsibilities are divided between a user process known as the Management Console
Graphical User Interface (GUI), and three daemon processes known as the Log Manager, the SNMP
Session Manager, and the SNMP Trap Monitor. The Local Management Console also has two main data
repositories: the operational data logs, and the historic data logs. Since no prototyping work was performed
on the Remote Management Application it remains undivided and is therefore currently a single design
element.

Although not every element of the proposed design has been fully implemented, several sections
were successfully demonstrated, notably SNMP Agents for the experimental cards, and an initial version of
the Local Management Console. This document outlines the implementation of the elements that have been
prototyped.

Recommendations for Future Work

This document concludes by proposing several avenues for future development, and outlines some
potential solutions that should be prototyped to evaluate their value. The avenues proposed target three
specific area of interest. Firstly, developing an automatic device discovery algorithm that uses inherent
knowledge of the network being monitored to perform its work without overloading low bandwidth links.
Secondly, reducing the amount of traffic on low bandwidth links caused by remote network management.
Thirdly, providing a basic network management solution that could be used without the integration of
commercially available network management products.

vi

w

Sommaire

Ce rapport vise a préserver les réalisations des travaux reliés a la gestion de réseaux informatiques
du projet de démonstration de la technologie de contréle d’accés a des réseaux subordonnés. 11 enregistre
les concepts relié€s & ces travaux et présente la conception et la mise en oeuvre qu'il a engendrée. Ce projet
fait partie d'efforts soutenus visant a construire avec des technologies radio un réseau informatique basé sur
le protocole IP.

Importance stratégique militaire

Le but visé du réseau informatique en développement est l'enrichissement de l'information
échangée dans les communications entre les unités navales et cdtieres grice a leur inclusion dans un résean
basé sur le protocole IP. Ce réseau est subdivisé en plusieurs réseaux subordonnés qui individuellement
correspondent & une unité militaire. Cette division apporte au réseau la caractéristique d'avoir une topologie
qui change constamment puisque les réseaux subordonnés s'y ajoutent ou s'en retirent quand 1’unité 4 lequel
ils correspondent est déployée ou démobilisée pendant les différentes phases d'une opération militaire. De
plus, le réseau est construit de liens radio avec une bande passante restreinte dont la capacité peut aisément
étre dépasse par une succession rapide et soudaine de requétes.

Les caractéristiques propres au résean proposé constituent des obstacles qui ne permettent pas
d'utiliser les produits de gestion de réseau informatique existant puisque ces derniers sont bitis dans
l'optique qu'ils opérent sur des liens avec une large bande passantes dont la topologie évolue lentement. Les
produites commerciaux de gestion de réseaux informatiques utilisent des mécanismes qui sondent
continuellement sur le réseau pour y découvrir de nouveaux appareils, détecter les pannes d'appareils ou
ramasser des statistiques sur le comportement du réseau informatique. Ces mécanismes possédent le défaut
de consommer beaucoup de bande passante sans tenir compte de la capacité des divers liens sur lesquels
transitent les messages que ceux-ci générent. De plus, cette situation est aggravée par le supplément de ces
messages qui est généré lorsque la station de gestion de réseau informatique est démarrée. Bref, le fils
conducteur de ces problémes est que la quantité de messages de gestion de réseau informatique, ainsi que
de n'importe quel autre type, doit &étre minimisé autant que possible sur les liens & faible bande passante.
Des solutions génériques comme l'utilisation d’adresses & multiples destinataires peuvent étre utilisées,
mais celles-ci n’empéchent pas une station de gestion du réseau informatique d’accaparer toutes la bande
passante d'un lien avec ses requétes. II est donc devenu nécessaire de développer une solution aux
problémes reliés la gestion d'un tel réseau informatique.

Le but de ce projet est donc de produire la version initiale d’un ensemble d’outils de gestion de
réseaux informatique qui ultimement permettront de livrer les cartes de Contrdle d'acceés aux Réseaux
Subordonnés" (SNAC) aux usagers, et ce sans perdre de vue les caractéristiques propres du réseau visé. Les
outils disponibles au début du projet pour le contrdle et la supervision de la performance de ces cartes ne
permettaient pas d’en obtenir aisément une vue d’ensemble. Ceux-ci exigeaient une expertise de la
technologie en question et la compréhension nécessaire de ses concepts dépassait largement les exigences
usuelles auxquelles les opérateurs sont normalement soumis. Néanmoins, le produit résultant de ce projet
demeure la création d’un prototype qui fournit une base sur laquelle des solutions aux probleémes reliés a
I'utilisation des systemes de gestion de réseaux informatiques sur le réseau visé pourront étre validées. En
d'autres mots, ce projet est une étape supplémentaire dans le dessein de migrer ces technologies radio vers
la Flotte Opérationnelle Canadienne.

i Les cartes de Contrdle d'acces aux Réseaux Subordonnés (SNAC) sont des cartes spécialisées
qui contrdle I'acceés aux liens de communication & bande passante restreinte. Elles implémentent la
deuxieéme couche du protocole du lien radio qu’elles supportent; elles ont donc la responsabilité de gérer les
collisions et les retransmissions des messages ainsi que I’intégration ou le retrait de sites qui communiquent
al’aide de ce lien.

vii

Besoins spécifiques

La solution de gestion de réseaux informatiques envisagée doit fournir les outils habituels de
configuration et de surveillance de réseaux informatiques. Cependant, les appareils expérimentaux que sont
les cartes de Contrdle d'accés aux Réseaux Subordonnés (SNAC) ainsi que des mécanismes spécifiques
permettant de désactiver les émissions radio d'un lien radio sans pour autant arréter la réception de
messages par ce méme lien doivent &tres supportés. Le but de ces mécanismes spécifiques est de permettre
le télé-déchargement de données tout en évitant la détection de 1’unité par des forces ennemies grice a ses
émissions radio. Finalement, chaque unité militaire doit &tre capable de gérer de fagon indépendante son
propre réseau informatique; chaque unité doit donc posséder sa propre station de gestion de réseau
informatique. Par contre, il doit également exister des mécanismes pour permettre d'assister a distance la
résolution de problémes reliés aux réseaux informatiques des unités déployées.

Réalisations

Pour répondre a ces besoins spécifiques, la conception d'un outil de gestion de réseaux
informatiques est proposée et sa mise en oeuvre entreprise dans un prototype. Les diverses composantes
avec leurs responsabilités propres sont reparties dans trois endroits différents; Ces endroits sont: sur les
appareils étant gérés, sur la console locale de gestion de réseau informatique qui est sur le réseau local
(LAN) des appareils étant gérés et une application de gestion de réseau a distance qui peut étre placé
n’importe ou sur le réseau. Dans chacun de ces endroits, les responsabilités sont distribuées a différentes
composantes. Pour la console locale, les responsabilités sont distribuées parmi le processus du GUI et les
processus serveurs du gestionnaire des records historiques, le gestionnaire des sessions SNMP et le
surveillant des TRAP SNMP. La console locale posséde également deux dépdts de données qui contiennent
respectivement les données opérationnelles et les données historiques. Les appareils étant gérés possedent
également deux composantes, soit le contrdleur lui-mé&me qui réalise les fonctions de 1’appareil et I’agent
SNMP. L’agent SNMP posseéde également un dépét de données, soit le MIB. Finalement, 1’application de
gestion a distance demeure en une seule composante puisque aucun prototype n’en a été réalisé.

Bien que ce ne sont pas toutes les composantes de l'outil de gestion de réseaux informatiques qui
sont implémentées, plusieurs fonctionnalités ont été¢ démontrées avec succes; en particulier, les agents
SNMP pour les cartes expérimentales ainsi qu'une version préliminaire de la console locale de gestion de
réseau informatiques. Ce document présente I'implémentation des composantes qui ont été démontrées
avec un prototype.

Recommandation de Travaux Subséquents

Ce document conclu en proposant plusieurs directions que devraient prendre les efforts de
développement ultérieurs ainsi que plusieurs solutions potentielles dont la valeur devrait étre étudié griace a
de I’expérimentation par prototypage. Ces directions visent trois domaines d’intérét spécifique. Le premier
domaine est relié 4 'invention d’un algorithme de découverte automatisé des appareils existant sur le
réseau informatique qui utiliserait des connaissances inhérentes a la composition du réseau et qui ne
surchargerait pas les liens avec une bande passante restreinte. Le second domaine est relié a I’utilisation de
techniques visant a réduire la consommation de la bande passante par la gestion du réseau informatique a
partir d’un poste de travail situé de 1’autre c6té d’un lien avec une bande passante restreinte. Et finalement,
le troisiéme domaine est relié aux éléments de développement qui resteraient & réaliser afin de fournir une
solution de base de gestion de réseau informatique qui fournirait assez de fonctionnalité pour &tre utilisé
sans 1’apport de produits commerciaux.

viii

Table of Contents

1- INTRODUCTION 1
2- REQUIREMENTS 2
2.1- DESCRIPTION OF THE TARGET NETWORKcvieniiiiiiinrieitreessseieesneessesessssessasessnesessessssssnsnens 2
2.2- NETWORK TOPOLOGY ..eovviiiiiiiiirieireieieieeieveeesteeesesteseessssassessssesnsessses sobasssessnsssssessnsssssesans 2
2.3- MANAGEMENT REQUIREMENTSc.uvtciuiieieiirreesseseieesssseessesesssssesessssessssossssessssessssssssessssesssenns 4
2.3.1- Fault/Problem ReSolution REQUITEMENLScceereeueevenirirnieeisiereeviessenessseseersensenes 4
2.3.2- Performance Management REQUIFEMENEScoovvvveierieereeraeessesiseseesssinssssssassasnesennes 5
2.3.3- Configuration Management ReGUITEMENEScoeueeeeiiecirirniecieiareeieieeesiseseneenns 6
2.3.4- Security Management REGUITEMENLS.c.ocuvuvereeeriveeeinecirieieireseseetsrssesesesseseasensans 8
2.3.5- Accounting Management reGQUITEMENLESoceveeurreueeeorieorasersnessesesrssssessresesesssessaen 8

2.4- NETWORK MANAGEMENT STRATEGY ...ooovvveivieireiiuieietieeeseeessssesiseseesssessosssessasessessssessnsseseses 8
2.4.1- MANAGEU AEVICES ...ttt et e nee e 9
2.4.2- DESIGN CONSIIAINLSouveveevererererirereieseietesesteiaasasessesssseaseseassssessnsesesesseseasasessrsensossasassssas 9
2.4.3- Management infOTrMALION.ooeeereeuereerieerierieeteiereererassisisssetesaeesiesssssesesessesesssnnes 11

3- HIGH LEVEL DESIGN 13
3.1- GENERAL DESIGN OVERVIEWc.cviiteiiieiiireeesresisseesuesisressssessseessnssssssassassssssnesssssessssssssenses 13
3.2- LOCAL MANAGEMENT CONSOLE.....vciiutiiiteieteeiiteeitieeteeesssestsssaessssssesssesssesassssssssssseesssenssnas 14
3.3- SNIMP AGENTS ..ot iovteeieiiiteieeeeieeeeeerteeteeesreesstseatssssbessssesbesessssesbeasssesansssnnssasssssssessssernnsaases 15
3.4- REMOTE MANAGEMENT APPLICATIONocooviviieitiiesneiieeeeetvresiaesssessseessnesessasessesssssssnssssnsis 15
4- AGENT DESIGN AND IMPLEMENTATION 17
4.1- GENERIC SNAC CARD AGENTDESIGNvvevuviiiriniieiirieeeseeisseseneessrsssssessssseissesssssosssssssenes 17
4.2- MIB DEFINITION AND AGENT’S INCORPORATIONccoeeruerreerrirnierriereeareenrsessesssecseesseensenns 18
4.3- SRIU IMPLEMENTATIONcciveeeiieiirierteeesiesssessesoreesessossasssssssseessesesssssssssssisssnsesesssssassessnss 19
4.4- ELOS IMPLEMENTATIONcocvieiireiteintreiinreesssesssssnessssessssssssssesssesssssssssrssssessssessssssssessssesss 21
4.5- BLOS IMPLEMENTATION0oomrteiieieueirseeessresisseseeeesaesossesssssesssesssssssessassssssssessssssssssnssessees 23
5- MANAGEMENT CONSOLE DESIGN AND IMPLEMENTATION 26
5.1- INTER-PROCESS COMMUNICATIONSoooiiureerereriersrreensreesssesssesensiesssessssaesesesssesssssnssssnsonnes 26
5.2- DESIGN AND IMPLEMENTATION OF THE SNMP SESSION MANAGERcuvovvviiviieeereeveenens 28
5.3- DESIGN AND IMPLEMENTATION OF THE MANAGEMENT CONSOLE’S GUIcocceevvivnnnn... 31
5.4- DESIGN OF THE LOG MANAGERcouviitiiiteeeeieeiteeitiessteeereeesstesteesasesneseests aatsssasessssssssessses 34
5.5- DESIGN OF THE SNMP TRAP MONITOR........cocviiiveruirirreisrreensseassenenresesssessnesinnessonesssssesssonses 34
6- FUTURE WORK 35
7- CONCLUSION 37
8- REFERENCES 38
ANNEX A ACRONYMS 39
ANNEX B SUPPLEMENTAL MIB VARIABLES DEFINITION FILE 40
ANNEX C SCREEN CAPTURES OF GUI 51

ix

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

List of Figures

Example NetWork TOPOLOZYc.ccveciiiriiieiiiiieeee et eb e b s 3
Genetic ship n0de architeCtUrecocivieieieieiiie et bt 3
Proposed dESIZI.........c.oucuimiiiiiiiirrr e e 13
Management Console Inter-process CoOmmuniCAtION.cooveivriirieierirereriiiisiniiesire e sneenan 27
SNMP Session Manager code dependencies...........coveeeiniecieinieieiinieiie et 31

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9

List of Tables

Location of the files containing MIB code changescccooeveinecnninenesnsie e 19
Location of the files where SRIU logic has been changedccoooeivierineciinvieninnencrene, 20
Events upon which statistics are based..........cocooeeveiririeineiniecteceieere e 22
Location of files where ELOS logic was changed..........c...oooniioninininnieeeee 23
Location of the files where BLOS logic was changed..........c..ccooovvvinivnniesiieeeeneeese 25
Command message syntax of the SNMP Session Managerc.cecovveeeereneecenieeccnieennennen 27
Reply message syntax of the SNMP Session Managercccccceeevevinieeeveninsenseseneesenieseereions 28
Location of the files containing the SNMP Session Manager 1ogicccocceovevvvvevrevenenninnen 30
Location of the files used by the Management GUI IOZIC.........c.cccoevveievimrercineriniericieeriie s 32

Xi

1- Introduction

The design presented in this document is part of an on-going effort to build an experimental IP
based network using emerging wireless technologies. This network is being built to further refine and
showcase the technologies used in the annual Joint Warrior Inter-operability Demonstrations (JWID) ™ and
the Communication System Network Inter-Operability (CSNI) Navy Network Trials. In short, development
of the Technology Demonstrator is one more step towards the goal of transitioning these technologies to
the Canadian Operational Fleet.

The network management portion of this effort is of primary concern since, during
experimentation in previous JWID, it was determined that existing network management products such as
HP Open View™ were inadequate when operating over low bandwidth links. The primary reason for their
failure being that these tools were built to manage networks comprised of high bandwidth links, and
therefore they were generating too much management traffic for use with low bandwidth wireless links.
The particular nature of the target network required that a network management solution adapted to it be
developed.

The goal of this document is to summarise the network management portion of the Sub-Network
Access Control Technology Demonstrator (TD) project, to detail the concepts behind this technology, and
to present the design and implementation work currently completed. The goal behind this project remains
the production of an exploratory prototype. The implementation described in this document provides a
starting point on which to base future development.

