

AFRL-IF-RS-TR-2002-73
Final Technical Report
April 2002

APPLICATION OF MODEL-BASED REASONING TOOLS
USED TO ENHANCE AND IMPROVE DIAGNOSTIC
PERFORMANCE TO IMPROVE AIR FORCE
MAINTENANCE

Giordano Automation Corporation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information Directorate,
Public Affairs Office (IFOIPA) and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign nations.

 AFRL-IF-RS-TR-2002-73 has been reviewed and is approved for publication.

 FOR THE DIRECTOR:
 MICHAEL L. TALBERT, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Apr 02

3. REPORT TYPE AND DATES COVERED
Final Aug 99 – Dec 01

4. TITLE AND SUBTITLE
APPLICATION OF MODEL-BASED REASONING TOOLS USED TO
ENHANCE AND IMPROVE DIAGNOSTIC PERFORMANCE TO IMPROVE
AIR FORCE MAINTENANCE

6. AUTHOR(S)
Mary Nolan, Gerard Giordano, Brian Gaboda, Al Esser, Giordano Automation
Corporation

5. FUNDING NUMBERS
C - F30602-99-C-0175
PE - N/A
PR - TEMS
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Giordano Automation Corporation
21 White Deer Plaza
Sparta, NJ 97871

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

LEADA AFRL/IFTD
Warner Robins AFB, GA 31098 525 Brooks Road
 Rome NY 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-73

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: James M. Nagy, IFTD, 315-330-3173, nagyj@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The major objective of this effort was to provide enhancements to the maintenance of the A-10/KC-135 Turbine Engine
Monitoring System (TEMS) through implementing the Diagnostician model-based reasoning tool in a selection of Shop
Replaceable Units (SRU) level test program sets. This effort included re-engineering of the TEMS SRU level test
programs to improve run-time efficiency, accuracy and vertical testability. The TEMS performs parametric analysis of
KC-135 and A-10 engine data. The TEMS unit is mounted on the aircraft. The TEMS LRU and SRU level testing is
performed at the Warner Robins Air Logistics Center (WRALC) in Georgia (previously at Kelly AFB in San Antonio).
Since the SRU and LRU level test resources are co-located at the same facility, a rare opportunity exists to analyze the
level of test result consistency across the two testers.

15. NUMBER OF PAGES
53

14. SUBJECT TERMS
Diagnostics, Test Program Set Development, Maintenance, Model-Based Reasoning
 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1.0 INTRODUCTION... 1
1.1 Background ... 1
1.2 Test Station Environment ... 2
1.3 MATE Control and Support Software .. 2
1.4 Diagnostic Profiler And The Diagnostician.. 2

2.0 SUMMARY OF PROJECT RESULTS.. 4

3.0 TASKS AND TECHNICAL REQUIREMENTS... 6
3.1 Re-Engineer and Incorporate Advanced Diagnostics in the TEMS SRU TPSs 6
3.2 Sequence of Tasks to Re-Engineer the TEMS SRU Test Programs............................. 7

Step 1 – Model the UUT in OrCAD ... 7
Step 2 – Test Code Review and Streamlining... 9
Step 3 – Perform failure analysis and map tests ... 14
Step 4 – Validation and Verification of the resultant Diagnostic Knowledge Base ... 16
Step 5 - Integrate the TPS with the diagnostic model... 17
Step 6 - Verify the integrated TPS on MATE 390 and prepare a data package 18
Step 7 – Perform Sell-off .. 18
Step 8 - Provide updated CPIN software ... 19
Step 9 - Update TPI (Test Program Instruction) documentation 19

3.3 Certification of TEMS SRU Test Programs ... 19
3.4 Development of Test Program Instructions (TPIs) for Designated UUT TPSs 19

4.0 RELATED CONTRACT TASKS ... 20
4.1 SRU Test and LRU Test Correlation .. 20
4.2 Test/Demonstration of the TPS Process .. 21
4.3 Familiarization and Demonstration... 21
4.4 Automated Vertical Testability ... 21
4.5 Storage of pertinent test data in a data base .. 21
4.6 Evaluate Air Force Research Lab (AFRL) Information Directorate Software 21
4.7 Software .. 21
4.8 Progress Reports ... 22
4.9 Revisions to Existing Documents ... 22
4.10 Test/Demonstration Plan... 22
4.11 Software Documentation (Installation, User and Maintenance Instructions) 22
4.12 Final Technical Report (A007) ... 22

Appendix A Software Delivery Forms .. 23
Appendix B Delivered Test Program Instruction Cover Sheets...................................... 31
Appendix C Diagnostic Profiler and Diagnostician .. 40

ii

List of Tables

Table 1 Diagnostician Benefits to TEMS SRU TPS.. 1
Table 2 TPS Project Completion Summary ... 4
Table 3 TEMS SRU Test Program Sets... 6

List of Illustrations

Figure 1 091200 Schematic Representation ... 8
Figure 2 Diagnostic Profiler EDIF Import Tool... 8
Figure 3 Specify Tests and Measurement Tool used to Map Tests...................................... 15
Figure 4 Testability Analysis Display .. 16
Figure 5 Diagnostics Validation and Verification Tool ... 17
Figure 6 Diagnostician WHILE Loop .. 18

Appendix C Illustrations
Figure 1 Diagnostic Profiler and Diagnostician .. 40
Figure 2 Automated Diagnostics Using Model-Based Reasoning 40
Figure 3 Fault/Symptom Matrix Generated from Design ... 41
Figure 4 Dynamic Diagnostics .. 41
Figure 5 Traditional Test Program Structure... 42
Figure 6 Model-Based Test Program Structure... 43
Figure 7 Diagnostician Interaction with Test Program ... 44
Figure 8 Go/No-Go Control Mode .. 46
Figure 9 Diagnostician Control Mode... 47
Figure 10 Mixed Control Mode... 47
Figure 11 Diagnostician Integration into LabVIEW Environment 48

1

Program Final Report

1.0 INTRODUCTION

 The major objective of this effort was to provide enhancements to the maintenance of the A-10/KC-
135 Turbine Engine Monitoring System (TEMS) through implementing the Diagnostician model-based
reasoning tool in a selection of Shop Replaceable Units (SRU) level test program sets. This effort
included re-engineering of the TEMS SRU level test programs to improve run-time efficiency, accuracy
and vertical testability.

1.1 Background

 The Turbine Engine Monitoring System (TEMS) performs parametric analysis of KC-135 and A-10
engine data. The TEMS unit is mounted on the aircraft. The TEMS LRU and SRU level testing is
performed at the Warner Robins Air Logistics Center WRALC in Georgia (previously at Kelly AFB in
San Antonio). Since the SRU and LRU level test resources are co-located at the same facility, a rare
opportunity exists to analyze the level of test result consistency across the two testers.

 In the past few years, the TEMS SRU level-testing software was re-hosted from a VAX controller
to a PC controller. At that time, significant inefficiencies in the structure and documentation of the test
programs were identified. Inconsistencies were also identified between the LRU and SRU level tests. A
proof-of-concept demonstration was conducted in which it was determined that by applying reasoning
tools to the test programs, that the run-time speed and test program accuracy were significantly enhanced.
At the same time, the structured, engineering process required to implement the Diagnostician resulted in
identification of specific problem areas, which could then be resolved. The proof–of-concept
demonstration was performed on 091350 RPM Fuel Flow Conditioner circuit card. Table 1 below shows
the results of the demonstration.

Table 1 - Diagnostician Benefits to TEMS SRU TPS

Demonstration done on 091350 TEMS A6 Card
Run # Fault

Inserted
Original

Time
Diagnostician

Time
Time
Saved

%
Faster

Original
Callout

Diagnostician
Callout

Run 1 Go-chain 00:23:51 00:15:03 00:08:48 36.9% Pass Pass
Run 2 U5.3 SA0 00:22:57 00:06:53 00:16:04 70.0% U5,U13,U27,

U12
U5,U2,U13,U27
Jumper

Run 3 U8.11 SA0 00:13:48 00:05:17 00:08:31 61.7% AR2,C2,R3,R4 U8,R7,R8
Run 4 U7.13 SA0 00:23:11 00:04:26 00:18:45 80.9% AR2,C2,R3,R4 U7
Run 5 U28.4 SA0 00:18:45 00:06:23 00:12:22 65.9% U16,U17,U18,U19

U20,U21,U28
U16,U17,U18,U19
U20,U21,U28

Run 6 AR1.10 SA0 00:16:20 00:04:55 00:11:25 69.9% AR1,R1,R2 AR1, R1, R2
Run 7 U7.11 SA0 00:15:30 00:06:07 00:09:23 60.5% AR2,C2,R3,R4 U7,R7,R8
Run 8 AR1.3 SA0 00:16:04 00:06:53 00:09:11 57.2% AR1,R1,R2 AR1, R1,R2
Run 9 U12.2 SA0 00:20:41 00:08:02 00:12:39 61.2% U12,U3,U16 U12,U3,U16

The demonstration also determined that the commonality of test results between the SRU and LRU
level tests could be increased and the mechanism could be put in place to upgrade the re-engineered test
programs based on test results and correlation over time and history. Many of the various TPS
improvements came from the run-time characteristics of the reasoning tools as well as the application of

2

the structured engineering process for development of a proper diagnostic knowledge base for use with
the Diagnostician. The result of re-engineering the TPSs on the rest of the TEMS cards as part of this
project likewise verified the significant improvement in TPS quality in terms of both the Go-chain and the
Diagnostic process. These quality improvements are detailed in Section 2.

 The efforts described in this Final Report were based upon a contract to apply the Diagnostician and
the engineering analysis across all of the TEMS EPU circuit cards. The automatic diagnostic reasoning
approach that Giordano Automation used in re-engineering the test program sets has been accomplished
using a set of tools developed by Giordano Automation. The run-time tool, called the Diagnostician,
provides automated diagnostics that is integrated into the Test Program. The development tool, the
Diagnostic Profiler was used to create the Diagnostic models. The tools are summarized in section 1.4. A
more detailed description is provided in Appendix C.

1.2 Test Station Environment

The Mate 390 System is an existing Test Station located at Warner Robins ALC. It was built in
the late 1980's. It was upgraded from its original MicroVAX computer controller configuration to a PC-
based controller and a SCO UNIX operating system a few years ago. The Air Force standard in Test
System architecture throughout the 1980's was defined in the Modular Automatic Test System (MATE)
standards. The MATE system was a system of standards aimed at increasing the commonality across test
systems. The MATE 390 station conforms to these standards. The MATE program included standard
Control and Support Software that was used in each test system application.

1.3 MATE Control and Support Software

When the system was upgraded from the test station MicroVAX controller to the PC controller, a
similar operating system environment was hosted on the PC. The Operating System selected was UNIX
by Santa Cruz Operations (SCO). At the time, the SCO Unix offered a convenient solution to porting
software from the VAX operating system, which was Unix-based, to the PC. The SCO UNIX operating
system was hosted on the PC controller. A C compiler based upon the commonly available GNU
software was compiled. This enabled transition of the MATE control and support software to the SCO
UNIX environment.

