<table>
<thead>
<tr>
<th>Form Approved OMB No. 0704-0188</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT DOCUMENTATION PAGE</td>
</tr>
</tbody>
</table>

1. REPORT DATE (DD-MM-YYYY)
2. REPORT TYPE
Technical Papers
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

8. PERFORMING ORGANIZATION REPORT

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF ABSTRACT
18. NUMBER OF PAGES
19a. NAME OF RESPONSIBLE PERSON
Leilani Richardson
19b. TELEPHONE NUMBER
(661) 275-5015

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 items enclosed = 219 + 220
MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO) 13 Sept 2002

Tim Miller (PRSM) & R. Lasser (Imperium), "Composite Damage Detection Using Novel Experimental Methods" (abstract only)

Society for Experimental Mechanics Conference
(Charlotte, NC, 01 October 2002) (Deadline: 01 Oct 2002) (Statement A)
"Composite Damage Detection Using Novel Experimental Methods"

The nondestructive evaluation (NDE) of complex composite structures often requires labor intensive, expensive methods due to multiple failure modes, difficulty detecting damage, and the large scale of the structures. Conventional NDE methods have been fairly successful but can be improved by unifying conventional technologies with more mature concepts. In this work, the technology developed in the infrared camera industry is capitalized on and combined with concepts of ultrasound to produce an inspection tool with a wide angle of view that can reproduce video images of damage in composite structures in real time. Benefits are increased speed and intuitive interpretation of results.