This document is structured as follows: Section 2 presents the target network and the special
requirements it places on network management solutions. Section 3 presents the high level design. Section
4 presents the design and implementation of the Sub-Network Access Controller” (SNAC) card Network
Management Agents. Section 5 presents the design and implementation of the Network Management
Console. Section 6 presents some thoughts on the direction of future study and development. Finally,
section 7 concludes with an analysis of the project’s achievements.

& JWID is an inter-operability demonstration of new communication technologies supporting
different units in a multinational task Group. It is an annual opportunity for the military to be exposed to
efforts under development, and for industry and R&D activities to receive military comment early in any
development effort.

¥ The SNAC is a specialised card that manages access to lower bandwidth communication links. It
implements the layer two of the wireless link it supports and it is thus responsible for managing the link’s
communication such as managing transmission collisions, retransmissions, or adding/removing remote
devices etc.

2- Requirements

This section discusses the requirements imposed by the target network on any network
management solution. Specific issues are explored and the constraints set for the design presented in this
document are outlined. The following subsections describe the intended use of the network, the network
topology, the requirements specific to the target network, and the network management strategy that will be
used for the proposed design.

2.1- Description of the Target Network

The overall goal for the network is improved Command, Control, Communications, and
Computers (C4) effectiveness, and enhanced maritime information exchange with joint and combined
forces, including amphibious operations, by promoting inter-operability through the extension of IP based
networking both at sea and in the littoral regions forming a Task Group Area Network (TGAN). The
TGAN is a subdivision of the overall network, the Coalition Wide Area Network (CWAN), which consists
of all the units involved in an operation. The TGAN is further divided into several sub-networks, each of
which represent Autonomous Systems (AS) that are dynamically added or removed from the network as the
corresponding units deploy or scale down their actions during the different phases of an operation. An AS
has the capability to add, remove, or modity its links to the TGAN, or even directly with the CWAN, as
needed during the different phases of an operation. Each AS is further divided into Local Area Networks
(LANs). The TGAN is connected to the CWAN through specific gateway nodes.

The IP based network being tested must have several key capabilities, which include:

o The support of multicast mobile IP networking over multiple sub-networks with an
emphasis on space based connectivity;

¢ The support of multicast messaging through the mobile IP network linking military
units;

o Access to distributed secure databases on an "as required” basis;

¢ The ability to include low bandwidth radio links, such as Ultra High Frequency Satellite
Communications (UHF SATCOM), High Frequency Beyond Line Of Sight (HF-BLOS)
and High Frequency Extended Line Of Sight (HF-ELOS);

¢ The ability to allow easy and quick reconfigurations based on input from an AS
manager.

¢ The support of Emission Control (EMCON) mechanisms.

EMCON is a mechanism through which radio silence can be enforced by some units while they
remain connected to the network and receive data downloads. In other words, a unit in EMCON mode
would stop sending transmissions but would still listen for broadcast messages or messages directly sent to
it. Radio silence may be necessary in some instances to avoid detection by enemy forces. However, radio
silence at a node can be total or partial depending on the nature or level of the perceived threat. For
example, a node in partial radio silence could stop sending HF radio transmissions that propagate in a wide
area, but maintain a narrow directional up-link with a satellite.

2.2- Network Topology

An example topology for the target network is shown in Figure 1. It is based on the TGAN
architecture used during the JWID exercises. The network consists of a collection of links between various
naval units, a satellite, and shore bases. The types of links in use include UHF SATCOM, HF-BLOS, and
HF-ELOS.

CWAN

Autonomous ’ TGAN Autonomous System
System

-
- ~~

/. N,
+ CFMCC “
U Ashore 1

\
rd
S \

Ship Node 3

Ship Node 1 Ship Nade 2

Ship Node 6
Ship Node &

Ship Node 4

Figure 1 Example Network Topology
Each of the maritime units in the network possesses an Ethernet LAN connected to radio links as

shown in Figure 2.

Mail Hub
Web server

ROUTER
OSPF/MOSP
F

Application v B
Application g
— NETWOR
MANAGER

Application

ion

SNAC

KG = Kryptographic Device

Figure 2 Generic ship node architecture

2.3- Management Requirements

This subsection presents the requirements and the design objectives of the network management
system. Each of the five network management Functional Areas (FCAPS") is explored in turn. Broadly
speaking, the network management tools need to support a user-configurable Graphical User Interface that
allows the user to remotely manage all of the network devices within the same AS from a single terminal.
The proposed network management solution provides the following functions:

¢ Display the local network and the TGAN topology along with statistics compiled from
devices' Management Information Bases (MIB);

e Monitor network connectivity and current network performance;

¢ Display the status of the network components;

¢ Configure, monitor, and control (including the ability to reboot) routers, other SNMP-
managed network devices, and SNAC cards;

e Support Emission Control (EMCON) on either a link-by-link, node, AS, or network
basis;

* Remotely assist deployed units to troubleshoot their networks with IP based tools that
can remotely control components of the problem network;

* Automatically generate network status reports, at user-selectable intervals, which will be
accessible to all TGAN users using a graphical application.

2.3.1- Fault/Problem Resolution Requirements

This subsection presents the requirements of the target network in the fault/problem resolution
functional area. The fault/problem management functional area normally includes two main functions: fault
isolation and diagnosis, and restoration of the system. In short, an operator will be alerted to failures or
degrading conditions, and tools will be available to allow him or her to make the changes required to keep
the network working at its peak performance.

Network management solutions to fault isolation and diagnosis typically divide the functionality
into three components: the device monitoring probes or the MIB variables, the monitoring agents, and the
network management console. In this division of tasks, software agents observe the MIB variables and send
SNMP events (known as Traps in SNMP-V1) to the Management Console when specified thresholds are
crossed. The monitoring agent may be on the device itself, at the network management console, or at some
middle point in the network. These different options for the location of the monitoring Agent allows the
network designer to strike a balance between the complexity and cost of the devices and the bandwidth
consumed by monitoring them. Furthermore, a network may be managed by either a central management
console or by many consoles, each using different responsibility distribution schemes (for example peer-to-
peer, or hierarchic).

There are two key requirements in fault isolation and diagnosis resolution specific to the target
network that are important to the selection of the network management architecture. The first requirement
is that each AS must be able to function independently. As such, the network management responsibilities
follow AS divisions, and each AS requires its own network management console. The second requirement
is the ability to remotely assist deployed units (or AS) troubleshoot their networks.

Given the two requirements listed above, it would seem to be convenient to adopt the peer-to-peer
network management architecture. However, one must consider the fact that AS may be connected to the
rest of the network through low-bandwidth radio links or expensive satellite links. This necessitates the

reduction of unnecessary network management overhead and bandwidth use on gateway links to a greater

¥ The acronym FCAPS is used to represent the key elements of the ISO network management
model: Fault management, Configuration management, Accounting management, Performance
management, and Security management.

extent than for typical networks. For this reason, information such as events will need to be resolved locally
at the AS’s network management console or filtered and correlated with other events or collected statistics
as much as possible before being sent outside an AS. An independent management and monitoring console
for each leaf AS (or deployed unit) is therefore the chosen approach for the fault isolation and diagnosis
functionality. A network wide management console will be responsible for any resolution and correlation
of events with other events or collected statistics that an AS could not resolve itself.

Restoration of a system generally requires many tools to provide enough information to allow
proper diagnosis of problems, as well as tools used to restore the network to a normal state. Similarly to
the diagnosis functions, the key requirement here is the ability to remotely assist deployed units (or AS)
troubleshoot their networks. It was decided that this requirement would be fulfilled with the use of a
graphical tool that will access data only when required.

From this discussion and the requirements caused by the network topology one may observe that
the elements used to implement the required behaviour must reside in three distinct locations in the
network:

1. On a remote machine in the CWAN resides the Remote Management Application that
contains information retrieval tools as well as network performance monitoring and
troubleshooting analysis tools. The application will be able to:

o Retrieve and set MIB values;

¢ Remotely offline, reset, and reboot devices;

¢ Provide different remote analysis tools, such as tools to test the end-to-end connectivity
of specific paths or to capture packets for off-line protocol analysis.

2. On the managed devices’ LAN resides a Local Management Console that will be responsible
for the management of the devices in an AS. This console will provide the following
functions:

¢ All of the functions of the Remote Management Application;

e Set thresholds for events;

e Poll local devices and generate ensuing events (could be delegated to the agents of other
devices if they have these capabilities);

o Receive, filter, and correlate events;

o Forward the events that could not be resolved locally;

¢ Display a simple picture presenting the status of the local devices as well as those of the
TGAN.

3. On the physical devices (SNAC cards, routers, etc.) themselves resides an agent that will
provide the following functions:
¢ Store and update the MIB values;
¢ Generate SNMP Traps;
¢ Execute commands received via SNMP messages;
* Periodically send status information (if the existing agent implements the capability).

2.3.2- Performance Management Requirements

This subsection presents requirements that belong to the performance management functional area.
This functional area refers to the gathering of historic data for off-line analysis in order to allow better
growth planning or for analysis of the current configuration’s performance over time. There are two main
components in this functional area. The first component accesses the MIB values or captures the data as it
flows in the network and stores it for later retrieval. The second component retrieves the data and provides
different analysis and display functions.

The requirements specified in this functional area are not specific to the target network with the
exception of the need to generate reports on the current network’s performance at user selectable intervals.

These reports must later be accessible via a graphical application. The only major issue that must be
considered in implementing a solution to these requirements is the same as that for the fault and problem
resolution functional area. That is, to relieve the low bandwidth links of unnecessary network management
bandwidth overhead . As it is not practical to broadcast all of the collected status and performance data
outside a leaf AS, it must be stored locally and made available to the rest of the network only when
required. Automatically generated reports will also be generated and stored locally at the AS’s
management console and may be accessed via a graphical interface.

The functionality in the performance management functional area will be divided as follows:

The Local Management Console will provide the following functions:
¢ Periodically poll local devices for specific MIB values and archive them;
¢ Capture events and status information as it flows through the network for which it is
responsible;
o Periodically generate and store network status reports at user selectable intervals.

Both the Local Management Console and the Remote Management Application will provide the
following functions:

¢ Retrieve and display historic MIB values, events, and other captured information;

¢ Retrieve and display the network status reports.

The agents will provide the following functions
e Calculate MIB performance values, and other necessary information, and send them
either periodically or upon request;
o Generate events based on predefined criteria.

2.3.3- Configuration Management Requirements

This subsection presents the requirements in the configuration management functional area that
are specific to the targeted network. Configuration management usually consists of maintaining a device
inventory database and setting parameters on devices.

The requirements in this functional area are fairly standard when strictly following the definition
above, and can simply be placed within the management console’s purview. However, there are specialised
requirements in the functional area of configuration management that are derived from the network's
architecture and use. There are two main needs that must be fulfilled with specific functionality, both
related to managing changes in the network topology. However, they differ in their fundamental focus.
Each of these is presented in the following subsections.

2.3.3.1- Autonomous systems as a single unit

The first set of configuration management requirements are related to the fact that the network is
divided into many AS, and each AS can itself contain smaller AS thus forming a tree hierarchy. An AS can
be added or removed from the network or change the link by which it is connected to the network. These
changes will take place at differing moments in time as the corresponding units deploy, establish their
positions, or scale down their actions during the different phases of an operation. These changes could also
occur when a unit moves in or out of the radio transmission range of other units. Another point to consider
is that from the point of view of the routers all of the devices in an AS will be added, removed, or their
links changed in the network as a single entity. Such topology changes are required more frequently than in
an average network, and it is for this reason that specific tools are required to ease these changes.

Typical auto-discovery mechanisms, such as the constant polling for new devices, cannot be used
in the target network since they consume too much capacity on the low bandwidth links interconnecting
AS. In addition, due to the nature of radio transmission characteristics, these links can be relatively unstable
as they reach radio transmission range limits, or when they are affected by other phenomenon such as
weather. These two facts make it unsuitable to transmit the existence and characteristics of all of the AS’s

devices each time an AS is added to the network, or to have the devices of an AS ping many of the devices
in another AS when the link between them goes down.

A solution to this issue could be to create a table that contains a description of all the devices in
each AS that takes part in an operation. This table would be used to add or remove devices, or to change the
links used to reach the devices of an AS, in a single operation. It is important to note here that a specific
means to add to this table would have to be devised.

Another way to save bandwidth would be to use scripting capabilities. Such capabilities could
provide several benefits since topology changes will tend to be planned before the start of an operation.
These benefits include a reduced chance of error in entering the commands, the ability to test the validity of
a topology alteration before its actual use in combat, and the ability to simply provide an automation of
command sequences to produce the desired result. These scripts could be invoked by an operator or at a
previously scheduled time.

Finally, the use of GPS equipment could be a solution to solving the issue of detecting whether a
unit is within radio transmission range of other units so that the link used between them may be changed.
One must note that it is uncertain if such a solution is feasible or if any gains can be expected over the
simple solution of testing the radio link at regular intervals.

In summary, the Local Management Console should be able to:
¢ Use a table that contains the description of the devices and the routing information for
an AS to reduce network management traffic;
o Use scripts to modify the network’s topology;
¢ Automatically invoke scripts at a scheduled time;
o Use GPS information to automatically change links used between two or more AS.

2.3.3.2- Emission Control

The focus of the second set of configuration management requirements is to support emission
control mechanisms. To support these mechanisms the network management system must, at a minimurm,
be able to offline only the outgoing port of specific links while keeping their incoming port active as
specified by the EMCON policy. Once this minimum requirement is satisfied, the invocation of different
EMCON levels can be supported by several means. These go from the most basic, such as having the
network manager manually apply the changes to every link, to the more sophisticated, such as allowing the
operator to change the EMCON setting from the console, causing actions to be executed on all applicable
links. The automated actions could be defined to act on either specific links or on all the links of a specific
type at a node, a sub-network, or an AS. Furthermore, the type of links that need to be put off-line for a
given level of EMCON could be predefined. A mechanism to remotely access the EMCON functions
would also be a desirable feature, as it would allow an AS to set the EMCON level of all of its children AS.
These mechanisms should preferably be available from a graphical interface.

In summary, the emission control mechanisms functionality will be divided as follows:

The Local Management Console will be able to:

¢ Include the EMCON level status of each link in the network’s status display as well as
in network status reports.

Both the Local Management Console and the Remote Management Application will be able to:
o Offline only the outgoing port of a link while the incoming port remains active;
¢ Select an alternate link for outgoing messages when the outgoing port of the primary
link is off-lined; |
o Automate actions to set the state of links based on simple EMCON level settings that
may be changed through a graphical interface. Either a specific link, or all of the links of
a specific type at a node, a sub-network, or an entire AS may be affected;

2.3.4- Security Management Requirements

This subsection presents the requirements in the security management functional area that are
specific to the target network. Security management usually consists of password administration,
authentication, data encryption, and security audit log. As in any network, the solution requires network
security functions at many levels.

The first area of concern is access control via login protection and user profiles. Both the graphical
interface and the management console require a login with a password. That having being said, the
mechanisms to provide access to the network are no different from any other system, and it is therefore of
no interest to put any more emphasis on the subject.

The second area of concern is data encryption. Using cryptographic units on all links would fulfil
this requirement. The only source of concern is that it must be possible to manage these units through the
network management interface. There is also a need to define what type of management is required, if any.

The third area of concern is the ability to log all actions in order to ensure that any security breach
can be traced and properly blocked in the future. To this end, each management console will log all login
attempts and all actions that are performed from it. Furthermore, the agent responsible for serving remote
requests on an AS will log every action it performs along with the User Id of the requestor.

A final possible security feature would require that a node be in the auto discovery table described
earlier before it can be added to the network. The table entry could also be extended to include the public
key of the node in a public/private key mechanism to allow further encryption and signature of data
transmitted on the network. The public key could also be used to encrypt management functions.