1.4 Diagnostic Profiler And The Diagnostician

Giordano Automation has developed a powerful set of tools that implement model-based
diagnostic reasoning. The run-time tool, Diagnostician, provides automated diagnostics and can be
seamlessly integrated into any test environment. The development tool, the Diagnostic Profiler, assists
the engineer in developing the run-time diagnostic knowledge base. The Diagnostician is an
implementation of model-based reasoning. Model-based reasoning means that a diagnostic model of a
system or item, derived from design data, serves as the basis for diagnostic reasoning. The diagnostic
model is independent of the test program and independent of the sequence of tests that are run.

The model-based diagnostic software object called the Diagnostician was used in lieu of
programmed fault trees. In run-time, the Diagnostician provides dynamic fault isolation without complex
diagnostic logic paths, by reading test results. The diagnostic logic is not "fixed" to a pre-determined,
static diagnostic tree, but rather is dynamic. The Diagnostician dynamically interprets test results - test

3

results can come from any source, in any order, and with as many or as few test results at a time as the
test source can provide. Static test trees, on the other hand, are based upon one test result at a time, in a
pre-determined sequence, and from a fixed test source.

The Diagnostician contains a diagnostic model of the item automatically converted from design
data. The model is in the form of a connectivity matrix that represents the propagation of faults (rows in
the matrix) to observable measurement locations and the coverage of tests that Pass or Fail (columns in
the matrix). When used in run-time, the software algorithms and knowledge base (matrix) operate to
isolate faults without hard-coded diagnostic test sequences.

In run-time, the Diagnostician interprets, in real time, test results to perform fault isolation. The
concept of object-oriented programs is taken full advantage of by dealing with the diagnostic logic as an
independent entity of the test program. By separating the diagnostic logic from the test, the test program
becomes significantly simpler. Further, the diagnostic logic contained in the software object can be
rehosted to any platform without any problem, because it is simply a binary file.

Using the Diagnostician, the fundamental culture of diagnostics has been changed. Tests perform
measurements and data collection and determine if those measurements are within acceptable ranges. The
interpretation of what it means if the measurement has passed or failed is done by the Diagnostician,
which dynamically, on-the-fly, interprets test information based upon all information it receives in any
order.

The Diagnostician makes use of "Minimum Set Covering" algorithms that interpret the "Cones of
Evidence" produced by both pass and fail test result data. These reasoning techniques provide for fast,
accurate, flexible diagnostics, and can also isolate multiple faults. Static test trees, on the other hand, are
limited to a "single fault assumption" and often do not work in a multiple fault situation.

The Diagnostic Profiler supports the development of the diagnostic software object via a
diagnostic model. The selection of test points and the assessment of fault isolation probabilities as well as
validation of these probabilities are all done using the Diagnostic Profiler during development of the TPS.
Diagnostic engineering and test engineering are uncoupled. Test programming tools are used to write
tests. In the process of writing these tests, the test engineer defines the Pass/Fail (P/F) criteria for each
response value being measured and converts test result data for each measured parameter into a P (Pass)
or F (Fail). This function can be implemented utilizing a simple high level language subroutine that
accepts measurement test results and associated tolerances values as inputs and outputs a "P/F" character.

Use of the diagnostic object in run-time to perform fault isolation is done by the Diagnostician. To
incorporate diagnostics into the test program, a single "WHILE" loop is incorporated into the Test
Program, in this case ATLAS. If there is another test that can further isolate the fault, the run time directs
the Diagnostician for the next optimum test to perform, runs that test, and sends test results to the
Diagnostician.

Refer to Appendix C for an in-depth discussion of the Diagnostic process used in this project.

4

2.0 SUMMARY OF PROJECT RESULTS

 The complexity of the TEMS TPS code has been significantly simplified by inserting the
Diagnostician. The traditional troubleshooting trees that were previously implemented with several, hard
to maintain GOTO statements, were replaced with a simple conversation loop with the Diagnostician. By
eliminating this complex diagnostic hard-coded logic, the resulting TPSs are vastly easier to maintain.
Also, transporting the modified TPSs and the Diagnostician to an alternate test resource is much more
straightforward. This approach has also allowed for a significant reduction in the number of lines of code
for each Test Program as is shown in Table 2.

TABLE 2
TPS PROJECT COMPLETION SUMMARY

TPS

Old TPS
Lines

New TPS
Lines

Old
Probes

New
Probes

Go-To's
Removed

Modifications
Compared to old
code

091150 16,468 10,770 58 18 162
 Significantly reduced # of probes
and code lines

091200 9,715 9,300 76 10 221
Significantly reduced # of probes
R1 test was added

091250 10,524 7,492 51 10 219 Significantly reduced # of probes

 091300 4,521 6,482 41 28 51

- WB Diag test added to Go-chain
to reduce ambiguity
- Runs R76 & R4 first to reduce
ambiguity
- WB, NB & VIBCLK tests results
are displayed in log files as
applied
- tolerances were tightened
accordingly

 091350 28,524 11,532 117 50 1401 Reduced # of probes

 091450

combined
w/

091460 -

combined
w/

091460
- combined 091450 & 091460
TPS’s to one linked ATLAS
program

091460 16,553 24,551 57 29 732
Added a calibration test to the
potentiometer on the 4.9 Volt
Reference Test.

9383755 N/A 12,436 N/A 28 N/A New Program.

091600 78,589 14,099 113 72 1422
 Combined all 4 old mod code into
1 linked TPS program

091650 55,493 8,851 69 30 1804
 Combined all 6 modules into 1
linked program

091750 19,977 - 86 - - Pushed to PRDA-2

The overall test results have been significant in that we see a vast improvement in the overall
diagnostics, a reduction in the amount of probes in general on each individual board, and the re-
orientation and modular structuring of the test program to allow it to be easily migrated to another
functional test system. In addition, the Diagnostic Profiler can be applied directly to those comparable
tests on any migrated test system to allow capturing of the diagnostic data as you migrate from one tester
to the other. This would be a significant reduction in overall test program costs in migration of the test
programs to alternate functional test system. Appendix A contains a listing of all the Software Delivery

5

Forms for the various assemblies that have been certified. These items have been certified through the
LYSTA organization of the Warner Robins Air Logistic Center (WRALC) Software Development
department and transmitted to the TEMS Equipment Specialist for displacement and disposition for use
on the Mate 390 Test System.

In general the test programs have been dramatically improved on the go chain to increase accuracy

where correlation problems have existed between the LRU and the SRU test system. A major
improvement was to separate the various test program sub-sections into modular stand-alone tests, which
can be easily maintained, de-bugged and transported. In addition, all documentation and supporting
information is provided to the Air Force as part of this contract in order to allow total organic
maintenance and support of these Test Programs in the future. Due to the use of the Diagnostician, a
more accurate and efficient resolution to the specific component failure is realized with the upgraded
diagnostics. The diagnostic process for the boards all exhibit a reduction of the number of probes from
the previous test programs in order to accomplish an improved diagnostic environment. In addition, the
more complicated "fault tree" approach to diagnostics has been eliminated. In effect, a model has replaced
the manual fault tree depiction of the individual probe processes. The diagnostic model is much easier to
maintain and upgrade and support as any discrepancies or anomalies occur. A major benefit is that the
diagnostic process through the Diagnostician allows a direct application and migration to a migrated test
program on another Test platform as the MATE 390 is phased out in the future.

6

3.0 TASKS AND TECHNICAL REQUIREMENTS.

Under this contract, the following tasks and requirements were defined and accomplished:

3.1 Re-Engineer and Incorporate Advanced Diagnostics in the TEMS SRU Test Program Sets

The major task performed on this contract was the re-engineering of the TEMS SRU Test Program
Sets (TPSs) on the MATE 390 test system to incorporate the reasoning tool (Diagnostician) to perform
model-based diagnostics. Table 3 shows the applicable SRU TPSs, which were re-engineered under this
contract.

TABLE 3
TEMS SRU Test Program Sets

CPIN SRU TEMS EPU
Slot Configuration

85E-USQSS/M390-U013-00A 091150 A2

85E-USQ85/M390-U004-00A 091200-301,302 A3

85E-USQ85/M390-U005-00A

091250-302 A4

85E-USQ85/M390-U006-00A

091300-303,302 A5

85E-USQ85/M390-U007-00A

091350-302,304,305,306 A6

85E-USQS5/M390-U014-00A

091450-(301-314) A8

85E-USQ85/M390-U014-00A

*091 460-(301-306) A8

85E-USQ85/M390-U014-00A

9383755-10

A8

85E-USQ85/M390-U008-00A

091600 –301 thru –308, 311 thru
-318, 322, 323, 325, 326

A11

85E-USQ85/M390-U009-00A

091650-303,304 (six configurations) A10, A12

85E-USQ85/M390-U011-00A

**091750-301

A13

* This card is very similar to the 091450. The models and programs are similar enough that one
model and one test program can be used for all variations/revisions of the 091450 and 091460 A/D
converter cards respectively.

** This is an assembly of 2 CCA’s and a Filter

7

3.2 Sequence of Tasks to Re-engineer the TEMS SRU Test Programs

 For each of the SRUs, the following tasks have been performed to implement the reasoning tool,
the Diagnostician:

1. Model the Unit Under Test (UUT) in the OrCAD schematic capture CAD tool. Correlate the
schematics with actual hardware to incorporate corrections into the schematics. Import the
CAD model netlist representation (in EDIF format) into the diagnostics development tool, the
Diagnostic Profiler.

2. Review the test program code. Identify portions of test code that are inefficient or have errors.
Correct all identified errors and streamline test code per findings.

3. Perform UUT failure analysis of TPS tests versus fault coverage, using the development tool,
the Diagnostic Profiler.

4. Verify and validate the resultant Diagnostic Knowledge Base
5. Integrate the TPS with the diagnostic model.
6. Verify the completed TPS on MATE 390 and prepare a data package.
7. Perform a sell-off of each TPS to the designated WRALC Air Force software representatives

including fault insertions.
8. Provide updated CPIN software on suitable media for release and distribution.
9. Update TPI (Test Program Instruction) documentation

Step 1 – Model the UUT in OrCAD

 Not only does the Diagnostician achieve fast, accurate diagnostics, but also the process associated
with the implementation of the Diagnostician results in dramatic TPS improvements. This section will
provide an example of this process using a portion of one of the TEMS SRUs. A portion of the SRU is
used to increase the understandability of this sample. The 091200 card, which is the Bridge, Temperature
and Switch Conditioner circuit card, will be used for this example.

The first step is to model the Unit Under Test in the OrCAD schematic capture tool. Within this step, the
schematic diagrams from the Air Force Tech Orders and the Original Equipment Manufacturers are
reviewed and compared against the actual hardware. In many cases, errors have been found in the
schematics contained in the Air Force Tech Orders. Additionally, schematics often do not represent the
large number of circuit card versions and revisions that have been performed over the twenty years since
the original design of the TEMS system. Performing this analysis enables the converging on a schematic
representation that is accurate, correct, and that accounts for all allowable revisions and versions of the
board, as appropriate.