The following functionality is being considered for both the Local Management Console and the

Remote Management Application:

Access control via log-in protection and user profiles;

Mechanisms to modify user profiles and passwords;

Management of cryptographic units;

Logging of every login attempt and of all actions taken by a management console;

Logging of every action taken on behalf of a remote user by each agent that serves

remote requests.

¢ Public/private key to be included in the auto discovery table and used to control access
to management functions.

2.3.5- Accounting Management requirements

. Accounting management usually consists of gathering usage statistics for billing purposes. This
subsection would normally present the requirements in the accounting management functional area that are
specific to the targeted network. However, there are no such requirements presently envisioned in the target
network.

2.4- Network Management Strategy

This subsection expands on the requirements described in the previous subsection by exploring in
more detail the underlying components of the network, as well as the status information and functions that
are required from them. The existing management elements as well as the specific constraints that were
used to reach the proposed design are also discussed in order to demonstrate how the requirements for the
network management solution were translated into actual development items.

The first subsection describes the devices that need to be managed. The second subsection
presents the constraints that were placed on the design to limit the cost of development and ownership of

the proposed design. Finally, the third subsection discusses the information (i.e. MIB variables) required
from the devices by the management policies.

2.4.1- Managed devices

The network uses several different types of wireless links to connect remote AS. For simplicity, only leaf
AS are considered in this discussion. Each of these AS will be composed of one or more LANs where one
workstation is responsible for local management.

Each link is accessed and controlled by the routers through its own SNAC card (as shown in
Figure 2). The SNAC cards are responsible for managing communications on their respective links, and
perform tasks such as reacting to transmission collisions, petforming retransmissions, and adding and
removing remote devices; they are also responsible for implementing the layer two protocol of the wireless
link. The SNAC cards are mounted inside VME card cages that provide them with shared memory, disk
access, a communication bus, and regulated power. Each of the SNAC cards contain a Sub-Router Interface
Unit (SRIU) that is responsible for the interface’s management functions and is used for managing,
monitoring, and collecting data from the controller functions.

The different wireless links that must be supported are UHF SATCOM, ELOS, and BLOS. There
are also ISDN links where wire based links are possible. All of these links are supported by a small number
of different SNAC cards.

Each LAN is fairly standard in the sense that it consists of PCs running Microsoft Windows™ and
Unix workstations. There is also a timeserver whose responsibility is to provide correct time
synchronisation for the LAN. In particular, it allows the SNAC cards on each end of a link to synchronise
the start of periodic link status checks. All of these components are connected together through an Ethernet
hub and a router that routes messages to the appropriate external links. The normal path for messages is
from the workstation to the router, through the hub, and then to the SNAC cards managing the target
external link. The same route is used to perform local network management functions as well as to load the
operating system onto the SNAC cards

In summary, the Network Management Application must be able to manage all of the equipment
that constitutes the building blocks of the network. The Network Management Application must support the
following devices:

SNAC cards,

Routers to the external links,

Cryptographic units for each link,

Modems or radio units depending on the type of link,

GPS receiver NTP LAN time servers,

Hubs,

Host computers (PCs, UNIX Workstations (HP, SUN, etc.)).

It is important to note that the SNAC cards are prototype devices with very basic network
management functions and that these must be enhanced. Routers are also very important in a network
where specific requirements, such as support for EMCON, must be considered. The other devices listed
above have either limited interest to our study, or the available device agents provide all the functionality
we require. It is for these reasons that the SNAC cards and the routers will be the focus of the design and
implementation study presented in the remainder of this document.

2.4.2- Design Constraints

This subsection presents the general strategy the Local Management Console and the Remote
Management Application will use to manage the different devices. In short, it discusses the various

constraints that were imposed on the design and that could not be associated with a single network
management functional area.

One of the main issues this project must consider is the requirement to limit as much as possible
the traffic generated by the network management functions on the low bandwidth links. To deal with this
issue, the responsibilities of the fault and problem management (polling, event filtering, and alarm
management), performance management (periodic polling for performance data and safeguarding it in a
data repository), and security (password management, authentication, and keeping logs) have almost all
been assigned exclusively to the Local Management Console.

To further limit the bandwidth overhead while still allowing extensive post-mortem analysis, it
was decided that two types of logs were needed: historical data logs, and operational data logs. The purpose
of the operational data log is to allow the network operators to evaluate the current performance and see
which events have brought about a given state. Only a filtered version of the recent events will be kept to
reduce the log size in order that a smaller amount of information must be transferred when the log is
requested by the remote management facility. The purpose of the historic data log is to allow the analysis of
all of the events that have occurred in the course of an operation. This log will therefore include not only
the same data as the operational log, but could also hold other data necessary to reproduce the conditions
encountered by the unit (for example reports on weather conditions limiting the transmission capacity of
the wireless links). Furthermore, the logs would keep all of this historic data until a unit could download
that data over a high bandwidth wire link. The exact content of these logs has not yet been determined.
However, it is understood that the logs will include performance metrics as well as a complete log of all
actions taken by the operator at the Local Management Console.

There was a question as to whether it was necessary that the Management Console collect
performance statistics and capture events (i.e. Traps) at all times or only when the network manager was
logged in. After due consideration, it was deemed necessary that statistics should be collected at all times.

The Remote Management Application will access the operational data on a need to know basis
using the File Transfer Protocol (FTP). For security reasons, as well as for logging purposes (since all
logging will take place exclusively at the Local Management Console), the Remote Management
Application will only be able to access an agent’s data through the Local Management Console. The Local
Management Console will be the only component able to talk with the agents and will use the SNMP
protocol to do so. The Remote Management Application will use FTP to access the operational logs, and
the User Data Protocol (UDP) to contact the Local Management Console.

Finally, another design goal is to minimise the amount of work required to support each device
type. Furthermore, the solutions selected must reduce ownership costs as well as facilitate development.
Because of these goals, several design decisions were made. The constraints that have been imposed on the
design to reach these goals are listed below.

e The standard protocol SNMP will be used to implement the communication between the
Local Management Console and the Agents. However, for greater security and compatibility
with upcoming standards, SNMP-V3 will be used [2];

o Standard MIB-II [3] definitions will be used as much as possible, and adding MIB definitions
in the enterprise sub-tree will be used only as a last recourse.

e To reduce the cost of ownership, an interface designed in-house along with a public domain
implementation of SNMP V3 [4] will be used as an alternative to HP Open View.

¢ The GUI interface will be written in Tcl/Tk so that the interface can be rapidly prototyped and
modified independently of the underlying capabilities.

o For the performance critical parts of the Management Console, the C programming language
will be used.

¢ Standard agents will be used for devices such as the routers, and an agent-building package
will be used for devices that require special management (SNAC cards).

10

e

o To further reduce the chances of concurrent actions affecting the timing of critical tasks, the
Management Console will be implemented with several processes. This will allow the
placement of a higher priority on the time critical functions of the SNMP session manager.

2.4.3- Management information

This subsection lists the managed objects and their required specifications.

¢ SNAC Cards (Common specifications)

SNAC card attributes:

SNAC card ID, name, type

¢ Administrative state
¢ Operational state
¢ TCP/IP link status (MNG-SNAC card link status)
¢ Link Data rate
¢ Queue size
¢ Queue threshold
¢ Data compression (on/off)
o EMCON mode (normal, Rx, Tx)
e Priority Table
o Configuration files
SNAC Card Statistics:
e Data bytes queued during the last time interval
¢ Data bytes transmitted during the last time interval
¢ Data bytes successfully transmitted (ACKed) during the last time interval
¢ Data bytes retransmitted (not ACKed) during the last time interval
¢ Data bytes dropped during the last time interval
¢ Data bytes received during the last time interval
¢ Total data bytes queued
¢ Total data bytes transmitted
o Total data bytes successfully transmitted (ACKed)
¢ Total data bytes retransmitted (not ACKed)
¢ Total data bytes dropped
o Total data bytes received
o Link throughput expressed in bits per seconds (bps) and calculated as follows:

Link throughput (bps) = Data Bytes Successfully Transmitted * §
Time interval (s)

Note: The time interval value will be predefined and is dependant on the SNAC card
type. It should be implemented in a manner such that the throughput is
calculated over the time interval that ends at the moment the measurement is
taken (sliding window). For example, if the interval is defined as one minute, the
throughput should be calculated using the Data Bytes Successfully Transmitted
in the last minute.

Link utilisation will be calculated as follows for ELOS:
At the end of each time interval,
If the transmit queue is not empty then (the link is always busy)
Link utilisation = 100%
Else
Link utilisation (%) = Data Bytes Transmitted * 8
Time interval * link data rate

11

And calculated as follows for BLOS:
At the end of each time interval,

Link utilisation (%) = 100 * Data Bytes Transmitted
(Data Bytes Transmitted + Fill Data Bytes)

Where Fill Data Bytes is the number of bytes added to fill the message window

SNAC Card Actions:

Reboot
Flush queues

SNAC Card notifications:

State change (device up/down)

Connectivity (link up/down, quality good/poor)

EMCON on/off

Fault report

Event report (e.g. message queue full/not full, queue above/below threshold etc.)

SNAC Cards (Particular specifications)

HF BLOS

Evaluation interval
Number of channels
Node’s radio frequencies (Rx and Tx)

Router (based on standard MIB definitions)

Router attributes:

ID, Name, Type
Interfaces

Address translation

IP routing table

IP address table
OSPF/MOSPF parameters

Router statistics:

12

Interface statistics (number of bytes in, number of bytes out)
IP statistics

[

3- High Level Design

This section presents the high level design of the network management solution proposed to
satisfy the requirements listed in the previous sections. It is important to note that the design described in
this section reflects only the current status of the prototype, and that the main focus of this design is the
Local Management Console and the Agents. Potential solutions to issues specific to the Remote
Management Application need to be further investigated.

The first subsection presents a general overview of the design. The second subsection presents the
division of the functions in the Management Console. The third subsection presents the functions of the
Agent. Finally, the fourth subsection presents issues that need to be addressed in any design proposed for
the Remote Management Facility.

3.1- General design overview

This subsection presents a general overview of the proposed design. The design has elements in
three distinct locations in the network: the Agents on the devices themselves, the Local Management
Console on the LAN of the managed devices, and the Remote Management Application which can be
located anywhere in the network. Furthermore, the decision to collect statistics at all times, even when the
Management Console's GUI is not running, has resulted in a design where the software operates on two
levels. The first level is the GUI, which is a user owned process that is started when the network manager
logs in and halted when he or she quits. The second level encompasses daemon processes that are started at
boot time and are always available to serve requests and to collect data. One must note that several
functions at the daemon level are separated into different processes to ensure that the time-critical tasks for
which they are responsible do not interfere with each other. Figure 3 presents an illustration of the proposed
design. Each of the elements in this illustration is further described in the following subsections, with each
subsection dedicated to a specific network location.

Local Management Console Agent

! SNAC
SNMP.Trap SNMP Traps/Notifications Requests Controller
Notifications Monitor 1 /
1
Log entrieg | Data &
Management) _ Requests SNMP Request: Agent Notifications
Console Notifications &Po s
GUI—/ Replies

Results &
Triggers

~ SNMP .
Session SNMPReplies

Wrl
requests
Manager 1

1 .
. \NRequests
L t
Log 0g entries il m
Manager |

L t) 1 N & o mn o oo e e veam s mm o Em e e eR e e e e e
g8 o Replie Remote Management
) Application
Log entries Historic !
Data : Remote
Operat. . Management
Data T Application
1
Figure 3 Proposed design

13

3.2- Local Management Console

This subsection presents the design elements of the Local Management Console. As shown in
Figure 3, there are six main elements in the proposed design:

Management Console GUI;
Historic Data Repository;
Operational Data Repository;
Log Manager;

SNMP Session Manager;
SNMP Trap Monitor.

The Management Console GUI is the central means by which the user can control and access the
network management capabilities of the system. The GUI will display status information of network
devices and will permit the user to request more detailed information on specific devices. The GUI also
allows the user to make network configuration changes and configure the SNMP Session Manager.

The Data Repositories are responsible for storing the collected data. This data will consist of two
separate repositories: one for operational, or short term, data, which consists of data showing the recent
status of the network, and one for historical data, which holds all data collected for later analysis. These
data repositories are simple ASCII text files.

The Log Manager is responsible for the accumulation of status data for later analysis, and for
managing the different files in the Operational Repository. The first of these responsibilities consists of
polling the monitored devices, via the SNMP Session Manager, for specific MIB values at regular intervals,
and writing the resulting data into the appropriate data repositories. The second of these responsibilities
consists of removing outdated data from the Operational Repository at regular intervals. The main purpose
of the Log Manager is to handle and minimise the overhead of physically writing status data to disk,
without interfering with the time critical functionality of the SNMP Session Manager.

The SNMP Session Manager is responsible for monitoring the status of the network and for
providing SNMP messaging services to other elements of the Management Console. The status monitoring
capabilities consist of ensuring that messages are received from the monitored devices on a regular basis,
and polling devices from which no messages were received during the last time interval. The messaging
services of the SNMP Session Manager consist of encoding and decoding SNMP-V3 messages, and
allowing other elements to send and receive these messages. In this role, the SNMP Session Manager
forwards to the Log Manager all received requests so that they may be stored in the historic data repository.
The Session Manager will use the public domain implementation of SNMP-V3 written for the NET-SNMP
project” [4].

The SNMP Trap Monitor is responsible for receiving SNMP Traps from the Agents and
forwarding these notifications to the Log Manager for archival, and to the SNMP Session Manager and
Management Console GUI for display to the user. This element will also use a public domain
implementation of SNMP-V3 from Net-SNMP.

It is important to note that it is currently intended that the SNMP Session Manager, the SNMP
Trap Monitor, and the Log Manager will be daemons that are run continuously once the Management
Console is installed on a Workstation. This decision was made due to the design objective of having
performance data collected at all times. As a result, the Management Console GUI is an application that
runs only when an operator is logged in. The SNMP Session Manager and SNMP Trap Monitor send
alarms to a given address whether or not a Management Console GUI is currently running.

" NET-SNMP is a public domain implementation of SNMP that was originally based on the
Carnegie Mellon University and University of California at Davis SNMP implementations.

14

»

.

3.3- SNMP Agents

This subsection presents the design elements of the device Agents. Each of the supported devices
will have their own Agent. As shown in Figure 3, there are three main elements in the proposed design:

¢ SNAC Card Controller;
e Agent;
¢ Management Information Base (MIB).

The Agent is responsible for providing a management view of the system resources to the
Management Console. It must validate and respond to management requests emanating from the
Management Console, and issue notifications informing the Management Console of any changes that
occur within the management view (such as values of specific variables that have changed, or the crossing
of predetermined thresholds). In other words, the Agent is responsible for converting the physical view of
the managed system into the appropriate management service, and for mapping a manager service request
onto the correct physical resource. In addition to responding to configuration requests and forwarding
spontaneous events to the manager, the Agent must also ensure that the values stored in the MIB are
consistent with actual network resources. At a later stage, the Agents could be extended to include the
ability to send the values of specific variables to the Management Console at periodic intervals without
having received a request. This capability would be programmable by the Management Console through
the addition of specific variables instances to the MIB.

The Management Information Base (MIB) is the management view of the actual resources
under the Agent’s control. The MIB is a complete collection of all managed objects, with their
corresponding attributes, which are present within the managed system. Management operations being
exchanged between the Management Console and the Agent reference the MIB. Agents must ensure the
validity and integrity of the information within the MIB with which they interact.

Finally, the SNAC Card Controller is the core software component that provides the
functionality of the SNAC card. In other words, it implements the link layer of the communication protocol
for the low bandwidth link it controls. The SNAC Card Controller is the existing code base to which
specific hooks will be added to allow the Agents to monitor and control the device.

3.4- Remote Management Application

This subsection describes the Remote Management Application. It is important to note that this
discussion is only an attempt to illustrate the role that the Remote Management Application may play in the
overall network management solution. The discussion also focuses on the issues that will need to be
considered and resolved due to the additional complexity of Remote/Inter-node network management.

The Remote Management Application is a GUI that provides the means for the user to remotely
control and access the network management capabilities of the proposed system. As such, the capabilities
one would expect the Remote Management Application to provide are very similar to those provided by the
Network Management Console GUI. The Remote Management Application GUI will display status
information to the user, allow him or her to request detailed information on specific devices, and provide
the means to make configuration changes to the network.

The main issue that needs to be addressed in Remote/Inter-node network management is the fact
that data, including network management traffic, must travel over low bandwidth links. The capacity of
these links can be rapidly exceeded, causing communication problems and possibly the failure of the
network management function. Also, due to these low bandwidth links, the delay in obtaining desired
information can become quite significant. This can make network management difficult due to inaccurate
or outdated information.

Examples of short-term solutions to these difficulties could include allowing only limited network
management to be performed remotely, as opposed to providing full remote monitoring and control.

15

Alternatively, the auto-discovery feature, which requires a lot of bandwidth, could be implemented with the
use of static tables containing descriptions of all devices that form the ship’s networks in the fleet. For
example, all of a ship’s devices and network configuration information could be added together either by
loading a file upon request from an operator, or when the ship comes within communication range. The
auto-discovery process could also be scheduled during off-peak hours to reduce its impact. However, all of
these solutions impose limits on functionality that may not be acceptable in the long run.

Other potential solutions also focus on reducing the amount of traffic on low bandwidth links. For
example, the operational data repository could be modified to keep only recent data, reducing the size of
the logs that must be viewed to assess the current state of the network. Another example of a potential
solution would be to handle alarms locally, filtering them before they are passed on to remote management
sites. These solutions may well be acceptable and desirable in the long run. However, more data is required
in order to propose a design for the long term. Rapid prototyping and data collection are necessary to obtain
a better gauge of the processing, delay, and bandwidth cost of different solutions.

16

i3

(v

4- Agent Design and Implementation

This section presents the design and implementation of the SNAC's Agents, in particular, those for
the ELOS and BLOS cards. It is important to note that the design and implementation described in this
section is closely tied to the current implementation of the SNAC cards. These cards contain a lot of
historic code, some of which is no longer necessary, but which has forced certain design decision on the
current Agent implementation. For example, one historic feature of the code that is no longer being used is
a sub-routing mechanism that allows the upper layers (SRIU) to route between several links. As of the time
at which this document was produced, the implementation of the SNAC cards is being reviewed and the
design of their Agents will need to be revised extensively if they are to be adapted to the ensuing version.

The first subsection presents a quick overview of the existing code in order to highlight areas
where changes were required in the Agent. The second subsection contains a short discussion on the
creation of the MIB definitions, and on the integration of the Agent with the existing SNAC card code. The
third subsection presents the elements of the implementation that are common to both types of SNAC
cards, namely the SRIU. The fourth subsection presents implementation details specific to the ELOS
SNAC card. Finally, the fifth subsection presents implementation details specific to the BLOS SNAC card.

4.1- Generic SNAC Card Agent design

This subsection presents a brief history of the code used in the ELOS and BLOS cards as well as a
broad overview of where changes are required in order to add SNMP Agents to the existing code. The
remaining subsections will further detail the changes in each of the development areas outlined below.

Historically, the SNAC cards were part of a VME card cage assembly comprising several SNAC
cards and one SRIU card, all of which were running the VxWorks™ operating system. The SRIU card was
responsible for controlling the SNAC cards, as well as for routing the outbound traffic using a route cost
algorithm. The SRIU card was also responsible for handling the Ethernet link with the router, as all
inbound traffic passed through the SRIU. Each SNAC card was responsible for reliably delivering
messages over the low bandwidth link it controlled. As a result of the hardware iterations being developed
at the same time as this project, each SNAC card now includes its own SRIU. In other words, the code of
both the SRIU and the SNAC has been modified to co-exist on the same card, and use the same processor
and memory space. Nevertheless, the SNAC and the SRIU still have separate code bases; meaning that the
SRIU and SNAC each still have their own distinct sub-set of processes.

The fact that both the SNAC and the SRIU are now on a single card implies that the SRIU no
longer has routing capabilities, as it is connected to only one link. The SRIU now receives and forwards to
the SNAC only the messages to be sent over the link with which it is associated. There are also several
messages exchanged between the SRIU and the SNAC it is controlling. Of particular interest is the Queue
Report message, which is sent to inform the SRIU of any state changes in the message queues. This
message is used to inform the SRIU when the SNAC is being overloaded with messages so that the SRIU
can adjust its routing parameters. Also important to the design is the fact that the SNAC contains time
critical behaviour that should not be needlessly hampered by management functions. All of these details
brought us to the conclusion that the Agent software should be incorporated within the SRIU, as the SRIU
code contains some control features over the SNAC, and it also contains state information about the SNAC.

The first requirement for the Agent design is the capability to produce recurring statistics on the
performance of the link. By their nature, these statistics can only be generated in the SNAC code as they
are based on events such as messages being retransmitted or dropped. These events are dependant on the
inner workings of the link layer and remain hidden from the SRIU. Handling these statistics requires
functions to calculate their values and a mechanism to pass them on to the SRIU so they are available to the
agent when needed.

17

The second requirement for the Agent design is to generate SNMP Traps for specific events.
Events can be split into two categories: status Traps and performance Traps. The SRIU will generate status
Traps as it is responsible for managing the SNAC and therefore holds the necessary general status
information. The SRIU will also be responsible for generating the performance Traps as it also possesses
enough information to determine when they are necessary.

In summary, changes to the Agents were required in seven areas of code:

The definition of the MIB and the interface between the chosen Agent and the SRIU;
The mechanism at the link level (SNAC) to calculate performance statistics;

The definition of the Statistics Report message in both the SRIU and SNAC;

The SNAC code generating the Statistics Report message;

The SRIU code handling the Statistics Report message;

The SRIU code handling the Queue Report message;

The SRIU code routing a message to a SNAC.

4.2- MIB definition and Agent’s Incorporation

This subsection presents the origin of the definitions that were added to the standard MIB-II in
order to monitor the SNAC card Agent’s behaviour, as well as how these definitions are incorporated into
an Agent that interacts with the SRIU.

The variable definitions that were added for the Agent are loosely based on the MIB definitions
used for an old ELOS Agent created by the US Advanced Data Network System team in VxWorks 5.2 with
the help of VxWork’s optional SNMP package. It is important to note that this package was not used for
the current implementation in VxWorks 5.4 as it did not support SNMP Version 3. The file containing the
MIB variable definitions extending the standard MIB-II is attached in "Annex B; Supplemental MIB
Variables definition file".

RFC 1155 {1] specifies that each MIB variable must be uniquely assigned a leaf in the MIB tree to
allow its unique identification. This RFC also specifies the precise places in the MIB tree where variables
can be added. Just as in the MIB inherited from the US team, the new definitions were added under the
navy’s experimental private enterprises sub-tree (ID 1.3.6.1.4.1.1738); more precisely, in the sub-tree
where the MIB variables used for the Advanced Data Network System’s CRIU project, from which the
SNAC code is derived are defined (ID 1.3.6.1.4.1.1738.2.300).

The inherited definitions were divided into six sub-groups: the administrative functions of the
upper level functions (criuAdmin), the administrative functions of the lower level functions (capAdmin),
the general statistics (capStats), the per-application statistics (appstats), the Traps (criuTraps), and the
application priority table (priority). As it was required to implement a new set of general statistics and to
have specific SNMP Traps while preserving the other already implemented behaviour, the variables were
kept in the same sub-tree with two exceptions. The first being that the definitions under the general
statistics and Traps sub-trees for the variables described in section "2.4.3-Management information" were
completely replaced. The second being that all indexing by SNAC IP address was removed from the
original MIB-II extension file since, in complementary work, the upper level functions (SRIU) were
modified to control only a single link, and all indexing was removed from the source code.

One of the first steps required, from the developer’s point of view, is the choice of the Agent and
of the SNMP protocol stack implementation. Given that such an implementation requires a large amount of
work, and that there are several existing source code implementations available, it was decided that a pre-
existing implementation would be used. The selected implementation is Emanate/Light Agent from SNMP
Research International, Incorporated™. This implementation was chosen both because a version for
VxWorks was available, and because it supports SNMP V3.

On VxWorks, the Emanate/Light Agent is coded in such a way as to run as a separate process that
communicates with other processes through a specific set of interface functions. Stubs for those functions

18

=

(W

are created when the MIB is compiled with the Mosy/PostMosy tools. It is important to note that in this
architecture the responsibility for keeping the actual values of the MIB variables is given to the
implementation of the interface functions. Since most of the required values are already in the existing
code, and in VxWorks all global variables are visible across all processes, implementing these functions
simply requires that the values of the internal variables be copied to the data structures of the functions.

All of the Agent customisation source files are located in the “mib” subdirectory of the TD project
source code directory. There are two files of particular interest: the first, “elos.my”, contains the definitions
of the added MIB variables, and the second, “k_elos.fin”, contains the definitions of the interface functions.
The other two files in the “mib” subdirectory are make files that will compile either an SNMP V1 or V3
Agent. In order to incorporate this Agent into the running SNAC you need only to add two lines in the
card’s start up script. The first of these lines assigns to the SR_AGT_CONF_DIR environment variable the
location of the Agent’s configuration file, and the second starts the Agent’s process. For example, on the
author’s machine, these two lines are:

Putenv(“SR_AGT_CONF_DIR=/opt/packages/Henryk/TD/conf™)
Sp SNMPD_main

The table below summarises the different files and their location in the Agent code subdirectories.

Description Source Code file Header file File location
. mib
Defines the variables added to the MIB-II elos.my -
. . . mib
Defines the functions forming the interface k_elos.fin -

between the Agent and the SNAC for the
added MIB variables.

Table 1 Location of the files containing MIB code changes

4.3- SRIU Implementation

This subsection presents in more detail the changes made to the SRIU code. As we have seen in
Section "4.1-Generic SNAC Card Agent design” development was required in four areas in the SRIU code.
This subsection presents each of these areas in turn.

The first identified area was the definition of a Statistics Report message. By analysing the code, it
was discovered that the SNAC was already sending some cumulative statistics at regular intervals to the
SRIU through a report (STATISTIC_REPORT_TYPE). The statistics received through this report are kept
in the SRIU along with SNAC status information. It was decided that the same mechanism would be used
to send and keep the new statistics so that they would be available when needed by the Agent. The format
of the Statistics Report message is defined in a simple data structure that is contained in the header file
“snac.h”. Several variables were added to the “STATISTICS_REPORT” structure, one for each of the new
performance statistics. It is important to note that this data structure is mirrored in the ELOS and BLOS
code in the header file “snac_int.h” of each platform, and that all of these files must be kept in sync.

The second identified area was the section of code that handles the Statistics Report messages.
Two actions are required to handle this message type. First of all, a check is made to determine whether
the ratio of retransmitted bytes versus transmitted bytes indicates that the quality of the link has passed a -
predefined limit. If this is the case, the link status is stored in a new variable (poor_link_flag), and an
appropriate call is made to generate an SNMP Trap (CRIUDoTrapSend). This ratio is checked by a call to a

19

new procedure: “check_link_quality”. Another change made related to the handling of the Statistics Report
messages is that all the new statistics added in the messages are copied in new variables in the internal state
data structure of the SNAC (struct snac_circuit_cb). These values are stored for use by the Agent in
response to SNMP requests. The values are stored by the new procedure: “save_stat”. Both of these
changes were made in the module “metric.c”.

The third identified area was the code that sends messages to the SNAC to be transmitted over the
link it controls. When such a request is made a performance Trap may be generated, since the SNAC will
block its message channel when its highest priority queue is full. This causes the message forwarding
function in the SRIU to fail. The need to send a “snacMessageQueueFull” Trap is therefore detected when
an attempt to delegate to the SNAC the sending of a new message fails because the conduit is blocked and
the previous known state was that is was not blocked. Vice-versa, the need to send the
“snacMessageQueueNotFull” Trap is detected when an attempt to send a new message succeeds and the
previous known state was that the conduit was blocked. When either of these conditions is met a call is
made to generate the appropriate SNMP Trap (CRIUDoTrapSend). This is handled by the procedure
“sendToSnac” in the module “mimsnaclnterface.c”.

Finally, the fourth identified area was the code handling the Queue Report message. This report is
sent to the SRIU by the SNAC when the number of bytes in one of its transmit queues crosses a certain
threshold. This threshold is defined as being any multiple of a certain boot parameter. More specifically,
the appropriate Trap is sent only if the threshold crossed is one where the multiple of the boot parameter is
equal to one. In this instance the SRIU must determine, by examining the value of message attributes,
wheather a “snacQueueAboveThreshold”, “snacQueueBelowThreshold” or “snacMessageQueueNotFull”
Trap should be generated. For example, when the previous known state of the message channel to the SRIU
was blocked and a Queue Report is received, the “snacMessageQueueNotFull” Trap is generated, since this
report indicates that the message queue is above the threshold but not full. The Queue Report message is
handled in the procedure “input_snac_circuit” of module “mimsnaclnterface.c”.

Some other minor changes to the code have been made. A call to generate the “SNAC up” Trap
was added to the end of the initialisation phase of the SRIU. A call to generate the EMCON or the “SNAC
down” Traps was added to the code that handles changes in the values of the corresponding MIB variables.
Two other status Traps, “link up” and “link down” are not yet implemented since, by design, there is no
existing mechanism for the SNAC to inform the SRIU of those events.

All of the new status variables for the Traps as well as the new statistics being calculated have
been added to the data structure ‘“snac_circuit_cb” which is defined in the module “includes.h”.
Furthermore, all of these variables are initialised in the function “init_snac_circuit”. Al of the performance
variables are reset in the function “init_circuit_history”, which implements the reset statistics function of
the Agent (activated by the MIB variable “capStatisticReset” or 1.3.6.1.4.1.1738.2.300.2.10). Both of these
functions are defined in the module “mimSnaclnterface.c”. The different files and their location in the
SRIU code subdirectories are summarised in Table 2.

Description Source Code file Header file File location
- Sriu
Defines the format of statistics report messages - snac.h
. L . Sriu
Manages statistics related to communication metric.c -

with the SNAC and registered clients

. . . Sriu
Manages the routing algorithm used between | mimSnaclnterface.c -

SNACs

Table 2 Location of the files where SRIU logic has been changed

20

"

i

s

4.4- ELOS Implementation

This section presents in more detail the changes to the ELOS code required to support the new
Agent. As described in section "4.1-Generic SNAC Card Agent design”, development was required in the
following three areas: the mechanism to calculate the performance statistics, the definition in the ELOS
code of the Statistics Report message format, and the code generating the Statistics Report message. This
section presents each of these areas in turn.

Calculation of the new statistics required two separate development efforts. The first was to create
functions that would manage the moving time slot for the “instantaneous” statistics, calculate them,
increment the cumulative statistics, and provide access to the different statistics. The second was to identify
the places in the code where the events being tallied are managed and add the appropriate calls to the
functions previously defined.

From the onset, it was decided that the moving time slots would be managed using linked lists
where each element of a list holds the value and time of an individual reading. Each list is used to hold the
elements in chronological order, and any element older than the time slot duration is removed whenever the
list is accessed. Several functions were created for these lists: a function to create a list and set its time slot
duration (“list_create™), a function to add readings (“list_add”), and functions to calculate various statistics

from the lists (“list_sum”, “list_average”, and “list_rate”). These functions are located in the file “list.c”
and they all control access to the lists by other processes with the use of semaphores.