Once input to OrCAD (or any other CAD system), an EDIF (Electronic Design Interchange Format)
netlist file can be generated as a file format output from the CAD system. EDIF is an Industry standard,
IEEE format for definition of electronic designs. EDIF netlist information includes part definition,
interconnectivity, and signal flow.

The EDIF netlist file is used by the Diagnostic Profiler “Import Design” tool to capture design
information and create a diagnostic representation of the design depicting signal flow, fault propagation
and test accessibility to the internal portions of the design. The diagnostic model that results is a
“fault/symptom matrix” that is the basic information format used by the Diagnostic Profiler.

8

Figure 1 below shows the portion of the 091200 card schematic diagram from OrCAD.

Figure 1 – 091200 Schematic Representation

Figure 2 shows a selected screen image of the design import tool that imports the EDIF netlist into the
Diagnostic Profiler to create a diagnostic model.

Figure 2 – Diagnostic Profiler EDIF Import Tool

9

Step 2 – Test Code Review and Streamlining

The second step in the process is to analyze the test code. Portions of the test code that are inefficient or
have errors are identified. All identified errors are corrected and the test code is streamlined per the
findings of the analysis.

Referring back to Table 2, the full 091200 circuit card test program originally contained 9715 lines of
ATLAS code. The streamlining of test code and the integration of the Diagnostician resulted in a
reduction in the number of lines of code down to 9300 lines. In the original code, there were 76 probe
routines. These were reduced down to ten (10) significant probe routines. Additionally, a test that was
diagnostically relevant, but not included in the original test program (test of R1) was added.

A typical ATLAS test program is made up of numerous conditional branches leading to ATLAS “GO
TO” statements. The GO TO statements handle the program’s traversal through diagnostic logic to lead
to a fault call-out. The 091200 card contained 221 individual Go To statements related to diagnostic
logic. These 221 Go To statements were completely eliminated in the ATLAS test program because the
diagnostic logic is contained within the Diagnostic Knowledge Base, and the Diagnostician, in run-time,
manages all test sequencing and traversal through test routines to achieve the fault call-out.

This results in significantly easier to maintain test programs and a test program which is more efficient in
run-time. The resulting test program is also much easier to understand.

The diagnostic logic contained in just one single diagnostic path in the old ATLAS code testing the
091200 circuit card is shown below. By using the Diagnostician, this code as well as rest of the diagnostic
logic fault tree code has been eliminated from the 091200 TPS. It is intuitively obvious that following the
code path and maintaining the code for even a signal path in the hard-coded fault tree logic is
complicated. Multiply this by the many fault tree paths contained in any test program, and benefits
become very clear of the increased maintainability and portability of the new TPS code where all this
logic is replaced by a single diagnostic loop and a diagnostic model.

134000 SETUP, DIGITAL TEST, TYPE PARALLEL,
 VOLTAGE-ONE 15.0 V,
 VOLTAGE-ZERO -15.0 V,
 CNX-STIM HI P1-B25 P1-A25 P1-A11 $

B BRANCH FROM STEP 133350 $

 10 FILL, 'TST NAME',
 C'TEMPOT VDC OUTPUT TEST 1340' $

 20 OUTPUT,
 EXECUTING ('TST NAME') $

 30 DO, DIGITAL TEST, STIM-ONLY,
 STIM X'2',
 WORD-RATE 100.0 WORDS/SEC,
 CNX-STIM HI P1-B25 P1-A25 P1-A11 $

C CONNECT P1-A22 TO 0.627 VDC FROM
RESISTOR NETWORK
 FORMED BY R1 IN UUT AND 166.5 OHM IN ITA
$

 40 CONNECT, SHORT,
 CNX FROM XA6-51 TO P1-A22 $

C A1-8=0.627 VDC, A2-8=0.329 VDC
 VERIFIE OUTPUT AT P1-A18 IS 7.664 +/-0.514 $

 50 FILL, 'TYPE', 'TST NMBR', 'DIMEN',
 1, C'134000', C'VDC' $

 60 FILL, 'PIN HI', 'PIN LO', 'UPR LMT', 'LWR
LMT',
 C'P1-A18', C'SYSGND', 8.178, 7.150 $

 70 VERIFY, (VOLTAGE INTO 'MSRMNT'),
 DC SIGNAL,
 UL 'UPR LMT' V LL 'LWR LMT' V,
 VOLTAGE MAX 15.0 V,
 CNX HI P1-A18 LO DMMLO6 $

 80 IF, NOGO, THEN $

10

 90 PERFORM, 'FAILR MSG' $

 134100 GO TO, STEP 707000 $

 10 END, IF $

… Note: Other Code Mixed in Here That is Not Relative
to This Diagnostic Path

707000 FILL, 'TST NMBR', 'UPR LMT', 'LWR LMT',
 C'707010', -14.0, -16.0 $

 10 PERFORM, 'A1-1 INPUT' $

C FILL LIMITS FOR TEST POINT A1-16 $

 20 FILL, 'TST NMBR', 'UPR LMT', 'LWR LMT',
 C'707030', 16.0, 14.0 $

 30 PERFORM, 'A1-16 INPUT' $

C FILL LIMITS FOR TEST POINT A1-15 $

 40 FILL, 'TST NMBR', 'UPR LMT', 'LWR LMT',
 C'705050', -14.0, -16.0 $

 50 PERFORM, 'A1-15 INPUT' $

C ***********************************
 * TEST A1-8 USING ANALOG PROBE *
 **********************************$

C TEST PASSES IF MEASURED VOLTAGE IS
 0.627 +/-0.051 VDC $

 708000 FILL,
 'TST NMBR', 'UPR LMT', 'LWR LMT', 'TST
POINT',
 C'708010', 0.678, 0.576, C'A1-8' $

 10 PERFORM, 'VLT PROBE' $

 20 IF ,'MSRMNT' UL 'UPR LMT' LL 'LWR LMT',
THEN $

 30 ELSE $

 40 GO TO, STEP 714000 $

 50 END, IF $

C ***********************************
 * TEST A2-8 USING ANALOG PROBE *
 **********************************$

C TEST PASSES IF MEASURED VOLTAGE IS
 0.329 +/-0.051 VDC $

 709000 FILL,
 'TST NMBR', 'UPR LMT', 'LWR LMT', 'TST
POINT',
 C'709010', 0.380, 0.278, C'A2-8' $

 10 PERFORM, 'VLT PROBE' $

 20 IF ,'MSRMNT' UL 'UPR LMT' LL 'LWR LMT',
THEN $

 30 ELSE $

 40 FILL, 'TYPE', 'DEFECTIVE PRI',
'DEFECTIVE SEC',
 2, C'A2-6, A2-5, A2-4', C'A4-3' $

 50 PERFORM, 'DEFECT MSG' $

 60 GO TO, STEP 999000 $

 70 END, IF $

C *******************************
 * TEST TP1 USING ANALOG PROBE *
 ******************************* $

C TEST PASSES IF MEASURED VOLTAGE IS
 4.310 +/-0.247 VDC $

 710000 FILL,
 'TST NMBR', 'UPR LMT', 'LWR LMT', 'TST
POINT',
 C'710010', 4.557, 4.063, C'TP1' $

 10 PERFORM, 'VLT PROBE' $

 20 IF ,'MSRMNT' UL 'UPR LMT' LL 'LWR LMT',
THEN $

 30 ELSE $

 40 FILL, 'TYPE', 'DEFECTIVE PRI',
'DEFECTIVE SEC',
 2, C'A3-6', C'C3, R13-8, R13-7, R49' $

 50 PERFORM, 'DEFECT MSG' $

 60 GO TO, STEP 999000 $

 70 END, IF $

C **********************************
 * TEST TP2 USING ANALOG PROBE *
 **********************************$

C TEST PASSES IF MEASURED VOLTAGE IS

11

 -3.354 +/-0.247 VDC $

 711000 FILL,
 'TST NMBR', 'UPR LMT', 'LWR LMT', 'TST
POINT',
 C'711010', -3.107, -3.601, C'TP2' $

 10 PERFORM, 'VLT PROBE' $

 20 IF ,'MSRMNT' UL 'UPR LMT' LL 'LWR LMT',
THEN $

 30 ELSE $

 40 FILL, 'TYPE', 'DEFECTIVE PRI',
'DEFECTIVE SEC',
 2, C'A4-6', C'C4, R13-7' $

 50 PERFORM, 'DEFECT MSG' $

 60 GO TO, STEP 999000 $

 70 END, IF $

C ***********************************
 * TEST A5-3 USING ANALOG PROBE *
 **********************************$

C TEST PASSES IF MEASURED VOLTAGE IS
 2.155 +/-0.130 VDC $

 712000 FILL,
 'TST NMBR', 'UPR LMT', 'LWR LMT', 'TST
POINT',
 C'712010', 2.285, 2.025, C'A5-3' $

 10 PERFORM, 'VLT PROBE' $

 20 IF ,'MSRMNT' UL 'UPR LMT' LL 'LWR LMT',
THEN $

 30 FILL, 'TYPE', 'DEFECTIVE PRI',
'DEFECTIVE SEC',
 2, C'A5-6', C'C5, R13-3, R13-6' $

 40 PERFORM, 'DEFECT MSG' $

 50 ELSE $

 60 FILL, 'TYPE', 'DEFECTIVE PRI',
'DEFECTIVE SEC',
 2, C'A5-3', C'R13-4, R13-5' $

 70 PERFORM, 'DEFECT MSG' $

 80 END, IF $

 90 GO TO, STEP 999000 $

… Note: Other Code Mixed in Here That Not Relative to
This Diagnostic Path

714000 FILL,
 'TST NMBR', 'UPR LMT', 'LWR LMT', 'TST
POINT',
 C'714010', 0.648, 0.606, C'A1-6' $

 10 PERFORM, 'VLT PROBE' $

 20 IF ,'MSRMNT' UL 'UPR LMT' LL 'LWR LMT',
THEN $

 30 FILL, 'TYPE', 'DEFECTIVE PRI',
 1, C'A1-6' $

 40 PERFORM, 'DEFECT MSG' $

 50 ELSE $

 60 FILL, 'TYPE', 'DEFECTIVE PRI',
'DEFECTIVE SEC',
 2, C'A3-3, A1-4,5,9,10,12', C'R5-2'$

 70 PERFORM, 'DEFECT MSG' $

 80 END, IF $

 90 GO TO, STEP 999000 $

12

The following is the Go-Chain of the 091200 CCA. On the first failure encountered, execution control is
passed to the Diagnostician via the Atlas procedure “Diag_loop” which is shown below. This example
shows that all of the Diagnostic branching logic is replaced by a simple “While-loop” structure in the test
program. Even the technically untrained viewer, we believe, can easily see the increased simplicity of the
test program.

Go Chain transfers control on first failure

B $
 111000 PERFORM, 'R1' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 112000 PERFORM, 'R2' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 113000 PERFORM, 'R3' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 114000 PERFORM, 'R4' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 115000 PERFORM, 'VDC_SIGNAL' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 116000 PERFORM, 'TEMP CAL OUTPUT' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 117000 PERFORM, 'TEMP OFFSET' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 118000 PERFORM, 'BRDG CAL' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 119000 PERFORM, 'SWOT OUTPUT' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 120000 PERFORM, 'SWOT O/P P1-B3' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $

 END, IF $
B $
 121000 PERFORM, 'SWOT O/P P1-B18' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 122000 PERFORM, 'SWOT O/P P1-B17' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 123000 PERFORM, 'SWOT O/P P1-A9' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 124000 PERFORM, 'SWOT O/P P1-B9' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 125000 PERFORM, 'SWOT O/P P1-B4' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 126000 PERFORM, 'SWOT O/P P1-B2' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 127000 PERFORM, 'SWOT O/P P1-B20' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 128000 PERFORM, 'SWOT O/P P1-B6' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 129000 PERFORM, 'SWOT O/P P1-B8' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 130000 PERFORM, 'SWOT O/P P1-A20' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $

13

B $
 131000 PERFORM, 'SWOTP1-A20 400HZ' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 132000 PERFORM, 'SWOTP1-B1+15VDC' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 133000 PERFORM, 'SWOTP1-B1 400HZ' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 134000 PERFORM, 'SWOT P1-B14' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 135000 PERFORM, 'SWOTP1-A14' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 136000 PERFORM, 'SWOTP1-B19' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 137000 PERFORM, 'SWOTP1-A19' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 138000 PERFORM, 'BROT 1N1 INP' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 139000 PERFORM, 'BROT1N2' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 140000 PERFORM, 'BROT1N3' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 141000 PERFORM, 'BROT1N4' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 142000 PERFORM, 'BROT1N5' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $

 END, IF $
B $
 143000 PERFORM, 'BROT1N6' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 144000 PERFORM, 'BROT1N7' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 145000 PERFORM, 'BROT1N2-b' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 146000 PERFORM, 'BROT 1N1' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 147000 PERFORM, 'TEMPOT 1N3' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 148000 PERFORM, 'TEMPOT 1N1' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 149000 PERFORM, 'TEMPOT 1N2' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 150000 PERFORM, 'TEMPOT 1N4' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 151000 PERFORM, 'TEMPOT 1N5' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 152000 PERFORM, 'TEMPOT 1N6' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 153000 PERFORM, 'TEMPOT 1N7' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $
B $
 154000 PERFORM, 'TEMPOT 1N8' $
 IF, 'G_PASS' EQ FALSE, THEN $

14

 GO TO, STEP 500000 $
 END, IF $
B $
 155000 PERFORM, 'TEMPOT1N1-b' $
 IF, 'G_PASS' EQ FALSE, THEN $
 GO TO, STEP 500000 $
 END, IF $

C* END GO-NOGO CHAIN - PASSED ALL TESTS
FROM ENTRY POINT ****$
 PERFORM, 'Pass_Message' $
 GO TO, STEP 999990 $

C** FAIL - IF WE JUMP TO HERE ONE OF THE GO-
NOGO TEST FAILED *$
B$

 500000 IF, 'G_USE_DIAG' EQ TRUE, THEN $
 PERFORM, 'Diag_loop' $
 END, IF $
 PERFORM, 'Fail_Message' $
B$
 600000 PERFORM, 'END_STATUS' $
 IF, 'G_REPEAT_TEST' EQ TRUE, THEN $
 GO TO, STEP 100000 $
 END, IF $

B$
 999990 FINISH $
 999999 TERMINATE, ATLAS PROGRAM $

Step 3 – Perform failure analysis and map tests

The process of test coverage mapping includes defining all tests and all measurements, and indicating the
coverage of those tests and measurements across circuit failure locations and failure modes. The result of
this process is a Diagnostic Knowledge Base (DKB) that is then used in run-time to dynamically, in real-
time, isolate faults based upon the Diagnostician’s interpretation of test results.

The Diagnostic Profiler development tool provides a number of tools and utilities that help with the task
of performing UUT failure analysis. Also, the Profiler provides the overall framework for “mapping” test
coverage information into the fault/symptom matrix. Using the “Specify Tests” tool, the user defines tests
and measurements, and maps the coverage of tests across UUT components and failure modes. A sample
is shown in Figure 3.

15

Figure 3 – Specify Tests and Measurement Tool used to Map Tests

The figure above shows a test named TEMPOT 1N3, and a measurement associated with that test named
P1_A18. The test name related to the function being tested (temperature) and the measurement name
relates to the circuit measurement location (P1_A18, indicating that the measurement is being made at the
P1 connector, pin A18).

The list of faults shown indicates that these fault locations and fault modes are covered by that
measurement. A check in the box indicates that this fault is always covered by that measurement. A
question mark in the box (?) indicates that the corresponding fault or failure mode is sometimes covered
by that measurement.

The Diagnostic Profiler provides numerous other tools and utilities for tailoring the diagnostic knowledge
base to the test environment. These are covered in great detail in the User Manual. For further
information, please contact Giordano Automation.

A part of this process involves performing testability analysis to determine how well the set of tests and
measurements currently mapped “cover” the overall unit under test in terms of fault detection, fault
isolation and fault resolution. Figure 4 below shows the testability analysis tool display, indicating the
percentage of fault detected, percentages of faults isolated down to each possible number of parts and
repair items, and the identification and composition of all ambiguity groups. Detailed reports can also be
output for printing.

16

Figure 4 – Testability Analysis Display

Step 4 – Validation and Verification of the resultant Diagnostic Knowledge Base

Once the engineer is satisfied with the mapping of the tests, and that the tests result in the required level
of fault isolation coverage, he proceeds to create a run-time Diagnostic Knowledge Base (DKB). This is a
simple process performed by a tool in the Diagnostic Profiler. The run-time DKB is a binary file that is
significantly compressed for efficient memory usage in run-time. A process within the generation of the
DKB is the pre-calculation of set coverage for use in very efficient run-time operations for use with the
minimum set covering algorithms used by the Diagnostician.

After the run-time DKB is created, there are a number of tools that enable validation and verification of
the DKB. This V&V can be done off-line to the test station, thus freeing up valuable test station
resources.

The Diagnostics V&V tool is shown in Figure 5. This tool can be used with simulated test data created by
associated tools, by the engineer, or by actual test data created (and logged) on the test station.

17

Figure 5 – Diagnostics Validation and Verification Tool

The process of using the Diagnostic Profiler’s V&V tool ensures that the diagnostic behavior of the
combined DKB and Diagnostician, in run-time, will exactly match that behavior of that combination on
the test program. The diagnostics are thus uncoupled from the test program. By separating the tests from
the diagnostic logic, overall test program V&V is significantly simplified.

Step 5 - Integrate the TPS with the diagnostic model

The fifth step in the process is to integrate the test program code with the diagnostic model. To do this,
the test program code is modified to omit all diagnostic logic. The diagnostic logic is replaced with a
simple “While” loop. In English, the “While” loop performs the following function: While the current
ambiguity group is more than one, and there are more tests to be performed, ask the Diagnostician to
identify the most significant test (the one which will most significantly resolve the fault and reduce the
ambiguity group); perform that test; send the results to the Diagnostician for analysis; determine the
resultant ambiguity group; return to the top of the While loop.

All the fault tree logic is replaced in the new TPS with this simple while loop that will perform the control
of diagnostic test and produce an accurate callout of both single faults and possible multiple-fault
conditions. This While loop is shown below.

18

Figure 6 – Diagnostician WHILE Loop

By omitting the GO-TO logic from the test program, and integrating the While loop, the test program has
been restructured to make use of the Diagnostician in run-time, where the Diagnostician works in a
conversational mode with the test program to perform fast, accurate and efficient diagnostic reasoning.

Step 6 - Verify the integrated TPS on MATE 390 and prepare a data package

Next, in preparation for TPS sell-off, the integrated TPS, consisting of the ATLAS test code and the
DKB, is verified on the test station. This involves hosting the ATLAS code and DKB onto the station and
running them together to determine appropriate operations. This also involves running fault insertions
and preparation of a data package in preparation for a formal Government sell-off.

Step 7 – Perform Sell-off

A formal sell-off process was performed for each test program. The sell-off included review of the data
package and fault insertions to determine that the test program operated correctly. Faults were inserted on

023000 DEFINE,'Diag_loop', PROCEDURE $

 DECLARE, MSGCHAR, STORE, 'test-Name', 20 CHAR $
 DECLARE, INTEGER, STORE, 'status' $
 DECLARE, INTEGER, STORE, 'idx' $

 OUTPUT,
 Running Diagnostician $

 FILL, 'G_IN_DIAG', TRUE $
C****Call to Diagnostician to Retrieve Next Best Diagnostic test to Perform $
 PERFORM, 'NextTest', 'status','test-Name' $
 WHILE, 'status' EQ 0, THEN $
C****Call to Run the Next Test $
 PERFORM, 'TEST_PARSER', 'test-Name', 'status' $
 IF, 'status' NE 0 , THEN $
 OUTPUT, Test Parser Error for ('test-Name')
 - Returned ('status') $
 LEAVE, WHILE $
 END, IF $
C*****Stay in the loop until there are no more diagnostically significant tests to run $
 PERFORM, 'NextTest', 'status','test-Name' $
 END, WHILE $

C***** Call to Diagnostician to Retrieve Call Out and display and log results $
 PERFORM, 'Callout', 'status' $
 PERFORM, 'TermDiag', 'status' $

 END,'Diag_loop' $

19

the UUT, and the test program was run to determine that the fault was correctly detected and isolated by
the test program. An interesting note is that the Government certification team came to have a full
understanding of the tools used in the overall process, and came to understand that the Diagnostic Profiler
tools created a “representation” of the UUT and its diagnostic behavior. The diagnostic approach is a
deterministic approach, not a probabilistic approach. Once the certification team really understood how
the tools worked, and that the tools resulted in very consistent test program results, the requirement for
fault insertions was reduced, with more reliance with the Profiler’s V&V tools. Using the V&V tools, a
much broader scope of faults can be verified than with limited fault insertion testing.

See Section 3.3 for additional details on the TPS Certification process.

Step 8 - Provide updated CPIN software on suitable media for release and distribution.

The updated CPINs were released on appropriate media and for storage in the Software Control Center, in
accordance with Air Force requirements.

Step 9 - Update TPI (Test Program Instruction) documentation

The Test Program Instructions (TPI) were updated. These updates included significant overall
improvements for operation of the TPS by test station operators. Additionally, corrected and up-to-date
schematics, (the result of step 1) were incorporated into the TPI.

More information of the TPI content can be found in Section 3.4.