For every event upon which new statistics are based, a function is created to calculate the
corresponding statistics, and most of them have a similar implementation. For a list of these events, please
refer to Table 3. In each of these functions, the new value passed through the parameter is added to the
variable that contains a total of the received readings, and an element is added to a corresponding moving
time slot list instance. An exception to this general implementation is the function used to process the PDU
“queued” and “dequeued” events. The function used to process these events is different because the
corresponding link utilisation statistic does not have an event per say but instead needs to know the number
of PDU in the processing queues. More specifically, the link utilisation is based on a function that checks
once a second whether there are any PDU in the queues. Should there be one or more PDU in a queue this
would indicate that the link is being utilised. A separate process was created to make these readings, which
uses a variable that tracks the presence or absence of any PDU in the processing queues. This variable is
incremented in the queued event function and decremented in the dequeued event function. Each of the
readings is then added to a time slot list that is used to calculate the link utilisation. Note that the
“dequeued” event’s sole purpose is to track the number of PDU in the processing queues, and consequently
its corresponding function does not store a total or a time slot list. Another exception to the general statistic
function implementation is the function that calculates the link throughput statistic. This statistic is based
on the current number of acknowledged bytes, and is calculated using the time slot list for the number of
acknowledged bytes. Access to all of these statistics is provided by dedicated functions, all of which are
contained in the file “stats.c”.

21

Event Definitions

Queued A PDU was added to the priority queues for transmission

Dequeued A PDU was removed from the priority queues.

Transmitted | A PDU was written to the hardware buffer of bytes to transmit over the link

ACKED An acknowledgement was received for a PDU.

Not ACKED | A PDU was transmitted but it did not receive an acknowledgement during the allowed time.

Dropped A PDU was dropped from the priority queues. This can occur because its Time To Live
(TTL) expired before it could be transmitted, or because another error, such as a full
priority queue, caused the packet to be dropped.

Received A PDU was correctly received.

Table 3 Events upon which statistics are based

The part of the mechanism to calculate the new statistics that required the most effort to code is
the insertion of calls to the functions that tally the statistics at the appropriate places. This requires intimate
knowledge of the code implementing the ELOS SNAC. Investigation of the code has revealed that the most
appropriate places to insert these function calls are in the module functions managing the transmit queues.
When messages to be sent are received by the ELOS SNAC they are inserted, according to their priority, in
the appropriate transmit queue. The function used to make the final message validity checks and insert the
messages is “XQ_X_AddXmitDg”. It is in this function that the call to the function that tallies queued
bytes is inserted. Similarly, the function used to remove a message from the queue is
“XQ_X_DeleteXmitDg”, and the call to tally the messages removed from the priority queues ("dequeued’”)
is inserted in this function. It is important to note that the calculation of how many messages are on the
SNAC using the aforementioned “queued” and “dequeued” calls is valid only because messages are added
or removed from the SNAC only with corresponding calls to these two functions. The calls to tally
transmitted bytes are inserted at the time when the SNAC builds the buffer that is to be written to the serial
port. This buffer is created within two procedures: “XQ_GetLoc_Msgs” and “XQ_GetXmitd_Msgs”. The
former adds new messages to the buffer, and the latter adds messages to be retransmitted to the buffer. The
call to tally retransmitted bytes is also put in the “XQ_GetXmitd_Msgs” function; in fact, bytes added to
the buffer by this function are always tallied twice, once by the transmitted bytes statistic, and once by the
retransmitted bytes statistic. The call to tally ACKED bytes is added to the “XQ_ProcessAckTask”
function. Finally, the call to tally the dropped bytes is added in the “XQ_CullXmitQ” function, whose
purpose is to scan all of the transmit queues and to remove the messages once their TTL has expired.

Changes in the two remaining areas are straightforward. As has already been stated in Section
"4.1-Generic SNAC Card Agent design", the format of the Statistics Report message, as defined by the data
structure “STATISTICS_REPORT” which is located in file “snac_int.h”, needs to mirror any changes to
the format of this structure in the SRIU. The Statistics Report is generated in the Statistics Managing task’s
main loop (function ST_Mainloop) when it receives from the SRIU either a
“GS_INTERVAL_STAT_REPORT” or a GS_SNAPSHOT_STAT_REPORT” request. In each case, a call
to a new function is inserted to fill in the new fields. This function, “NewStats”, calls the access function
for each of the added statistics, and saves the result in the appropriate spot in the Statistics Report message.
Table 4 lists the files that have been changed and gives their location in the ELOS code subdirectories.

22

-

(w

Description Source Code file | Header file | File location

Generic code for managing interval lists. list.c list.h elos/st
Basic arithmetic operations on time intervals. timeval.c timeval.h elos/st
Cumulate, manage, and provide access to each of the stats.c stats.h elos/st

new statistics.

Define the format of the Statistics Report message. - snac_int.h elos/gs

Routines that handle transmit queues. code_xq.c - elos/xq
code_xql.c

Generate the statistics report message. code_st.c - elos/st

Table 4 Location of files where ELOS logic was changed

4.5- BLOS Implementation

This subsection presents in more detail the BLOS code changes required to support the new
Agent. As discussed in section "4.1-Generic SNAC Card Agent design", development was required in the
following three areas: the mechanism to calculate the performance statistics, the definition of the Statistics
Report message format in the BLOS code, and the code generating the Statistics Report message. This
section presents each of these areas in turn.

In the BLOS, the calculation of the new statistics follows the same pattern as in the ELOS case. It
is thus not warranted to dwell further on the functions that manage the moving time slot for the
“instantaneous” statistics, calculate and increment the cumulative statistics, and provide access to the
different statistics. The main difference between the ELOS and the BLOS is that in the BLOS an internal
statistic, “fill bytes”, is used to calculate the link utilisation as opposed to the process used in the ELOS of
regularly checking whether the queue is empty. The internal BLOS statistic used to calculate link utilisation
tracks the number of filler bytes that are transmitted to complete time slots when there is not enough data to
transmit. One further difference between the ELOS and the BLOS is that the transmitted and retransmitted
(not ACKED) statistics of the BLOS do not tally the size of the actual data, but instead track the number of
bytes physically sent on the wire. These statistics must be calculated in this way since the data on the
BLOS is transmitted in a compressed form and there is no way to know the size of the real data at the level
where these two statistics can be cumulated. The other statistics, (Queued, ACKED, Dropped and
Received), tally the actual size of the data. Regardless of the differences in the meaning of these statistics
between the ELOS and the BLLOS versions (due to the transmission compression scheme), the same MIB
variable names are used.

~ Once again, the part of the mechanism used to calculate the new statistics that required the most
effort to code is the insertion of calls to the functions that tally the statistics in the appropriate places.
Because the code of the BLOS is very different from that of the ELOS the places in the code where the
events being tallied are managed are also very different. This means that intimate knowledge of the code
implementing the BLOS SNAC is required in order to add the appropriate function calls. The discussion in
the following paragraphs does not intend to present the architecture of BLOS; it only aims to present
enough of it so that the insertion points may be understood.

The first calls are inserted at the time when the BLOS receives a request to send a message over
the link. This request originates in the process started by the TCP server of the SNAC to handle the
connection with the SRIU. The request eventually reaches the procedure “insertQElement” which adds the
PDU to an appropriate priority queue. This involves a check to verify whether there is enough space in the

23

given queue for the PDU. If enough space exists, the PDU is inserted and it is added to the tally of queued
PDU through a call to “Stats_PDU_Queued”. If there is not enough room in the queue the PDU is dropped,
and it is added to the tally of dropped PDU through a call to “stats_PDU_Dropped”. The priority queues
are accessed by three different processes: the command execution process for the “flush queues” command,
the process that regularly monitors the queues for statistical purposes, and the process that selects the
highest priority PDU, compresses it, and sends it on to the next processing step. All of these processes
access the queues through the procedure “accessTXPDUinQHead” which returns the oldest PDU in the
queue that has not expired. This procedure also drops any expired PDU it finds in the queue. Any PDU that
is dropped is added to the tally of dropped PDU through a call to “Stats_PDU_Dropped”. It is important to
note that the uncompressed size of the message is now stored in a new variable “init_len” in the packet
management data structure (“packetinfo”).

The next step in processing a request is the “Segment” task, which divides each message into data
frames and forwards them to the “Transmit” task. The “Segment” task is also responsible for sending
frames that were not ACKED to the “Transmit” task for retransmission when the packet’s timer expires. It
is here that the retransmitted bytes are cumulated through a call to the procedure “Stats_PDU_Not_Acked”.

The “Transmit” task is responsible for the actual write to the serial port, and it is here that the
transmitted bytes are cumulated through a call to “Stats_PDU_Transmitted”. This task must also ensure
that the connection with the remote device remains active, so, if needs be, it will add filler bytes to the port.
These filler bytes are cumulated through a call to “Stats_ PDU_PhilBytes”. When the last frame of a packet
has been sent the “Transmit” task starts a timer by sending a message to the timer task.

The timer task is responsible for the management of the timers. It does so by maintaining a list of
pending timers ordered by their expiry time. The timer task can receive three different messages: start
timer, stop timer, or timer expired. When a “start timer” message is received, the request is queued and the
first timeout is calculated. When a “timer expired” message is received the timer queue is searched for all
timers that have expired and a message is sent to the “Segment” task for each of these timers so that the
required retransmissions are made. The “timer expired” messages are generated when a call to
“mseQReceived” returns with no data because the calculated time out has expired before a message was
received. Finally, when a “stop timer” message is received, the corresponding timer is removed from the
list and its attached packet is removed from the active packets list. It is at this point that ACKED messages
are tallied with a call to “Stats_PDU_Acked”.

The receive message task (RxTask) is the task that reads incoming messages on the serial port of
the link controlled by the SNAC. This task recognises ACK messages and reports them by sending a “stop
timer” message to the timer task. It will also send data frames to the “Desegmenter” task. The
“Desegmenter” task’s responsibility is to reassemble the different frames and forward the results to the
“Link2Client” task. It is the “Link2Client” task that finally forwards the packets to the recipient. This is
implemented in the procedure “GetFromLinkToClient” and it is in this procedure that the last call to tally a
statistic, bytes received, is inserted (“Stats_PDU_Received”).

The changes made in the remaining two areas are straightforward. As was stated in section "4.3-
SRIU Implementation”, the format of the Statistics Report message in the data structure
“STATISTICS_REPORT”, which is defined in the file “snac_int.h”, needs to mirror any changes made to
this structure in the SRIU. Statistics Reports can be generated either for the local console or for a remote
client reached via the SRIU. The same data structure is used in all cases, and its values are filled using the
same function. The values for the Statistics Report message are accessed and stored in the appropriate spot
in the data structure using the “ServerGetClientStatistics” function found in the file “snac_server.c”.
Appropriate statements for each of the new statistics were added to the “ServerGetClientStatistics” function
to fill in the corresponding spots in the Statistics Report message. These statements make use of the access
function defined in the “stats.c” file. The files that have been changed and their location in the BLOS code
subdirectories are summarised in Table 5.

24

i»

v

(w

Description Source Code file | Header file File location
. Code: blos_pt161/stats
Generic code for managing interval lists. list.c list.h Header: blos_pt161/h
L Code:

Betmc :lnthmetlc operations on time timeval.c timeval.h blos_pt161/timeval
intervais. Header: blos_pt161/h
Cumulate statistics, manage the interval stats.c stats.h Code: b‘los_pt161/stats

. . Header: blos_pt161/h
lists, and provide access to each of the new

statistics.
Define the format of the Statistics Report - snac_int.h blos_pt161/h

message.

Interface with SRIU (TCP server); this file
also generates the different versions of the
Statistics Reports.

snac_server.c

blos_ptl161/net

blos_pt161/net

Implementation of the network level for Net_tx.c -
incoming messages.
Management of fhe lower level queues and link2.c - blos_pt161/blos2

the physical link.

Table 5 Location of the files where BLOS logic was changed

25

5- Management Console design and implementation

This section presents the design and implementation of the management console. The first
subsection presents the messages exchanged between the different elements. The second subsection
presents the design and implementation of the SNMP Session Manager. The third subsection presents the
design and implementations of the Management Console’s GUI. The fourth and fifth subsections propose
possible designs for the two elements in the high level design that have not yet been implemented. These
last two subsections therefore contain suggestions for further work or development. The fourth subsection
presents a short description of the intended implementation of the Log Manager, and the fifth subsection
presents a short description of the intended implementation of the SNMP Trap Monitor.

5.1- Inter-process communications

Due to the decision that the software on the Management Console would run at two levels, the
design of a communication protocol between its various processes was required. This section presents the
inter-process communication scheme that is used between the different elements of the Management
Console. Several issues were considered during the design of the Management Console. Each of the major
communication issues is presented in this section in order to explain how the solution was reached.

Each interaction between the various elements of the Management Console requires an inter-
process communication protocol. The first such interaction occurs between the GUI and the SNMP Session
Manager to allow the latter to serve the SNMP requests made by the user. Another interaction occurs
between the GUI and the Log Manager in order for the GUI to access historic data. Since the GUI process
is not created at the same time as the other processes, it needs a static way to address both the Log Manager
and the Session Manager. It was decided that each server would be reached through a socket with a fixed
Internet Protocol address and port (AF_INET). The SNMP Session Manager will listen on port 5555 and
the Log Manager will listen on port 5556. In both instances, the GUI does not need to listen on a particular
port since the two managers simply use the sender’s address to return the results of any requests. However,
the SNMP Trap Monitor needs to talk to all of the other aforementioned processes in order to notify them
of important events, and the GUI thus also listens to a defined port, port number 5557. The SNMP Session
Manager also needs to send log data to the Log Manager, but the mechanism described above is sufficient
for this purpose, so the same port will be used. Figure 4 illustrates the communications paths between the
processes on the Management Console.

In designing the format of the messages exchanged between each of the processes the first point to
consider is the fact that the GUI is written with Tcl/Tk in which every object is a string. To simplify
communication between the processes and to simplify debugging, it was decided that messages would be
formatted in readable text. However, since only the SNMP session manager and the GUI are implemented,
only the messages exchanged between the GUI and the SNMP Session Manager have been defined. The
format of the commands the SNMP Session Manager can receive are all in the following pattern (where
names between < > represents symbols that must be replaced by appropriate values): <command> <Target
IP address> <space separated list of attributes>. Table 6 summarises the syntax of the commands that the
GUI can send the SNMP Session Manager. In the syntax used, square brackets delimit a replacement value,
“I represents a choice between the values it separates in the square brackets, “'*” means that one or more
instances of the preceding value is required and “*'”” means that the preceding value is optional but cannot
be repeated.

26

a

-

im

i

User Processes

Requests

————————*————ﬂl—_——

Daemon Processes

Caption:

-
/'Replies
/

! Requests \

Session
Manager

Figure 4

Ethernet Link to LAN

Management Console Inter-process communication

Kmessage content> =

<Ping> =
<Get> =
<Set> =
Get next> =
<Walk> =

<Ping attributes> =
<Nb Ping > =
<Intermediate message option> =

<Get attributes> =
i<Set attributes> =
<Device IP> =
i<Variable name> =
<type> =

[<Ping> | <Get> | <Set> | <Getnext> | <Walk>]

[ping <Device IP> <Ping attributes>]
[get <Device IP> <Get attributes>]

[set <Device IP> <Set attributes>]
[getnext <Device IP> <Get attributes>]
[walk <Device IP> <Variable name>)

[<Nb Ping > | <Nb Ping> <Intermediate message option>]

<Integer greater than 0>
[ylY[n|N]

[<Variable name>]®
[<Variable name> <value> <type>]“*
[<IP Version 4 address of target device>]
[<OID> | <MIB identifier>]
ilu[t|alo|s| x|d|n|I|F|D]
Where 1 for integer

u for unsigned

t for time ticks

a for IP Address

o for object ID

s for string

x for hexadecimal number

d for ASCII numbers

n for Null value

I for Integer (64 bits)

F for Float

D for Double float

0.1

Table 6 Command message syntax of the SNMP Session Manager

27

The replies that SNMP will send back follow a similar pattern: <command return code> <Device
IP> <response attributes>. Table 7 summarises the syntax of the responses returned by the SNMP Session
Manager.