3.3 Certification of TEMS SRU Test Programs

 Certification of the TEMS test programs was conducted in the course of this project. The LY
Software Staff in WRALC conducted the certification in conformance to their acceptance requirements
for each individual TPS. As part of the Certification process, the Air Force ran each SRU test program on
the test station to verify its operation. This included both end-to-end (functional) tests as well as
diagnostic tests. Representative faults were injected (simulated) in the units under test to force diagnostic
test procedures to be executed. Full data logging was done during the test program execution and the
logged results were printed out, and put into storage with the unit under test.

3.4 Development of Test Program Instructions (TPIs) for Designated UUT TPSs

 Test Program Instructions for the TEMS SRU test programs were prepared and delivered in
accordance with the requirements provided by the cognizant WRALC certification team. Giordano
Automation prepared Test Program Instruction documents for the TEMS Shop Replaceable Unit (SRU)
Test Program Sets (TPS) as listed in Appendix B.

As part of this task, Giordano Automation provided the Air Force with concise documentation
relating to the all of the information required to operate and maintain the test program sets. In addition,
much of the technical data that had been previously lost or that was previously incomplete in the various
related Air Force Tech Orders was supplemented with corrected and complete information.

20

Some of the highlights of the improved documentation and information in the TPI are listed
below:

• Inclusion of digital pictures representing Interface Test Adapter (ITA) installation and UUT
setup were included.

• Full probe point listing and probing diagrams for each probe point called out in the test
program.

• UUT Schematic
• UUT parts list
• UUT assembly drawings
• ITA data base
• Test Program usage of test station resources (stimulus and measurement instrumentation)
• Correlation of UUT name, LRU, designation, Part Number, Revision Level, CPIN, TO

Number, Unix Directory, etc.

 The cover sheets of each of the Test Program Instruction prepared for each Unit Under Test is
included in Appendix B. The Test Program Instructions are delivered under a separate CDRL.

The Test Program Instructions were developed based upon the requirements specified in
applicable Mil Standards and specific WRALC format requirements. The content of the Test Program
Instructions include:

• Set-Up Procedure.
• List all cables required
• List ITAs required
• Diagram of the on-line set-up including the relative positioning of UUT, ITA and ATE.
• Testing Procedure: Provide program start procedures.
• Testing data table: Provide all necessary operator instructions and diagrams that are impractical

to include on a test station display.

The TPI provides information needed for testing (e.g., hook-up, probe point locations, or other

programmed operator intervention) which the ATE under control of the test program cannot conveniently
provide. Appropriate contents are largely dependent on the ATE being used. Since graphics are not
available under the MATE operating system, the pertinent data is provided in the TPI. A complete table of
contents is provided. The table of contents contains the following information:

a. A listing of paragraph headings and corresponding page numbers, entitled "Contents".
b. A complete listing of figures (by figure number and title) and corresponding page numbers,

entitled "List of Illustrations".

4.0 RELATED CONTRACT TASKS

4.1 SRU Test and LRU Test Correlation

 In the course of the project, the SRU testing in relation to the to the A-10 IATS LRU Test and the
I-ABIT LRU Test was investigated. The three TEMS EPU LRUs tested are the A10 TEMS EPU, the KC-
135 Master EPU and the KC-135 Slave EPU. Test results and specific discrepancies of the LRU testing of
the three EPU LRUs system to agree with the corresponding Circuit Card Assembly (CCA) testing on the
MATE 390 test system. Currently, the IABIT tester is in the process of an upgrade and is not available for
correlation studies. Correlation studies and SRU improvement are currently being addressed specific to

21

the several cards that experience difficulties at the system level, specifically the A/D converter card (A8),
and the Vibration card (A5). Improvements have been made in the programs with respect to accuracies
and calibration techniques that have dramatically improved the correlation.

4.2 Test/Demonstration of the TPS Process.

 During the course of Integration and certification, the appropriate production and Software
personnel are constantly updated and provided on-site demonstrations of the various functional operations
of the Programs. During the formal certification Process, both Production and Software development
personnel are not only present but actively perform the fault insertion and certification process. In addition,
numerous technical meetings and demonstrations have been carried out with the specific Air Force groups
including production, Software, Engineering, and the Program Manager's office of the A10/ KC135
sustainability.

4.3 Familiarization and Demonstration.

 Familiarization of the modified systems as specified in the contract schedule is conducted
routinely in the sell-off process. The demonstration or sell off occurs currently at WRALC in Warner
Robins, Georgia.

4.4 Automated Vertical Testability.

 The intention is to implement an automated vertical testability tracking system between the IA-
BIT tester and the MATE 390 tester. This would include a network between the MATE 390 and the I-
ABIT testers. The network hardware is available at the Mate 390. The I-ABIT tester is currently not
operational to work this network. A software log that automatically records test results by TEMS item
serial number, identifies any inconsistency of test results, and provides other engineering information on
the cause of the inconsistency has been defined and developed for the TEMS depot test environment.

4.5 Storage of pertinent test data in a data base

 Storage of pertinent test data in a data log is currently implemented on the tester.

4.6 Evaluate Air Force Research Lab (AFRL) Information Directorate Software

 Giordano Automation investigated some of the software tools activities at the Rome Research Site
of the AFRL, including WIN-WIN and ORBIT, and others to determine their applicability for use
specifically on this project, and generally for Air Force depot maintenance support. One of the software
packages that shows promise in this application is the Model Integrated Computing (MIC) Environment
developed by Vanderbilt. The use of these tools becomes more applicable as we create a data
management and network environment to correlate data from one level to the next and will be studied in
more detail in the next phases of this project.

4.7 Software.

 All computer software developed and modified (including Test Program Sets) has been delivered
directly to the Government as specified in the contract schedule. All software developed under this effort
has been delivered on media compatible with the target computer system, and has been properly
designated using the Air Force CPIN designation system. Refer to Appendix A.

22

 All computer software was developed using appropriate programming languages as defined by
the government. Justification for the language selected is based upon system interface, interoperability,
communications functions, human interface, and requirements for security, safety, and reliability. The
software design makes use of existing software and for subsequent reuse to the maximum feasible extent.
 Complete software documentation is provided which includes installation, user and
maintenance instructions.

4.8 Progress Reports

Monthly Program Progress Reports were submitted under this specific contract number, entitled
Application of Model-Based Reasoning Tools Used to Enhance and Improve Diagnostic Performance to
Improve Air Force Maintenance. The progress reports were organized as follows:

1.0 Progress During the Reporting Period
2.0 Plans for the Next Reporting Period
3.0 Current Problem Areas
4.0 Estimate of Completion

4.9 Revisions to Existing Documents

This deliverable includes modifications to Test Program Instructions for each of the test programs.
Due to the voluminous nature of these documents and the procedures internal to the Air Force, this data
has been delivered on a CD-ROM directly to the TEMS equipment specialist. Hard and soft copies of
these documents have been provided to the cognizant Air Force personnel at Warner-Robins ALC.
Additionally, updated TO numbers and updated CPIN revision levels have been prepared and submitted
to the Item Manager. The cover pages of the delivered T.O's are provided in Appendix B as a reference.

4.10 Test/Demonstration Plan

Each of the revised test programs has been formally certified and sold off to the cognizant Air
Force personnel at Warner-Robins ALC via fault insertion demonstrations with the accompanying
documentation and sign-off for acceptance. The demonstration procedures and signatory requirements
were documented as an Acceptance Test Plan in coordination with the Air Force at WR-ALC.

4.11 Software Documentation (Installation, User and Maintenance Instructions)

A Diagnostic Profiler and Diagnostician User Manual and Installation CD-ROM is provided under
this CDRL item.

4.12 Final Technical Report (A007)

The final technical report is provided herein. This report includes technical work accomplished,
and info gathered, pertinent observations, nature of problems, positive and negative results, design criteria
established, procedures followed, baseline data used, technology demonstrated, process developed,
lessons learned, potential improvements, and follow-on work. There are additional TPSs that are being
developed and delivered under a follow-on contract that encompasses additional TEMS circuit card test
program sets.

23

APPENDIX A

A Copy of the Computer Software Configuration Item (CSCI) Components Delivery
Forms are provided here in Attachment A

CPIN SRU TEMS EPU

Slot Configuration
85E-USQSS/M390-U013-00A 091150 A2

85E-USQ85/M390-U004-00A 091200-301,302 A3

85E-USQ85/M390-U005-00A

091250-302 A4

85E-USQ85/M390-U006-00A

091300-303,302 A5

85E-USQ85/M390-U007-00A

091350-302,304,305,306 A6 (not yet sold off)

85E-USQS5/M390-U014-00A

091450-(301-314) A8

85E-USQ85/M390-U014-00A

*091 460-(301-306) A8

85E-USQ85/M390-U024-00A

9383755-10

A8

85E-USQ85/M390-U008-00A

091600 –301 thru –308, 311 thru
-318, 322, 323, 325, 326

A11

85E-USQ85/M390-U009-00A

091650-303,304 (six configurations) A10, A12

24

EPU 091450/091460 CONFIGURATION SLOT A8
Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on 13 Mar 2001 :

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U014-00A 004 16 Feb 01 2 Unclassified 3 1/2 Floppy
85E-USQ85/M390-U014-00D 004 16 Feb 01 2 Unclassified 3 1/2 Floppy

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 X Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
 Electronic message
 Electronic bulletin board
X Not required – Software is for Depot use only

*Announcement documents will / will not be provided for packaging
with the software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 Tester Bldg. 645/ POC-Ignacio
Quintanilla

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

 Rohn O. Ussery LEADA/6881 X705 13 Mar 2001
Name, Title, Office, Phone Signature, Date

25

EPU 9383755 CONFIGURATION SLOT A8 (Re-engineered Card)
Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on 31 May 01 :

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U024-00A 000 21 Mar 01 2 Unclassified 3 ½ Floppy
85E-USQ85/M390-U024-00D 000 21 Mar 01 2 Unclassified 3 ½ Floppy

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 X Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
 Electronic message
 Electronic bulletin board
X Not required – Software is for Depot use only

*Announcement documents will / will not be provided for packaging
with the software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 Tester Bldg. 645/POC-John Hill

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

 Rohn O. Ussery LEADA/6881 X705 31 May 01
Name, Title, Office, Phone Signature, Date

26

EPU 091300 CONFIGURATION SLOT A5
Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on _2 May 2001______________:

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U006-00A 001 10 Apr 01 2 Unclassified 31/2 Disk
85E-USQ85/M390-U006-00D 001 10 Apr 01 2 Unclassified 31/2 Disk

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).

Distribution Is being accomplished by the development activity
 X Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
X Electronic message
 Electronic bulletin board
 Not required – Software is for Robins Depot use only

*Announcement documents will / will not be provided for packaging with the software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 Bldg. 645, POC – John Hill

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

Rohn Ussery ES/LEADA 468-6881 x 705
Name, Title, Office, Phone signed by Rohn Ussery 9 May 01

27

EPU 091200 CONFIGURATION SLOT A3

Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on 12 Jun 2001 :

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U004-00A 003 7 May 01 2 Unclassified 3 ½” Floppy
85E-USQ85/M390-U004-00D 003 7 May 01 2 Unclassified 3 ½” Floppy

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 X Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
 Electronic message
 Electronic bulletin board
X Not required – Software is for Depot use only

*Announcement documents will / will not be provided for packaging
with the software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 Tester Bldg. 645 POC-John Hill/6-5303

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

 Rohn Ussery LEADA 6881 x705 12 Jun 2001
Name, Title, Office, Phone Signature, Date

28

EPU 091250 CONFIGURATION SLOT A4
Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on 14 June 01 :

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U005-00A 002 31 May 01 2 Unclassified 3 ½” Floppy
85E-USQ85/M390-U005-00D 002 31 May 01 2 Unclassified 3 ½” Floppy

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 x Must be accomplished by the SCC – Users are / on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
x Electronic message
 Electronic bulletin board
 Not required – Software is for Depot use only

*Announcement documents will / will not be provided for packaging
with the software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 Tester BLDG. 645/POC-John Hill

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

 Rohn Ussery LEADA 6881 x705 14 Jun 01
Name, Title, Office, Phone Signature, Date

29

EPU 091650 CONFIGURATION SLOTS A10, A12

Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on 7 August 01 :

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U009-00A 002 31 July 01 2 Unclassified 3 ½ Floppy
85E-USQ85/M390-U009-00D 002 31 July 01 2 Unclassified 3 ½ Floppy

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 x Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
x Electronic message
 Electronic bulletin board
 Not required – Software is for Depot use only

*Announcement documents will be provided for packaging with the
software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 TESTER BLDG. 645/POC – John Hill

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

Rohn Ussery/ES-LEADA- 6881 x705 7 August 01
Name, Title, Office, Phone Signature, Date

30

EPU 091150 CONFIGURATION SLOT A2

Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software
Control Center (SCC) on 13 Nov 2001 :

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/M390-U013-00A 003 31 Oct 01 3 Unclassified 3 ½ Floppy
85E-USQ85/M390-U013-00D 003 31 Oct 01 3 Unclassified 3 ½ Floppy

Request the following information be provided by the Weapon System Software Manager and returned to
the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 X Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by
the method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
 Electronic message
 Electronic bulletin board
X Not required – Software is for Depot use only

*Announcement documents will / will not be provided for packaging
with the software

Media
Reproduction

Reproduction Equipment
Nomenclature

Location of Equipment and
POC

 MATE 390 Tester Bldg. 640/John Hill

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system
program testing, is authorized for use as CPIN masters and reproducibles for
distribution. The LYSRP SCC is authorized to provide software support
utilizing directions furnished on this form.

 Steve McBee/Equipment Specialist/LEADA/6-6884 Steve McBee 13 November 2001
Name, Title, Office, Phone Signature, Date

31

APPENDIX B

A Copy of the Cover Sheets of the delivered Test Program Instructions for each of the test
programs is provided here in Attachment B for reference purposes. A CD with the
delivered TPI's is provided separately.

CPIN SRU TEMS EPU Slot

Configuration
Tech Order #

85E-USQSS/M390-U013-00A 091150 A2 5E18-2–8-3

85E-USQ85/M390-U004-00A 091200-301,302 A3 5E18-2–8-4

85E-USQ85/M390-U005-00A

091250-302 A4 5E18-2–8-5

85E-USQ85/M390-U006-00A

091300-303,302 A5 5E18-2–8-6

85E-USQ85/M390-U007-00A

091350-302,304,305,306 A6 (not yet delivered) 5E18-2–8-7

85E-USQS5/M390-U014-00A

091450-(301-314) A8 5E18-2–8-18

85E-USQ85/M390-U014-00A

091 460-(301-306) A8 5E18-2–8-18

85E-USQ85/M390-U024-00A

9383755-10 A8 5E18-2–8-19

85E-USQ85/M390-U008-00A

091600 –301 thru –308, 311
thru-318,322,323, 325, 326

A11 5E18-2–8-8

85E-USQ85/M390-U009-00A

091650-303,304
(six configurations)

A10, A12 5E18-2–8-9

32

.

 TEST PROGRAM SET INSTRUCTION

Synchro Conditioner Circuit Card
Part Number 091150-302,305

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational use) (27 FEB 98).
Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor Unit (EPU)

CCA Name Synchro Conditioner
Part # 091150 - 302, 305
CPIN 85E-USQ85/M390-U013-00A REV 003
T.O. 5E18-2-2,-3,-4

Designation A-2
Unix Directory /u/tems/gac91150

Test System M390H
ITA TEMS 6

Document: 5E18-2-8-3
Revision: 0001
Date: 15 October 2001

33

.

 TEST PROGRAM SET INSTRUCTION

Bridge, Temperature and Switch Conditioner Circuit Card
Part Number 091200 –301
Part Number 091200 –302

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational use) (27 FEB 98).
Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor Unit (EPU)

CCA Name Bridge, Temperature and Switch
Conditioner

Part # 091200 – 301, -302
CPIN 85E-USQ85/M390-U004-00A REV 003
T.O. 5E18-2-2,-3,-4

Designation A-3
Unix Directory /u/tems/gac91200

Test System M390H
ITA TEMS 4

Document: 5E18-2-8-4
Revision: 0001
Date: 07 May 2001

34

.

 TEST PROGRAM SET INSTRUCTION

High Level DC Conditioner
Part Number 091250-301
Part Number 091250-302

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational
use) (27 FEB 98). Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor

Unit (EPU)
CCA Name High Level DC Conditioner

Part # 091250 –301,-302
CPIN 85E-USQ85/M390-U005-00A
T.O. 5E18-2-2,-3,-4

Designation A-4
Unix Directory /u/tems/gac91250

Test System M390H
ITA TEMS 4

Document: 5E18-2-8,-5
Revision: Original
Date: May 31, 2001

35

.

 TEST PROGRAM SET INSTRUCTION

Vibration Signal Conditioner Circuit Card
Part Number 091300-301
Part Number 091300-302

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US+ Government agencies and their contractors (administrative or operational use) (27 FEB 98).
Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor Unit (EPU)

CCA Name Vibration Signal Conditioner
Part # 091300 –301, -302
CPIN 85E-USQ85/M390-U006-00A REV 001
T.O. 5E18-2-2,-3,-4

Designation A-5
Unix Directory /u/tems/gac91300

Test System M390H
ITA TEMS 4

Document: 5E18-2-8-6
Revision: Original
Date: April 10, 2001

36

.

 TEST PROGRAM SET INSTRUCTION

A-D Converter Circuit Card
Part Number 091450-301 through 314
Part Number 091460-301 through 306

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational use) (27 FEB 98).
Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor Unit (EPU)

CCA Name A-D Converter
Part # 091450 –301 through 314

091460 –301 through 306
CPIN 85E-USQ85/M390-U014-00A REV004
T.O. 5E18-2-2,-3,-4

Designation A-8
Unix Directory /u/tems/gac91460

Test System M390H
ITA TEMS 6

Document: 5E18-2-8-18
Revision: Original
Date: 20 February 2001

37

.

 TEST PROGRAM SET INSTRUCTION

A-D Converter Circuit Card
Part Number 9383755-10

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational use) (27 FEB 98).
Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor Unit

(EPU)
CCA Name A-D Converter

Part # 9383755-10
CPIN 85E-USQ85/M390-U024-00A
T.O. 5E18-2-2,-3,-4

Designation A-8
Unix Directory /u/tems/gac9383755

Test System M390H
ITA TEMS 6

Document: 5E18-2-8-19
Revision: ORIG
Date: 21 March 2001

38

.

UUT SUMMARY
LRU TEMS Electronic Processor Unit (EPU)

TEMS Diagnostic Display Unit (DDU)
CCA Name RAM Circuit Card

Part # 091600
CPIN 85E-USQ85/M390-U008-00A REV 002
T.O. 5E18-2-2,-3,-4

Designation A-11
Unix Directory /u/tems/gac91600

Test System M390H
ITA TEMS 4

.

 TEST PROGRAM SET INSTRUCTION
RAM Circuit Card
Part Number 091600

Test of 091600 CCA Revision Levels

091600 (RAM 1) –318, -308
091600 (RAM 2) –314, 311, -304, -301
091600 (RAM 3) –317, -307
091600 (RAM 4) -315, -312, -305, -302, -325,
-322, -326, -323, -316, -313, -306, -303

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational
use) (27 FEB 98). Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.Handling and Destruction Notice - Comply with
distribution statement and destroy by any method that will prevent disclosure of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

Document: 5E18-2-8-8
Revision: Original
Date: 22 August 2001

39

 TEST PROGRAM SET INSTRUCTION

PROM Circuit Card
Part Number 091650-303, 304

WRITTEN BY GIORDANO AUTOMATION CORPORATION

Distribution authorized to US Government agencies and their contractors (administrative or operational
use) (27 FEB 98). Other requests for this document shall be referred to WRALC, Warner Robins, GA.

WARNING. This document contains technical data the export of which is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.) or the Export Administration Act of 1979, (as amended, Title 50, U.S.C., App. 2401 et seq).
Violations of these export laws are subject to severe criminal penalties.

Handling and Destruction Notice - Comply with distribution statement and destroy by any method that will prevent disclosure
of the contents or reconstruction of the document.

For Depot Support of the
 Turbine Engine

 Monitoring System
on the

MATE 390 Test System

UUT SUMMARY
LRU TEMS Electronic Processor

Unit (EPU)
CCA Name PROM Circuit Card

Part # 091650 – 303, 304
CPIN 85E-USQ85/M390-U009-00A
T.O. 5E18-2-2,-3,-4

Designation A-10, A-12
Unix Directory /u/tems/gac91650

Test System M390H
ITA TEMS 4

Document: 5E18-2-8-9
Revision: 0001
Date: 12 July 2001

40

APPENDIX C

Giordano Automation has developed an
exciting and very powerful set of tools
that implement model-based diagnostic
reasoning. The run-time tool,
Diagnostician, provides automated
diagnostics and can be seamlessly
integrated into any test environment.
The development tool, the Diagnostic
Profiler, assists the engineer in
developing the run-time diagnostic
knowledge base. Together, the
implementation of these tools can save
significant time and money in the
development of a diagnostic capability,
and result in more efficient diagnostics.

The Diagnostician is an implementation of model-based reasoning. Model-based reasoning means that a
diagnostic model of a system or item, derived from design data, serves as the basis for diagnostic
reasoning. The diagnostic model is independent of the test program and independent of the sequence of
tests that are run.

In the new paradigm, a model-based diagnostic software object called a Diagnostician is used in lieu of
programmed fault trees. In run-time, the Diagnostician provides dynamic fault isolation without complex

diagnostic logic paths, by reading test
results. The diagnostic logic is not
"fixed" to a pre-determined, static
diagnostic tree, but rather is dynamic.
The Diagnostician dynamically interprets
test results - test results can come from
any source, in any order, and with as
many or as few test results at a time as
the test source can provide. Static test
trees, on the other hand, are based upon
one test result at a time, in a pre-
determined sequence, and from a fixed
test source.