<Reply message> = [<Ping> | <Get> | <Set> | <Getnext> | <Walk>]

<Ping> = [<Ping return code><Device IP><Ping X results>]
<Get> = [<get return code><Device IP>< X results>]

<Set> = [<set return code><Device IP> < X results>]

<Get next> = [<getnext return code><Device IP> < X results>]
<Walk> = [<walk return code><Device IP> <Walk X results>]
<Ping return code> = [ping_intermediate | ping_timeout | ping_summary]
<Ping summary results> = [<nb_ms_sent> <nb_ms_rec> <Average nb_sec> <average nb_usec>]
<Ping intermediate results> = [<nb_ms_sent> <seq_nbr> <nb_sec> <nb_usec>]
<Ping timeout results> = [<nb_ms_sent> <seq_nbr>]

<get return code> = [get_answer | get_failure | get_timeout]

<set return code> = [set_answer | set_failure | set_timeout]

i<getnext return code> = [getnext_answer | getnext_failure| getnext_timeout]
<Xresults> - [<SNMP answer> | <SNMP failure> | <SNMP timeout>]
<SNMP answer> = [<«OID> <value>]

<SNMP failure> = [<error message>]

<SNMP timeout> =

walk return code> = [walk_answer | walk_failure | walk_timeout | walk_end]
<walk X results> = [<X results>]

i<Device IP> = [<IP Version 4 address of target device>]

K Variable name> = [<OID> | <MIB identifier>]

Table 7 Reply message syntax of the SNMP Session Manager

5.2- Design and implementation of the SNMP Session Manager

This section presents the design and implementation of the SNMP Session Manager, which is the
most time critical element of the Management Console. As such, the purpose of the SNMP Session
Manager is to provide access to SNMP messaging services, in order to avoid delays that may be caused by
other components, such as the GUI's window management, or the Log Manager’s disk accesses.

The Session Manager is divided into several functional modules each with their own
responsibilities. Each of these modules is coded using header files (.h) and implementation files (.c), which
allow access to their functionality only through a specific set of functions, and which hide the internal
declarations of variables and data structures. The main modules are:

¢ The main code, which consists of the main event loop; it is responsible for the process’s
initialisation, waits for events such as timeouts or messages, and completes the initial
dispatching of received messages;

¢ The inter-process communication translator, which is responsible for translating into specific
actions the requests received from the Management Console’s other processes;

e The session manager, which is responsible for managing SNMP sessions, and for calls to the
API set of NET-SNMP.

e The time out queue, which provides timer management services to other modules;

28

1.

(e

e The ping module, which handles ping requests originating internally from the SNMP Session
Manager, and from other processes, notably the GUI;

o The NET-SNMP API set, which is used to format and manage the UDP protocol stack for
SNMP messages.

The function “main” of the SNMP Session Manager initialisatises the other modules used in this
process, and waits for either a message on one of several ports or for the end of a calculated time-out
period. The main building block of this functionality is the UNIX “select” function. This function waits for
a limited amount of time for a message on any one of a specified set of sockets. Primitive functions from
the time out queue as well as the NET-SNMP API set are used to calculate the maximum time the select
statement will wait for a message. Once a message is received, a primitive from either the ping facility, the
IPC translator, or the NET-SNMP API set, depending on the socket from which the message came, is
called to read and process it. If the select statement returns without having received any message other
primitives are called in the timeout queue and the NET-SNMP API to handle the time-outs that have
expired.

The inter-process communication translator’s facilities are used through two functions. The first
one, “open_session_mgr_socket”, is called during initialisation in order to open a socket on port 5555. The
second function, “receive_command”, is called each time a new message is received on the socket to
handle the received command. The latter function reads the message from the buffer, saves the address to
which the results should be sent, and calls “handle_GUI_request” to decode the command and execute the
instructions it contains. Each command type is processed using a pair of functions that answer the given
request. The first function decodes the command parameters specific to it, and calls the function from the
module that will serve the request. The second function is a “call back” procedure that is called by the
serving module when the results for the request are ready, or in the case of the walk or ping commands,
partially ready, and forwards these results to the requesting process. For example, the Get command is
served by the “handle_get_request” and “SNMP_get_call_back” functions.

The session manager is an interface that handles communication sessions with the Agents. A
session is a set of protocol parameters used to facilitate message exchange with a specific device. The
session manager has several functions, centralising a set of behaviour into a single point of implementation.
Its first function is to hide the complexity of the underlying API set from NET-SNMP. Its second function
is to ensure that only one SNMP request has been forwarded to a specific Agent regardless of who
originated the request. Any open session with a device is shared between all the requestors and concurrent
requests are queved in a FIFO queue. Finally, the session manager is responsible for pinging the device
upon the failure of a request to ensure that the device can still be reached. If the device answers the ping,
the Session Manager will move on to the next request in the queue, if not, it will flush the request queue
and send an error to the sources of all of the flushed requests. The session manager will serve all SNMP
requests through three functions. The first function, “open_device agent_session”, allows its caller to
initiate a session with a device by opening an SNMP session and setting the parameters defining the
communication protocol to be used in the dialog that follows. This function returns a key that identifies the
session during further interactions. The second function, “send_device_agent_pdu” is used to send a PDU
(the content of an SNMP message) to the remote device using the session identified by the aforementioned
key. This function has a parameter that allows the caller to identify the functions that should be called back
when the reply from the remote device is received. Finally, the third function,
“close_device_agent_session”, allows the caller to close a session that it had previously opened.

The time out queue is a facility that maintains a list of time out events ordered by their expiration
time. The time out queue interface functions allow adding (add_timeout_event), rescheduling
(reschedule_timeout_event), and cancelling (remove_timeout_event), a time out event. The
“add_timeout_event” function has a parameter that specifies the function that should be called back when
the added timeout expires and returns a key, which identifies the time out event, which may be used to
reschedule or cancel the time out. The time out queue is implemented to work in conjunction with a UNIX
select statement whose invocation is the responsibility of the function using the time out queue facility.
Consequently, the “get_first_timeout_delay” function is used to obtain the time remaining before the first
time out in the list will expire in accordance with the maximum waiting time parameter of the select

29

statement. Furthermore, in order for the time out queue to function correctly, the procedure
“check_timeout_events” must be called on a regular basis, especially when the select statement returns
because the maximum waiting time specified in its invocation has expired.

The ping module permits the calling code to send ICMP ECHO messages to any IP address and
interprets the received messages. The program using the services offered by this module, in this case the
function “main” of the SNMP Session Manager, must perform three tasks. Firstly, it must call the
“init_ping_facility” function during initialisation with super user privileges so that a “raw socket” can be
opened. This function returns the socket ID of the opened socket. Secondly, in the processing loop, it must
use this socket ID in a select statement and call the “receive_v4_ping” function when data is received on
this socket. Finally, it must initialise and use the time out queue facility described above. Once these tasks
are integrated into the main code, pings can be requested with a call to either one of the following
functions: “add_ping_request_with_address”, or “add_ping_request”. These two functions contain a
parameter that specifies a call back function to be used when an echo message is received, or the request
times out.

Table 8 summarises the relevant files and their location in the code subdirectories. Figure 5
illustrates the code dependencies between the modules that have just been described.

Description Source Code file Header file File location
. e . manager/serveur
Main loop and initialisation of the SNMP serveur_main.c - ©
session manager.
. manager/serveur
Command translation and serveur_IPC.c serveur_IPC.h °
implementation.
. . . manager/serveur
Session manager and API calls. session_manager.c | session_manager.h ©
. - . . managet/serveur
Ping facility. pinger.c Pinger.h ©
- manager/serveur
Command data structure definition and requests.c requests.h e
functions used to manage command
queues.
. - . . manager/serveur
Timer event management facility. timeout_queue.c Timeout_queue.h
ime calculation functions use e ime_func.c ime_func. anager/serveu
T Iculation funct d by th time_fi t func.h manager/ r
time out facility.

Table 8 Location of the files containing the SNMP Session Manager logic

30

"

V¥

Facility

Figure 5 SNMP Session Manager code dependencies

5.3- Design and implementation of the Management Console’s GUI

This subsection presents the design and implementation of the Management Console’s GUI. The
goal of this element is to provide the user access to the functionality of this network management solution
through a Graphical User Interface, and to isolate all overhead incurred due to interface management, such
as the redrawing of the windows.

As was already stated in the requirement analysis section, the GUI interface is written in Tcl/Tk so
that it can be rapidly prototyped and modified independently of the underlying capabilities. However, it
does need to handle receiving and sending messages through sockets, which are not sufficiently supported
in Tcl/Tk to allow it to be used for this functionality. It is for this reason that a module implementing the
management of the sockets in C, and a link between this C code and the Tcl/Tk interpreter, were written.
As one of the goals of the design was to control when the socket is checked for received messages, the link
module is the main loop of the GUI process. There is a specific set of steps defined in order to use Tcl/Tk
in as the way that was just described and this case is no exception. The “init_ui” function, which is called
during the initialisation phase, implements the required initialisation. The next necessary step is to regularly
invoke the “Tcl_doOneEvent” function in order to process any Tcl/Tk events that may have been created
by a user, or by the receipt of a message. In this case, through trial and error, it was determined that calling
“Tcl_doOneEvent” once every 50 milliseconds was sufficient.

The remaining step needed for this integration is to implement a way to send the user’s requests to
the code controlling the communication socket, which is written in C, and to forward the results to the GUI
display functions, which are written in Tcl/Tk. To allow the Tcl/Tk code to send a request through the
socket to the session manager, a new Tcl/Tk command was added in the “init_ui” function. This new
command is named “send_session_manager” and it is implemented in C in a function of the same name. In
the opposite direction, the information contained in a message received on the socket is sent to the Tcl/Tk
interpreter through the “Tcl_Eval” Tcl procedure. This procedure interprets the Tcl/Tk command contained
in the string it receives. Since the messages received on the socket are strings, a simple Tcl/Tk procedure
was written for this purpose (recmsg) and the message received from the socket, preceded with the string
“recmsg”, is given as the command parameter to “Tcl_Eval”. All of the C code in this Tcl/Tk to C interface
is in the module “Ul_main.c”.

The remaining code developed for the GUI is in Tcl/Tk. It is difficult to describe the code logic
since so much behaviour is intrinsic to the object type definitions in Tcl,/Tk and to the order or hierarchy in

31

which the objects are declared. The remainder of this section will nevertheless try to describe the Tcl/Tk
code. However, the description will be based on the structure of the interface rather than on the logic
behind it. Table 9 summarises the different files implementing the GUI and their location in the code

subdirectories.

Description Source Code file File location
. -~ . manager/serveur
Code that implements the link between C and Tcl and UI_main.c =
manages the communication sockets.
- . . N . manager/serveur
Definition of generic routines and of the main window Ul_main.tct <
where all of the panels are incorporated into a single
interface.
. . . manager/serveur
Definition and implementation of the network map panel. Ul_network_map. ©
tel
- . . . manager/serveur
Definition and implementation of generic router panels. Ul_router.tcl ©
- . . manager/serveur
Definition and implementation of ELOS panels. UI_ELOS.tcl e
. . . . managet/serveur
Graphical based ping tool in a panel. UI_ping.tcl ©
- .) . manager/serveur
Utility module that allows the display of hint windows batloon.tcl ©
when the cursor remains immobile over a widget.
manager/serveur

Utility module for the display of bar graphs with an
automatically adjusting scale inside a window.

bargraph.tcl

Utility module that allows the display of paned resizable
sub-windows.

panedwin.tcl

manager/serveur

Utility module that allows the display of large windows
within a smaller display area, using scroll bars when
needed.

scrollcanvas.tcl

managetr/serveur

Utility module that defines a generic table display and tables.tcl manager/serveut
modification panel.
Utility module that allows the display of several windows | tabwindows.tcl manager/serveur

in the same space, where the one displayed is selected with
the help of tabs.

Table 9 Location of the files used by the Management GUI logic

The code has been structured to be as modular as possible, and several modules have been defined
expanding stock widgets to simplify the definition of the core windows. The way to use these super objects
is well documented in the comments in the beginning of the code, and there is no reason to dwell on their
definition beyond the description in Table 9. These modules are “balloon.tcl”, “panedwin.tcl”,
“tabwindows.tcl”, “scrollcanvas.tcl”, “bargraph.tcl”, and “tables.tcl”.

The main window is divided into three portions: a device selection area in the upper left corner, a
device log area in the upper right corner, and a tool area in the lower half. This division is defined using the

32

@

o

]

super object created in “panedwin.tcl”, which allows these sections to be resized by dragging a tab. The
device selection area allows the manager to select the device to which any action will apply from a list of
all available devices. The device log area is a list of events that have occurred on the currently selected
device. The tool area is further divided into several sub-windows, each displaying a different category of
tool. Each of these tool category sub-windows can be reached by selecting the appropriate tab. These tabs
conform to the analogy of a filing cabinet folder, and are created and managed by the super object defined
in “tabwindows.tcl’. The code creating the main window of the interface is in procedure
“buildMainlnterface”of the module “UI_main.tcl”.

“There are in all six tabs in the tools area, two of which are meant to operate on the whole network
in general: network map and network tools. The other tabs are meant to operate on a single device and they
include a device configuration page, a performance display page, an alarms configuration page, and a logs
configuration page.

The network map page is defined and managed in “Ul_network_map.tcl”. Its function is to display
the network architecture using icons, and to display the status of the network using colours that denote the
status of each individual device and link. The user can also select the device upon which any action will
apply from the network map just as in the device selection area. In its current incarnation, it is very limited
and only displays a fixed number of hard coded devices. Future work could add to it auto-discovery
functionality and a topology drawing tool.

At the moment, the network tools page includes only a ping tool. This tool is composed of a
couple of simple input boxes which allow the user to set parameters, a start/stop button, and an area in
which to display the results from the execution of the request sent to the SNMP session manager. It is
defined and managed in “UI_ping.tcl”.

The format of the pages used to manage a particular device is dependent on the type of that device.
To simplify the management of the display of the devices and appropriate values, every managed device
has its own set of Tcl/Tk objects, and they are simply unmapped or mapped as needed. When a new device
is selected, be it by the network map or through the device selection area, all of the pages are changed to
this device’s instances using the procedure “switchdevice_by_selection_box”, or “switchdevice”, both of
which are defined in the module “UI_main.tcl”. The pages changed include the device log area, and all four
device dependent tabs in the tool area. These pages are created when a device is added to the list of
manageable devices by the procedure “adddevice” defined in the module “UI_main.tcl”. This procedure
calls a set of functions that create the appropriate pages. Every type of device must define this set of
functions to be compatible with the defined interface scheme. There are currently two types of devices that
have some of these functions defined; these are the ELOS SNAC in module “UI_ELOS.tcl”, and a generic
router in module ‘“Ul_router.tcl”.

Both device type implementation modules have a similar code structure. Each of them includes
sets of constructs that fall in the following groups:

A set of functions that individually define a UI panel;
A set of function that implement the actions taken when a button in the Ul panels is pressed;
e A set of functions for each message that can be received from the SNMP Session Manager,

such as “get_answer”, “get_failure”, or “set_answer”;
e A group of constant declarations describing the MIB variables used.