Diagnostic Profiler
A Diagnostics Design Tool for Boards,
Assemblies or Systems

Automated CAD or Legacy Data Capture

On-Line Testability Analysis

Generates Diagnostic Knowledge
Base for Run-Time

DIAGNOSTIC
PROFILER

CAD Platform

Design for Test
TMDiagnostics

Design

Diagnostician Diagnostic
Knowledge

BasePerforms Automated Fault Isolation for
Digital, Analog and Mechanical Systems

Links to Any Test Source

Utilizes Diagnostic Model in Real-Time

Isolates Multiple Faults
Fault Call-OutTest Results

Diagnostician

D
E
V
E
L
O
P
M
E
N
T

R
U
N
-
T
I
M
E

Design

Breaking the Wall Between Development and Maintenance

Intelligent
Diagnostics

System
Development

Diagnostic
Model

Model Correlates all
possible faults to all possible
symptoms or test results

Diagnostician provides fast,
effective fault isolation in
run-time.

Combination results in
"Dynamic Diagnostics"

Diagnostic Profiler Diagnostician

Eliminates Static Diagnostic Logic Paths in Test Programs
and Cumbersome Manual Troubleshooting Procedures in IETMs

Automated Diagnostics using Model-Based Reasoning

Figure 1 – Diagnostic Profiler and Diagnostician

Figure 2

41

The Diagnostician contains a diagnostic model of the item automatically converted from design data. The
model is in the form of a connectivity matrix that represents the propagation of faults (rows in the matrix)
to observable measurement locations and the coverage of tests that Pass or Fail (columns in the matrix).
When used in run-time, the software
algorithms and knowledge base (matrix)
operate to isolate faults without hard-
coded diagnostic test sequences.

In run-time, the Diagnostician interprets,
in real time, test results to perform fault
isolation. The concept of object-oriented
programs is taken full advantage of by
dealing with the diagnostic logic as an
independent entity of the test program. By
separating the diagnostic logic from test,
the test program becomes significantly
simpler. Further, the diagnostic logic
contained in the software object can be
rehosted to any platform without any
problem, because it is simply a binary file.

Fault/Symptom MatrixUUT Design

Automatic
Design

Conversion

T1

T2

T3

Part 1 Output 1

Output 2

Part 2 Output 1

Part 3 Output 1

Part 4 Output 1

Part 5 Output 1

Part 6 Output 1

Part 7 Output 1

Part 8 Output 1

FAULTS
TESTS

T4

P2

P1

T
e
s
t

C
o
v
e
r
a
g
e

 Fault Propagation

Part
1

Part
2

Part
3

Part
4

Part
6

Part
7

Part
5

Part
8

 T1 T2 T3 T4 P1 P2

X X
X

X X
X

X
X
X X XX

XX
X

1

2

Test Results can be input to the Diagnostician
in any order

(no pre-set sequence)
from any source individually or in sequence

operator observations, test instruments, data bus, data file, built-in
test, automatic test equipment, system panels & displays, etc.

as many or as few at a time as the test source(s) can
provide
(not restricted to one-at-a-time to follow a diagnostic tree)
zeroes-in on cause of fault(s)

Diagnostician can identify multiple faults
(Diagnostic trees follow single-fault assumption)

Diagnostician will always zero in on cause of fault
(never leaves the technician hanging)

Will only request tests that have diagnostic significance
based upon snapshot of current fault possibilities

"Dynamic" Diagnostic Capability

Figure 3 – Fault/Symptom Matrix Generated from Design

Figure 4 – Dynamic Diagnostics

42

Using the Diagnostician, the fundamental culture of diagnostics has been changed. Tests perform
measurements and data collection and determine if those measurements are within acceptable ranges. The
interpretation of what it means if the measurement has passed or failed is done by the Diagnostician,
which dynamically, on-the-fly, interprets test information based upon all information it receives in any
order.

The Diagnostician makes use of "Minimum Set Covering" algorithms that interpret the "Cones of
Evidence" produced by both pass and fail test result data. These reasoning techniques provide for fast,
accurate, flexible diagnostics, and can also isolate multiple faults. Static test trees, on the other hand, are
limited to a "single fault assumption" and often do not work in multiple fault situations.

Diagnostician Implementation in a Test Program Set - a Software Engineering Perspective

In order to define the differences between traditional and model-based diagnostics, one must go back to
the beginning of TPS programming. Test programs as we know them today are written as a series of
functional end-to-end tests with measurements made at the output pins in order to assure that the system is
operating correctly and ready for issue. The diagnostic portion is handled in one of two ways. The first is
to go to a diagnostic program after the end-to-end tests are run, or to write a structured program where
each test, upon failure, is followed by diagnostic tests to isolate the fault to the level required by the
specification.

The traditional approach to the
development of diagnostic
programs requires a highly
labor-intensive process of going
through pages and pages of
schematics and circuit
diagrams, hypothesizing all
potential failure conditions, and
developing discrete test paths to
ensure fault propagation.
Highly skilled test engineers at
a high cost perform this process.
As system complexity
increases, the ability to
comprehend logic paths
sometimes exceeds the ability
of the human mind. Test
programs have been written as
long software routines with
extensive branching and
jumping. A single change in an independent test affects code throughout that program. In many cases,
diagnostic tests are duplicated throughout the program. The development and maintenance of these
programs is extremely difficult resulting in the high cost of test program sets and poor rehostability.

The technology of computer programming has evolved from unstructured code to structured code, and
from structured code to object oriented code. Test programming is a special type of computer program.

SPAGHETTI CODE CO-MINGLED CODE
FEATURES

BEGIN Functional Test 1 BEGIN

TEST 1

FINISH

Tests are duplicated in
diagnostics

Diagnostics code is
duplicated

Diagnostics data for
each fault is throughout
code

DISADVANTAGES
Difficult to code

Difficult to understand

A change affects code
throughout the program

Diagnostics In The Past: Traditional Approach

GOTO TEST 2
GOTO TEST 3

MEASURE
TO 1
TO 2
TO 3

IF FAIL
GOTO TP1

IF FAIL
GOTO TP3

IF A FAIL
PROCESS TP 1

IF PASS
GO ON TO TEST 2

TEST 2

IF A FAIL
PROCESS TP 3

IF PASS
GO ON TO TEST 3, ETC.

FINISH

Figure 5 Traditional Test Program Structure

43

As such, it too has evolved from unstructured code to structured code and will evolve into object oriented
code.

In this chart, the original unstructured code is called SPAGHETTI CODE because GO-TO statements are
used to control the execution flow when there are diagnostic failures. This code had the advantage of
grouping all the functional tests of a good UUT together in one spot. This advantage comes from the
unstructured nature of the test. This unstructured code also has two important disadvantages.

The first disadvantage is that the diagnostic routines are implicitly dependent on the functional tests run
before control was transferred to them. In effect, the diagnosis is distributed between the functional tests
and the diagnostic routines. In complex situations, a maintainer finds that it is difficult to pull all the data
together to understand what the diagnostic routine is doing. Furthermore, any change to the functional
tests, either in coverage or order, can invalidate the diagnostics routines or make them incomplete.

The other disadvantage is that the diagnostic routines contain tests that duplicate tests in the functional set
of tests. The duplicated tests are selected
functional tests that occur after the
functional test whose failure transferred
control to the diagnostic routine. Usually,
this duplication is not well documented
and a maintainer who changes a functional
test must analyze all the diagnostic
routines to carry the changes to the
duplicate tests.

With the advent of structured
programming, GO-TO statements were
eliminated and overall program execution
was made to flow in one direction. The
result of applying this technology to the
test program is termed CO-MINGLED
CODE in the figure because the functional
tests and the diagnostic routines are
mingled together.

The diagnostic routines of a structured test program are essentially the same as those found in the
unstructured test program. Consequently, all the disadvantages of the unstructured test program apply to
the structured program.

The last evolution of computer programming is to object oriented code. The basic idea is that code
associated with different objects or functions is separated into units and the work gets done by the
cooperation of the different units.

For test programs with diagnostics, the test (stimulus and measurements) and the diagnostic analysis are
treated as separate objects. In the figure, the test objects are boxes in the left and a Fault Symptom matrix
in the middle column represents the diagnostic object. The object-oriented approach is maintainable and
modifiable where the earlier approaches are not.

Test Programs and the Diagnostician
Model-Based Diagnostics

FUNCTIONAL TEST

BEGIN

PROCESS TEST 1

PROCESS TEST 2

Measurement for Diagnostics

FAULT SYMPTOM
MATRIX

No duplicated codeList
of faults is clearly
identified

Diagnostics data for
each fault is kept in one
location

Implementation is easy

Understanding is easy

Modifications can be
limited to one area of
code

FEATURES

ADVANTAGES

PROCESS TEST 3

MEASUREMENTS
TO 1
TO 2
TO 3

N1 => N9
Probing Acces Points

FINISH

IF ANY FAILURE,
PROCESS TP1 - TP 7

030201030201

SYMPTOM SETS

(SYMPTOMS)
TEST RESULTS

PARTS

U1

U19

U3
U2

T1 T2 Tn
End-to-End

Tests

Diagnostic
Tests

Figure 6 – Model Based Test Program Structure

44

The diagnostic information is centralized in one easy to observe Fault Symptom Matrix. In it, the
relationships between tests and failures can be observed, compared to failure modes and modified.
Changes in functional test order have no impact on the diagnostic process. Changes in the coverage of a
test with respect to failure modes (yes/no/partial) are reflected as changes to the column of the Fault
Symptom Matrix describing that test. Additions of new tests are implemented as additional Fault
Symptom Matrix columns. All of these changes go to the heart of the diagnostic problem and requires no
obscuring software structures.

In the object-oriented approach, duplication of tests is unnecessary. The same test can be used as part of a
functional test or a diagnostic test depending on the status of the UUT being tested. The elimination of
duplication greatly simplifies maintenance, reduces development cost and improves run-time
effectiveness.

The result of using the Diagnostician is object oriented diagnostic capability with no Diagnostic Flow
Charts.

The impact of this technology is
dramatic! Savings up to 30-40%
of the overall TPS costs can be
realized. Maintenance of the test
program, storage and use of
legacy data, rehosting, updates,
and porting to various platforms
including portable maintenance
aids are all enabled by the new
paradigm. And, a Maintenance
Simulator is available which
allows the user to simulate the
diagnostic effectiveness achieved
before committing to coding the
test software or building the
system hardware or test
hardware. Concurrent
engineering of support for
diagnostics is now a reality!