The first set of functions are fairly regular Tcl constructs in which there are buttons, scroll bars,
and editable fields used to display and change values. All of the panels follow a template where the
commands area is located on the left, and the variable display is located on the right. The editable fields are
local copies, or interpretations, of the managed device’s MIB variables. When a button in the command
area is pressed the function implementing the appropriate action is invoked, and an SNMP message is sent
to the managed device’s Agent with the help of the SNMP Session Manager. When a response is received
from the managed device's Agent, the corresponding function is invoked, and it interprets and displays the

33

received data on the appropriate panel. Finally, the MIB declarations are used for the translation of variable
names in order to send and interpret the SNMP data.

"Annex C: Screen captures of GUI" presents a screen capture of each window in this GUI.

5.4- Design of the Log Manager

This subsection presents the responsibilities intended for the SNMP Log Manager as a reference
for future work. Its implementation should follow these processing steps:

Open sockets for communication with the SNMP Session Manager application;
o Read its configuration data files in order to initiate periodic requests to the SNMP Session
Manager;
Open the log files;
Open a socket to receive logs that must be saved to disk;
Wait for requests and serve them while making periodic log requests (as defined in the
configuration files) to the SNMP Session Manager. These requests can be for:
e Logs that must be appended to the files;
e Access for data in the files;

5.5- Design of the SNMP Trap Monitor

This section presents the responsibilities intended for the SNMP Trap Monitor. Its implementation
should be a simple enough task as it consists of these three basic processing steps:

Open sockets for communication with the other applications;

Open the SNMP Trap port (number 162) with the help of the NET-SNMP interface;

Wait for Trap messages on the open port and forward the received Trap information to the
other processes.

34

¥

£

(2]

6- Future Work

As the development effort progressed, it became clear that further development could not proceed
by simply extending the current implementation. In other words, development has reached a crossroads, in
the sense that several key issues need to be reviewed, and the best route to take for future efforts must be
determined. For instance, the current platform for the SNAC cards (VME card cages) has become obsolete
and very expensive to support. A new version on another platform is therefore required before any follow
up work can be performed. Another issue is the fact that the field of network management has evolved and
several tools that could be incorporated into a network management solution have become available in the
public domain. A carefully selected group of these tools incorporated in future designs could greatly
reduce the costs of ownership. This section presents some thoughts on the direction of future study and
development. ’

The issue that is most pressing for any future work is the development of an automatic device
discovery algorithm appropriate for use over low bandwidth links. This issue must be addressed as it is
completely ignored by the providers of commercial network management solution. Such an algorithm
would need to have some inherent knowledge of the composition of the network being monitored. Three
examples provide promising directions for future development. The first of these uses the fact that the
network being managed is a network where only the topology between sub-networks (individual navy
ships) changes, not the sub-networks themselves. Due to this fact, a set of static sub-network description
files could be used to “discover” the devices on the network as ships come within range, or units deploy
and add or remove themselves from the network. The second possible direction for development uses the
fact that OSPF is used between the sub-networks. This means that the Link State Advertisements (LSA)
table of the OSPF MIB on the local edge router could be used along with SNMP Traps to detect topology
changes. Finally, the sub-network edges provide promising insertion points for a passive TCP/IP Finger
Printing algorithm, which could be used to discover topology or device status changes. It is important to
note that potential solutions to the automatic device discovery algorithm are also applicable to the
discovery of a remote device's status.

The problem of managing a network from a remote location also needs attention as it has specific
problems in military networks containing low bandwidth links and a rapidly evolving network topology.
Remote network management solutions being considered try to reduce the amount of traffic on the low
bandwidth links. These include having an operational data repository that keeps only recent data in order to
reduce the amount of logs that must be transferred for any initial assessment of the causes for the current
state of the network. One could also create super requests that translate into several SNMP commands
when executed on a local LAN, or decide to use multicast communications for certain requests. Finally,
handling alarms on the local network in order to filter them before they are sent on to the remote
management site is another example of such a solution. All of these solutions may well be acceptable and
desirable in the long run. However, they require fine adjustments of their parameters such as utilisation
frequency, time intervals, and scope. For example, what time interval between subsequent writings of
performance logs provides enough information to properly diagnose a problem? Which super requests
make sense? Could an existing alarm filtering solution be adapted? It is important to note that a solution
could be useful on one type of SNAC and detrimental on another. As a result of all of these factors, rapid
prototyping and data collection will be required to provide a better gauge of the processing power,
transmission delay, and bandwidth cost or benefit of different solutions.

In conclusion, given that the network management tools available in the open source community
are changing, future development should concentrate on resolving the issues specific to the network at
hand, and in obtaining results that can be reengineered rapidly. The remaining issues that need to be
addressed to provide a basic solution are:

¢ Handling of Traps on the Network Management Console;
* Auto-discovery of devices in low bandwidth environments with changing topologies;
¢ Automatic generation of the network map;

35

o The ability to request statistics and manage logs from the Network Management
Console;

e Security mechanisms (ranging from migrating to SNMP-V3 to user authentication
controls on the console);

e Development of a configuration tool for the Network Management Console.

Several additional items should also be considered. These are:

36

e A redesign of the SNAC code base;
» Porting the Agent hooks to the new SNAC code base;

e Changing the Agent engine to a public domain implementation of SNMP-V3 such as
Net-SNMP [4].

i

7- Conclusion

This final report provides a record of the network management effort of the "Sub-Network Access
Control Technology Demonstrator” project. The development efforts described in this document have
produced a prototype implementation of a SNAC Management Console as well as Agents for the ELOS
and BLOS SNAC cards. This constitutes a significant step towards the development of a complete network
management system for a naval force network containing low bandwidth radio links. Additionally, this
research and development activity has provided the opportunity to identify and explore general issues for
network management in low bandwidth environments with changing topologies.

Of all of the identified issues, the one that is the most important is the bandwidth used by the
network management application, as it is from this issue that most of the others originated. Today's
automatic device discovery algorithms, as well as potential remote management applications, are two
functions that may cause difficulties in the typically low bandwidth military networks. It is important to
note that the scope of the design given in this document applies only to a ship node, and therefore only
addresses local management. Network management from a remote location connected to the network via
low bandwidth links presents several additional problems that have only been partially examined.

37

(2]

(3]

(4]

38

8- References

RFC 1155: “Structure and identification of management information for TCP/IP-based
internets”

RFC 2570: Introduction to Version 3 of the internet-standard Network Management
Framework

RFC 1213: Management information base for Network Management of TCP/IP based
Internets: MIB-II

Net-SNMP project; please refer the open source project’s WWW page at address: http://net—
snmp.sourceforge.net/

a

[t

“

AS
BLOS
C4
CSNI
CWAN
ELOS
EMCON
FCAPS

GUI

LAN

MIB

1P

JWID

RF

SHF
SNAC
SNMP
SNMP-V3
SRIU

TD
TGAN
UDP

UHF SATCOM
VME

Annex A Acronyms

Autonomous System

Beyond Line Of Sight radio link

Command, Control, Communications and Computers
Communications Systems Network Interoperability
Coalition Wide Area Network

Extended Line Of Sight radio link

EMission CONtrol

Fault, Configuration, Accounting, Performance and Security management
File Transfer Protocol

Graphical User Interface

High Frequency

Local Area Network

Management Information Base

Internet Protocol

Joint Warrior Inter-operability Demonstration

Radio Frequency

Super-High Frequency

Sub-Network Access Controller

Simple Network Management Protocol

Simple Network Management Protocol Version 3

Sub-Router Interface Unit

Technology Demonstrator

Task Group Area Network

User Data Protocol

Ultra High Frequency SATellite COMmunication

Versa Module Europa (as defined in the IEEE 1014-1987 standard)

39

Annex B Supplemental MIB Variables definition file

* % % % * *k * k% * * * %k Kk *x * %k * ¥ ¥ *k Kk * Kk ¥ * * * * * * ¥ ¥ * * * ¥ * %

CRIU AGENT MIB
Version 5/04/00

*
*
*
%*
*
* Modified 6/15/96
-- * Modified 8/13/96 by kvo to change TRAP-TYPE to NOTIFICATION-TYPE
* Add Priority, application for appStat and changed range to some integer
* values 9/16/96 TT.
* Modified 06/13/00 by {[CRC/mjb] to reflect MISN and CA additions.
* Modified 03/01/01 by [CRC/HLJ] to update MISN changes and to remove indexing
* by cap Ip address of capAdmin, capStats and appStats.
*
*

* Kk Kk Kk k Kk k * % * *k Kk k * *x * * *x Kk *k * * * * * ¥ *x * ¥ * K% %* * ¥ ¥ * %X %

—— Kk Xk * Kk k k ¥ k k Kk *k Kk % k ¥ k * * Kk * * * *k *k *x * *x * k *k *k Kk * Kk * * * *

CRIU-MIB DEFINITIONS ::= BEGIN

IMPORTS
OBJECT-TYPE, MCDULE-IDENTITY,
NOTIFICATION-TYPE
FROM SNMPv2-SMI;

navy OBJECT IDENTIFIER ::= { enterprises 1738 }
navyADNS OBJECT IDENTIFIER ::= { navy 2 }

criuMib OBJECT IDENTIFIER ::= { navyADNS 300 }
criuAdmin OBJECT IDENTIFIER ::= { criuMib 1 }
capAdmin OBJECT IDENTIFIER ::= { criuMib 2 }
capStats OBJECT IDENTIFIER ::= { criuMib 3 }
appStats OBJECT IDENTIFIER ::= { criuMib 4 }
criuTraps OBJECT IDENTIFIER ::= { criuMib 5 }
priority OBJECT IDENTIFIER ::= { criuMib 6 }

-- Module Identification Definition.

criuMIB MODULE-IDENTITY
LAST-UPDATED "0006130000Z"
ORGANIZATION "CRC"
CONTACT - INFO
" Henryk Lukasik

Postal: CRC Canada
PO BOX 11480 Stn ‘H
3701 Carling Ave
Ottawa Ontario K2H 8S2
Canada

Tel: +1 613 998 5240
Fax: +1 613 998 9648

E-mail: henryk.lukasikecrc.ca"
DESCRIPTION
"This is the CRIU MIB module. It is provided as
an example of how to make extensions to the VxWorks SNMP
Agent MIB. This module contains the modification made to
accomodate the Canadian MISN requirements."

::= { criuMib 7 }

—— k k Kk Kk Kk Kk * * * ¥ K* * * K* Kk *k ¥ Kk * F* * ¥ * * *k * * * * *x ¥ Kk Kk * * Kk ¥ Kk Kk

40

CRIU Administration Group (criuadmin)

(enterprises.src.criuMib.1)

»
1
|

* % N X O ¥

* kX * % * % k*k k% * * k% %k * *k % * k% * * * *x * *k * *k % * * * * * * * * * * * *

criuIpAddress OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-only

STATUS current

DESCRIPTION ?

" IP Address of CRIU SNMP agent "
:= { criuAdmin 1 }

|

criuHostName OBJECT-TYPE
' SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Host name of CRIU "
:= { crivadmin 2 }

logState OBJECT-TYPE
SYNTAX INTEGER { on (1), off (2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Determines if information will be logged within the CRIU.

:= { criuaAdmin 3 }

logDuration OBJECT-TYPE
SYNTAX INTEGER (1..5000)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Range of log duration. Unit is # of Log Msg. "
:= { criuAdmin 4 }

“

fileName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" File name that CRIU will be logged."
::= { criuAdmin 5 }

1 criuReboot OBJECT-TYPE
| SYNTAX INTEGER { reboot (1), normal (2) }
| MAX-ACCESS read-write
: STATUS current '
DESCRIPTION
" Reboot CRIU when called "
::= { criuAdmin 6 }

* * Kk * Kk Kk Kk k Kk Kk k %k * k Kk *k *x * *x * * *x Kk * *k * *x * * K*k * % *k * * * * %

CAP Administration Group (capAdmin)

(enterprises.src.criuMib.2)

|
|
* ¥ F F X *

* * k k Kk Kk kx * k% * * % *x * *x * *x *k *k Kk % * % * * * *k * *k * *k % * * * %k * %k

-- CAP Administration

41

capHostName

capLinkDataRate

capld

queueReport

bytes. "

queueSize

queueThreshold

icmpThreshold

udpThreshold

tcpRejDupTime

42

OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" CAP's name Example: SHF, UHF etc."
:= { capAdmin 1 }

OBJECT-TYPE
SYNTAX INTEGER (1..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Displays speed of the links in kBytes "
::= { capAdmin 2 }

OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Assigns a unique identifier to Cap. "
::= { capAdmin 3 }

OBJECT-TYPE
SYNTAX INTEGER (1..200000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" How often CAP sends Queue Report to CRIU. Unit is

:= { capAdmin 4 }

OBJECT-TYPE
SYNTAX INTEGER (1..200000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Identifies the CAP queue size in bytes."
:= { capaAdmin 5 }

OBJECT-TYPE
SYNTAX INTEGER (1000..200000)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Sets the queue threshold in bytes for the CAP."
:= { capAdmin 6 }

OBJECT-TYPE
SYNTAX INTEGER (1..200000)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Sets the ICMP threshold in bytes."
::= { capAdmin 7 }

OBJECT-TYPE
SYNTAX INTEGER (1..200000)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Sets the UDP threshold in bytes."
::= { capAdmin 8 }

OBJECT-TYPE
SYNTAX INTEGER (1..200000)
MAX-ACCESS read-write

in

a

{k

capStatisticReset

capStatus

emconMode

emconMethod

* k k ok x * ¥ * *

(enterprises.src

'
'
* * & F * A ¥

* k * k k * * * K

dataBytesTransmitted

dataBytesAcked

STATUS current
DESCRIPTION

" Sets the time -threshold to begin dropping
duplicate TCP packets. Unit is secconds."

::= { capAdmin 9 }

OBJECT-TYPE
SYNTAX INTEGER { reset (1) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Reset CAP statistic."
:= { capAdmin 10 }

OBJECT-TYPE

SYNTAX INTEGER { capUp{(2),capDown(1l),capEmcon(7) }

MAX-ACCESS read-only
STATUS current
DESCRIPTION
" CAP Operational status."
:= { capAdmin 11 }

OBJECT-TYPE
SYNTAX INTEGER { on (1),0ff (2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION .
" Put the CAP into EMCON mode if ON.

If OFF,

the CAP will be back to normal mode."