The Diagnostic Profiler supports
the development of the
diagnostic software object (the
diagnostic model). The selection
of test points and the assessment
of fault isolation probabilities as
well as validation of these probabilities are all done using the Diagnostic Profiler during development of
the TPS. Diagnostic engineering and test engineering are uncoupled. Test programming tools are used to
write tests. In the process of writing these tests, the test engineer must define Pass/Fail (P/F) criteria for
each response value being measured and convert test result data for each measured parameter into a P
(Pass) or F (Fail). This function can be implemented utilizing a simple high level language subroutine

FUNCTIONAL
TEST

BEGIN

TEST T1

TEST T2

TEST Tn

FINISH

Diagnostician
Send Test Results

Load DKB

Diagnostician Provides Fault Call-Out in
Run-Time Based Upon Reading Test Results

Without Hard-Coded Diagnostic Flows
FAULT CALL-OUT

XX.....XXXXX........ U1
..XXX.......XXXXX... U2
.....XX..........XX. U3
.X.....XX........... U4
X......X.XX......... U5
..XX........X.XX.... U6
..X.........X....... U7
..XXX.......XXX..... U8
.......X............ U9
.X.....XX........... U10
X.XX...X.XX.X.XX.... U11
..X....X....X....... U12
X..X.....X....X..... U13
.XXXX...X...XXX..... U14
..X..X.X....X....X.. U15
.XX.X.X.X...XX....X. U16
..X..X.............. U17
X..X................ U18
....X.X............. U19
T1_01 FUNCT_TEST
 T1_02 FUNCT_TEST
 T1_03 FUNCT_TEST
 T1_TP1 DIAG_TEST_1
 T1_TP2 DIAG_TEST_1
 T1_TP3 DIAG_TEST_1
 T1_TP4 DIAG_TEST_1
 T1_TP5 DIAG_TEST_1
 T2_01 FUNCT_TEST
 T2_02 FUNCT_TEST
 T2_03 FUNCT_TEST
 T2_TP1 DIAG_TEST_2
 T2_TP2 DIAG_TEST_2
 T2_TP3 DIAG_TEST_2

[FUNCT_TEST]
T1_01=F;
T1_02=P;
T1_03=F;
T2_01=P;
T2_02=P;
T2_03=P;
T3_01=P;
T3_03=P;

U10
[FUNCT_TEST_2]
T2_01=P;
T2_02=P;
T2_03=P;
[FUNCT_TEST_3]
T3_01=P;
T3_03=P;

Request Current
Fault(s) Identification

Request Test that
Provides Best
Diagnostic Resolution

Library of Functions
Approx. 30

Diagnostic Object

Figure 7 – Diagnostician Interaction with Test Program

45

that accepts measurement test results and associated tolerances values as inputs and outputs a "P/F"
character.

Use of the diagnostic object in run-time to perform fault isolation is done by the Diagnostician. To
incorporate diagnostics into the test program, a single "WHILE" loop can be used: WHILE there is
another test that can further isolate the fault, ask the Diagnostician for the next optimum test to perform,
run that test, and send test results to the Diagnostician.

The methodology described is straightforward and well within the responsibilities and expertise of a
test engineer. Utilizing the Diagnostician paradigm, the test engineer focuses on what he does and
knows best: testing. The specifics of diagnosis, which is a function of UUT topology and behavior, is
left to automated reasoning algorithms, which are better suited than a human in resolving complex
diagnostic situations.

In addition to reducing TPS development time and cost, the model-based diagnostics reasoning approach
is easily updated for design changes and allows fault simulation for diagnostics V&V.

Run-Time Operational View

The DiagnosticianTM is a major innovation to the overall test process. To support embedded and off-line
applications, the run-time DiagnosticianTM has been designed to operate in a myriad of host platforms.

The new model-based diagnostics paradigm treats the diagnostic logic as an "object" which interacts with
test results to perform fault isolation. In the next generation test system, a “Client” which invokes the
“Services” required by the system will replace the test executive. The test object will communicate to the
Diagnostician object in the Windows Dynamic Link Library (DLL) protocol. For the purpose of this
discussion on interfacing the Diagnostician in the Windows-based framework, the term Client will be
used. Client is used here as a generic name for any Windows-based software, which communicates to the
Diagnostician using DLL. Note, however, that the operating modes discussed in this paper may be
extrapolated to any operating system: DOS, Unix, X-Windows, VMS, or any test environment including
LabVIEW, CVI, HP-VEE, ATLAS, etc.

Since Diagnostician functions are callable as "building blocks" the programmer can implement diagnostic
function in any way that fits his test program structure and test philosophy. We show in the next few
paragraphs, examples of three different approaches to using Diagnostician functions to effect different test
strategies. These examples represent different scenarios for test execution, sequencing and program
control based upon using the Diagnostician to perform diagnostics. These examples are characterized as
follows:

46

Diagnostician in Control Example -
Where the Diagnostician manages the flow and execution of tests.

Go/No-Go Test in Control Example -
 Where the Client calls and implements a set of functional, or go/no-go tests, passes the

results to the Diagnostician, and the Diagnostician subsequently takes control of the flow
and execution of tests.

Mixed Control Example -

Where the control of the flow and execution of tests can be passed between the
Diagnostician and the test object within the Client.

In the GO/NOGO Control
Mode, the Client software
will first execute all of the
go/no-go (functional/
performance) tests. If, at
the end of the program, any
of the tests fail, the Client
initiates the Diagnostician
using a simple function call
and passes to it all of the
test results. Next the Client
requests either an
ambiguity group call-out or
the next best test to be
executed. This mode is
good for short GO/NOGO
test programs where each
test does not require a large
amount of setup time or long
testing sequences.

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

Go/No-Go Control Mode

Client initiates
Diagnostician

Client executes
go/no-go test (s)

Client reports
test result(s)to
Diagnostician

Client requests
identification of
fault call-out or
ambiguity group

Fault Call-Out or
Ambiguity Group

If all tests pass
 Ship Product

Diagnostician reports a fault
call-out or ambiguity group

If any go/no-go tests
fail

Test Results

Client terminates
Diagnostician

Run Acceptance Test (RFI test or
end-to-end performance test)

All Diagnostics Performed by Diagnostician.

adrStart
adrLoadDKB

adrAddData
adrAddDataFile

adrUnload

adrGetSuspect
adrGetNextStep

Figure 8 – Go/No-Go Control Mode

47

In the Diagnostician Control Mode, the Diagnostician is used to make all decisions on what tests are to
be executed. In this mode, the Client initiates the Diagnostician before any tests are executed. Then the
Client issues a DLL function call to the Diagnostician to identify the first test to be executed. The test to
be executed is passed to the Client as a response to the function call. The Client will execute only those
tests the Diagnostician requests until a final ambiguity group is found. The final ambiguity group is found
when either the ambiguity group contains only one replaceable part, or when no more tests exist which
will break up the
current ambiguity
group. This mode
is good for tests
that require a large
amount of setup
time or where tests
are lengthy. A
diagnosis can be
made using the
least amount of
tests and testing
time. Only those
tests with any
diagnostic
significance will
be executed.

The Mixed Control Mode is a
combination of the two
previous test modes. The
Client will start out in the
Go/No-Go Control Mode. All
Go/No-Go tests will be
executed and if a failure
occurs, the Client will initiate
the Diagnostician and perform
as in the Diagnostician Control
Mode. This mode can either
stop at first failure in the
go/no-go test or can run all
go/no-go tests at once. The
Mixed Control Mode is good
for test programs with both
short and long test sequences.
The shorter tests can be
executed at the top of the
program. If they fail first, then
the Diagnostician will reduce
the number of tests and the testing time required to make a fault call-out.

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

identifies/selects
which test (s) to
be executed

Client executes
test (s)

Client reports
test result(s) to
Diagnostician

Client requests
identification of
current
ambiguity group
and/or next step

Diagnostician reports next step:
either another test or a
fault call-out or ambiguity
group

[Test 2]
TP-abc=P;
TP-def=P;
TP-ghi=F;

Execute Test 2

Fault Call-Out or
Ambiguity Group

Diagnostician Control Mode

Client terminates
Diagnostician

Test 2

Runs any test needed to fault isolate.
Tests selected by Diagnostician.

Client initiates
Diagnostician

adrStart
adrLoadDKB

adrAddData
adrAddDataFile

adrUnload

Client requests
Next Step

adrGetSuspect
adrGetNextStep

Client initiates
Diagnostician

Client executes
go/no-go test (s)

Client reports
test result(s) to
Diagnostician

Fault Call-Out
Current Ambiguity Group
Next Test

If all tests pass
 Ship Product

If any go/no-go
tests fail

Client terminates
Diagnostician

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

Client requests
identification of
next step

 (if a test exists which can further
reduce current
ambiguity group)

Mixed Control Mode

Client determines
whether to execute
additional test or replace
current ambiguity group

[Test 1]
TP1=P;
TP2=P;
TP3=P;
[Test 2]
TP4=P;
TP5=F;
[Test 3]
TP9=F;
<REMAINING>=P;
[Test 4]
<ALL>=P;
[Test 5]
TP23=F;
TP28=P;
TP29=F;

Run Acceptance test (RFI or end-to-end tests)
Diagnostician picks additional tests to fault isolate

adrStart
adrLoadDKB

adrAddData
adrAddDataFile

adrUnload

adrGetSuspectCnt
adrGetSuspect
adrGetNextStep

Figure 9 – Diagnostician Control Mode

Figure 10 – Mixed Control Mode

48

The software architecture of the Diagnostician is that of a server. The Diagnostician provides diagnostic
services to any client program. The Diagnostician acts as a server task that performs functions that
provide diagnostic services. When properly interfaced on the client side, the Diagnostician functions as a
library of subroutines within the client program.

The Diagnostician software, in Windows, is compiled as a Dynamic Link Library. It is a true diagnostic
server that provides diagnostic services to a client program. That client program may be a test executive,
test programs, LabVIEW, ATEasy, HP-VEE, or any other independent program which "sits in-between"
the Diagnostician and the test program.

For example, in LabVIEW, these Diagnostician DLL function calls have been implemented as a series of
virtual instruments, and the flexible test strategies in the previous discussion can be implemented easily,
as shown below.

adrdll.dll
modelname.dkb
modelname.cfg

DLL Function
Calls

ADRVI.LLB

Diagnostician
Functional

Virtual
Instruments

DOC.LLB

Operational
Modes

(LabVIEW Program
Templates)
USES.LLB

adrloaddkb
adrstart

ASK
DOC

(ask_doc.vi)

OPEN
DOC

(open_doc.vi)

TELL
DOC

(tell_doc.vi)

CLOSE
DOC

(close_doc.vi)

Diagnostician Control Mode

ASK
DOC

OPEN
DOC

TELL
DOC

CLOSE
DOC

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

Go/No-Go Control Mode Mixed Control Mode

Diagnostician

adrdddata
adrdddatafile

adrgensuspectfile
adrgetfaultlist
adrgetnextstep

adrenddata
adradrunload

ASK
DOC

OPEN
DOC

TELL
DOC

CLOSE
DOC

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

F P P

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

OPEN
DOC

CLOSE
DOC

TELL
DOC

ASK
DOC

DLL Library
ADRDLL.DLL

Figure 11 - Diagnostician Integration into LabVIEW Environment