::= { capAdmin 12 }

OBJECT-TYPE

SYNTAX INTEGER { bypassRouter (1),modifySrcIP (2) }

MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Set the method which the CRIU use to
data when the CAPs are in EMCON."
::= { capAdmin 13 }

* Kk k k Kk Kk k *k k * %k * * *k * * *k *k * * * * *

CAP Statistics Group (capStats)

.criuMib.3)

* Kk *k k * *k Kk k¥ * * * * * %, * *k *x *k * * * * %

OBJECT-TYPE

SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current

DESCRIPTION

receive

* k k Kk k Kk

* Kk Kk %k * Kk

" Number of data bytes transmitted by the CAP

within last 60 secs. "
:= { capStats 1 }

OBJECT-TYPE

SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current

DESCRIPTION

" Number of data bytes acked by the CAP within

last 60 secs. "
::= { capStats 2 }

43

dataBytesDropped

dataBytesUnacked

dataBytesReceived

dataBytesQueued

linkThroughput

linkUtilization

totalDataBytesTransmitted

totalDataBytesAcked

44

OBJECT-TYPE

SYNTAX INTEGER (0..10000000)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

" Number of data bytes dropped by the CAP within

last 60 secs. "

::= { capStats 3 }

OBJECT-TYPE

SYNTAX INTEGER (0..10000000)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

" Number of data bytes unacked by the CAP within
last 60 secs. "
:= { capStats 4 }

OBJECT-TYPE

SYNTAX INTEGER (0..10000000)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

" Number of data bytes received by the CAP within
last 60 secs. "
:= { capStats 5 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of data bytes queued by the CAP within
last 60 secs. "
::= { capStats 6 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Average link throughput of the CAP within last
60 secs. "
:= { capStats 7 }

OBJECT-TYPE

SYNTAX INTEGER (0..100)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

" Average link utilization by the CAP within last

60 secs. "

::= { capStats 8 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

" Total number of data bytes transmitted by the CAP
since running or last reset. "
:= { capStats 9 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of data bytes acked by the CAP since

(%

(&

totalDataBytesDropped

totalDataBytesUnacked

totalDataBytesReceived

totalDataBytesQueued

ospfBytesTransmitted

ospfBytesDropped

ospfBytesReceived

sourceQuenchSent

running or last reset. "
::= { capStats 10 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of data bytes dropped by the CAP since
running or last reset. "
:= { capStats 11 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of data bytes unacked by the CAP since
running or last reset. "
::= { capStats 12 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of data bytes received by the CAP
since running or last reset. "
::= { capStats 13 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of data bytes gqueued by the CAP
since running or last reset. "
::= { capStats 14 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of OSPF bytes transmitted by the CAP."
::= { capStats 15 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of OSPF bytes dropped by the CAP."
::= { capStats 16 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of OSPF bytes received by the CAP."
::= { capStats 17 }

OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Total number of source quench PDUs sent back

45

to applications."
::= { capStats 18 }

bytesLoadShared OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
| " Total number of bytes load shared."
| ::= { capStats 19 }

* ok Kk ok Kk k Kk ok k KX ¥ k Kk Kk * *k Kk * * * ¥ *k K k ¥ ¥ *x ¥ * *k *x k *k * * % % K&

Application Statistics Group (appStats)

(enterprises.src.criuMib.4)

'
|
L I .

* % % % Kk % K k * ¥ * * * ¥ ¥ * % Kk % ¥ *k ¥ Kk *k Kk *x *x *k * ¥ k *x ¥ * *x * * k

appStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF AppStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Table object corresponding application statistics entries. "
::= { appStats 1 }

appStatsEntry OBJECT-TYPE
SYNTAX AppStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Table entry containing Application Statistical information "
INDEX { applicationIndex}
:= { appStatsTable 1 }

AppStatsEntry ::= SEQUENCE ({
applicationIndex INTEGER (0..4},
portNumber INTEGER (0..65535),
sourcelP Ipdddress,
appsDataBytesTransmitted INTEGER (0..10000000),
appsDataBytesReceived INTEGER (0..10000000),
appsDataBytesDropped INTEGER (0..10000000),
applicationName OCTET STRING

applicationIndex OBJECT-TYPE

SYNTAX INTEGER (0..4)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Used to index list of applications to identify
associated statistics."
::= { appStatsEntry 1 }

portNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Port number of application. "

46

«

Y

:= { appStatsEntry 2 }

sourcelIP OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-only

STATUS current

DESCRIPTION
" IP address of application. Note that either port number
or source IP will be set to 0."

::= { appStatsEntry 3 }

appsDataBytesTransmitted OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Transmitted data bytes associated with application."
::= { appStatsEntry 4 }

appsDataBytesReceived OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Receilved data bytes associated with application."
:= { appStatsEntry 5 }

appsDataBytesDropped OBJECT-TYPE
SYNTAX INTEGER (0..10000000)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Dropped data bytes associated with application."
::= { appStatsEntry 6 }
applicationName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Name of application."
::= { appStatsEntry 7 }

k % x * *k Kk * * * k¥ ¥ Kk K*k *k k k * ¥ %k Kk * *x *k *k *k % * *k *k *k *k * % * *k Kk *x *

Priority Assignment Group (priority)

(enterprises.src.criuMib.6)

* Kk * * * % * Kk * * ¥ * *k *x * * * * % *k *k *k %*¥ * *k *k * Kk %k *k * * * * *k *k *k *

priorityTable OBJECT-TYPE

SYNTAX SEQUENCE OF PriorityEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The table object corresponding to priority assignment
entries. "

::= { priority 1 }

priorityEntry OBJECT-TYPE
SYNTAX PriorityEntry
MAX-ACCESS mnot-accessible
STATUS current
DESCRIPTION
" A table entry containing priority assignment
information "
INDEX { priorityIndex }
::= { priorityTable 1 }

47

PriorityEntry ::= SEQUENCE ({

priorityIndex INTEGER,
priPortNumber INTEGER,
priScurcelIP IpAddress,
priapplicationName OCTET STRING,
prioritylLevel INTEGER
}

priorityIndex OBJECT-TYPE

SYNTAX INTEGER (0..39)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
" Used to index list of applications that will be
assigned a priority. "
::= { priorityEntry 1 }

priPortNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" port number of application. "
:= { priorityEntry 2 }

priSourcelP OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-write

STATUS current

DESCRIPTION

" IP address of application or host. Note that either port
number or source IP will be set to 0."
::= { priorityEntry 3 }

priapplicationName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..255)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
" Name of application."
::= { priorityEntry 4 }

priorityLevel OBJECT-TYPE
SYNTAX INTEGER (0..15)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
* Priority level assigned to application or host."
::= { priorityEntry 5 }

* k ok * Kk Kk Kk *k * k k K* * ¥ * *k Kk *k * *k & * * * * *k * *x k * ¥ * ¥ X Kk K *k ¥

CRIU MIB Notifications

'
i
* F ¥ ¥ %

* Kk Kk Kk Kk * Kk *k Kk Kk * % Kk * * Kk %k Kk * ¥ *k % *k *k *k *k * Kk * * ¥ * * * * & * *

snacUp NOTIFICATION-TYPE
OBJECTS { criulpAddress }
STATUS current
DESCRIPTION
"Trap indicating device has finished booting and
is now ready."
:= { criuTraps 1 }

snacbown NOTIFICATION-TYPE
) OBJECTS { criulphAddress }

48

"

L1

Y

Y

STATUS current
DESCRIPTION

"Trap indicating device is going off-line."
::= { criuTraps 2 }

snacLinkUp NOTIFICATION-TYPE
OBJECTS { criulpAddress }
STATUS current
DESCRIPTION
"Trap indicating connection with remote SNAC
established."
:= { criuTraps 3 }

snacLinkDown NOTIFICATION-TYPE
OBJECTS { criuIpAddress }
STATUS current
DESCRIPTION
"Trap indicating connection with remote SNAC lost."
::= {criuTraps 4 }

snacEMCONOn NOTIFICATION-TYPE
OBJECTS { criuIpAddress }
STATUS current
DESCRIPTION
"Trap indicating EMCON mode activated on SNAC."
1= {criuTraps 5 }

snacEMCONOL £ NOTIFICATION-TYPE
OBJECTS { criulpAddress }
STATUS current
DESCRIPTION
"Trap indicating EMCON mode deactivated on SNAC."
:= {criuTraps 6 }

snacMessageQueueFull NOTIFICATION-TYPE
OBJECTS { criuIpAddress }
STATUS current
DESCRIPTION
‘ "Trap indicating Message queue is full and
messages are being dropped."
::= { criuTraps 7 }

snacMessageQueueNotFull NOTIFICATION-TYPE
OBJECTS { criuIpAddress }
STATUS current
DESCRIPTION
"Trap indicating message gueue 1s no longer
full and messages are now being accepted. "
::= { criuTraps 8 }

snacQueueAboveThreshold NOTIFICATION-TYPE
OBJECTS { criuIpAddress }
STATUS current
DESCRIPTION
"Trap indicating number of bytes in queue
has exceeded the threshold.”
::= { criuTraps 9 }

snacQueueBelowThreshold NOTIFICATION-TYPE
OBJECTS { criuIpAddress }
STATUS current
DESCRIPTION
"Trap indicating number of bytes in queue
has dropped back below threshold."
::= { criuTraps 10 }

snacLinkQualityPoor NOTIFICATION-TYPE
OBJECTS { criuIpAddress }

49

snacLinkQualityGood

END

50

STATUS current
DESCRIPTION
"Trap indicating that the number of retransmitted
bytes has exceeded the threshold in the
last statistics period (i.e. 1 sec.). "
::= { criuTraps 11 }

NOTIFICATION-TYPE
OBJECTS { criulpAddress }
STATUS current
DESCRIPTION
"Trap indicating that the number of retransmitted
bytes has dropped back below the threshold
in the last statistics period (i.e. 1 sec.}. "
1= { criuTraps 12 }

(3

Annex C Screen captures of GUI

Screen classification of interface:

1
Elos Router ' Tools
3 4 5 6 6 8 9 10

3a

1: Network map

2: ELOS Configuration

3: ELOS instantaneous statistics.

3a: ELOS Cumulative statistics with graphing window
4: Router Interfaces table

5: Router IP Address table

6: Router IP Routing table

7: Router OSPF Configuration

8: Router OSPF Interface table

8a: Router OSPF Interface table(part 2)
9: Router OSPF Neighbors table

10: Ping tool i

Technology Demonstiator Network Management [Yersion Alpha 0.1) e
B ' ELOS 33.40's logs .

]

E

i Devices
i

;

- Network map B []
1. Network Map
&

52

iy

_ Characte(igtic Selection

1T IP Address
! ‘j,E:,’.HcistName L

I~ Status

k l:i Host Name
I Data Rate »

|— D

| T Queue Flebbrt

I~ Queue Size

I Queue Treshold

2. ELOS Configuration

53

Technology Demonstiatos Network Management (Version Alpha 0.1)

Devices

ELOS 33.40's logs

Results Display

e v e ¢

™. Bytes Transmitted
™ Bytes Acked

I~ Bytes Dropped
™" Bytes Unacked

. I Bytes Received
I Bytes Queued
I~ Throughput

L4l T Utiisation

; I T Source Quench Sent

T T T 17

I”. Bytes Load Shared

i

Performance %ﬁ

.ILI

3: ELOS instantaneous statistics.

54

i Dewces

& F!outel 33 10

[echnulogy Demunstlatm Nelwork Hanagement [Versmn .hlpha l] 1] !Elm ‘

ELOS 33.40's logs

Controls

Results Display

, I-,:"Tot.‘Bytes Tréﬁsmi!ted

: |_-Tol Bytes Acked -

[- Tot. Bytes Dropped

“ T Tot. Bytes Received
‘ E%:TDLL Eytes Uniacked

b r Tot. Bytes Queued

.- I_: OSPF Bytes f[ansmitted

: ,F:EDSPF Byle§ Dropped

r U‘SPF Butes Received

- ?Z‘erostats' '

M o<

inEi lu]

Inl

|

; " Update R
‘ ¢ dismiss l
{ I Delta

[£io533.40 MEIES|

Tot. Bytes Transmitted
| SREET

Time

1

i

3a: ELOS Cumulative statistics with graphing window

55

Router 33.10's logs

Controls [InetecesTabe » ‘
e : ' " Pbr!ﬂ[Type I Speed | Target I Currenll - Last change l MTU | . ‘

| ;f" [ietf/" B } ’, -t I l
| §Change E ‘ ‘ ‘) ; ' ~ , ' ‘ ‘
| e : ')
|0 Remove , il
» i‘"Execute | o ' ’ . ' ‘
|

4: Router Interfaces table

] Iechuloqy DemonsualmelwmkMdngemenl (Version Alpha 0.1)

o bevnce; - Router 33.10's logs

Controls IP Address Table
e W Address | Port] Mask | BroadcastAder. |
" Get R = ‘ ‘1
. Change ’ w
 Add
" Remove :
y Execufé I ‘; ;
|

1

s 1P Add:

WD, Configuietion [PeRGpance, JARTS ([Eo0s, 008, ptons (]

5: Router IP Address table

56

[Technology Demonstrator Network Management (Version Alpha 0.1) . O] x] l

- /’ Devices | Router 33.10's logs
CJELDS 33.40 i

© Conbols IP Routing Table
i - Protocol I Age I

NextHop | Part# | Type

a

- Gt :
e Charigé S
oAl

€7 Remove

: Evecute

» | Devices Router 33.10' logs
™ Router Id. i
T Admin Status L —
I Version Number Iﬁjjﬁ ¥
‘ | Ereste |
|
) : B

7: Router OSPF Configuration

57

Router 33.10% logs
OSPF Interfaces Table
o} Port .. 1 Transit | Retrans.| Hello | AteDea
IPAddress - Bl Aea . Status Priorty | Delap { IntervalP| Interval | Interval]

OSPF interfaces Table

Execute l

. :::;&P I:ggal F::e[::;d lnti:c::d I "Cost | Sta!e l Primary Router Backup Router
" Get -
;‘ '€ Change
. Add
| (" Remove

8a: Router OSPF Interface table (part 2)

58

&

»

| Technology Demonstrator Network Management [Version Alpha 0.1) M=l E3 |

- # Devices

Router 33.10's logs

¥ ELOS 33.40

Controls

_OSPF Neighbors Table

IP Address

l; ADptions I Priority | - S;;t‘ew] l]

Ev;e;'\ts 7 I

[Pot]_ Roweid

T Get
'C' Changs. |

L Add
f" Remave

. i Execule

U

Router 33.10's logs

Controls

‘ F'ing Ulility ‘

Result logs

IP Address [192168.33.10 1

Refielition ':F

r Show results for
* each messages

start |

10: Ping tool

59

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

(Security classification of ftitle, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring a (overall security classification of the document,
contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable)
Communications Research Center ,
3701 Carling Ave., Box 11490, station H UNCLASSIFIED
Ottawa, Ontario K2H 8S2 '

3. TITLE (the complete document titie as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.}

Sub-Network Access control Technology Demonstrator: Software Design of the Network Management system (U)

4. AUTHORS (Last name, first name, middle initial)
Lukasik, Henryk

5. DATE OF PUBLICATION (month and year of publication of 6a.NO. OF PAGES (total 6b. NO. OF REFS (total cited
document) containing information. Include in document)
Annexes, Appendices, etc.)
August 2002 65 4
7. DESCRIPTIVE NOTES (the category of the document, e.g.technical report, technical note or memorandum. If appropriate, enter the type of

report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting petiod is covered.)

Technical report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.)

Defence R&D Canada - Ottawa
3701 Carling Avenue

Ottawa ON KlA 0Z4
9a. PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. (if appropriate, the applicable number under
and development project or grant number under which the which the document was written)

document was written. Please specify whether project or grant)

1BB22
10a. ORIGINATOR'S DOCUMENT NUMBER (the official document 10b. OTHER DOCUMENT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity. This number must be unique to this document.) sponsor)
CRC-RP-2002-003 DRDC Ottawa TR 2002-073

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

{ X'} Unlimited distribution

() Distribution limited to defence departments and defence contractors; further distribution only as approved

() Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
() Distribution limited to government departments and agencies; further distribution only as approved

() Distribution limited to defence departments; further distribution only as approved

() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

UNLIMITED

UNCLASSIFIED .
SECURITY CLASSIFICATION OF FORM DCDO03 2/06/87

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).

It is not necessary to include here abstracts in both official languages unless the text is bilingual).

U) This final report provides a record of the results of the network management portion of the Sub-Network Access
Control Technology Demonstrator project. It summarises the concepts behind this development effort, and describes
the completed design and implementation work. This project is part of an on-going effort to build an IP based network
using wireless technologies. However, the goal behind this project remains the production of an exploratory prototype.
In other words, it is one more step towards the goal of transitioning wireless technologies to the Canadian Operational
Fleet.

(U) The proposed IP network presents several unique challenges to network management, due to its low bandwidth
wireless links and continually changing topology, that existing products have not been designed to handle. These
challenges are explored in order to provide a better understanding of the requirements they impose on network
management. A network management tool design is then proposed and the implementation of its prototype is
described.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Network Management
Simple Network Management Protocol (SNMP)
Wireless links

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

