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ABSTRACT 
 
 
 
This thesis presents a fully coupled, quasi-3D analysis of rotor blade flutter that 

can accommodate forward flight conditions.  The rotor blade is modeled as a uniform 

beam, taking the average characteristics of a real blade between 20% and 90% of its 

length.  Applying Rayleigh’s method, the first few bending and torsion normal mode 

shapes and natural frequencies are determined, and then adjusted for the rotating case.  

With this data, force and moment equations of motion are developed using Lagrange’s 

equation along with a normal mode analysis.  Theodorsen coefficients are calculated over 

a range of forward velocities (input as reduced frequencies) for a specified number of 

elements along the blade model.  Incorporating these coefficients into the equations of 

motion, a square matrix is generated from which complex eigenvalues can be derived.  

These eigenvalues provide the aeroelastic natural frequencies and damping coefficients 

for each coupled mode.  The forward velocity at which one of the modes produces a 

positive damping coefficient gives the value of reduced frequency for the flutter point.  

The resulting forward speed and blade tip speed can then be determined. 
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I. INTRODUCTION 

A. INTRODUCTION 

The conventional method for designing a rotor blade to be free of flutter 

throughout the helicopter’s flight regime is to design the blade so that aerodynamic center 

(AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the 

quarter-chord.  This practice pays off by decoupling the equations used in two-

dimensional unsteady aerodynamic theory.  While this assures freedom from flutter, it 

adds constraints on rotor blade design not usually followed in fixed wing design.  A blade 

designed with the CG, EA and AC coincident at the quarter chord is heavier than one free 

of that restriction.  It also, if strictly followed, rules out use of a flap that causes the AC to 

move with flap angle.  In addition, it restricts use of camber that moves the AC aft [Ref. 

1].  

Loewy’s [Ref. 2] 2-D unsteady aerodynamic theory, as amended by Jones and 

Rao [Ref. 3] and Hammond [Ref. 4], provides a useful tool for examining blade flutter in 

a hover.  Extension of their work to a helicopter in forward flight presents a formidable 

mathematical challenge, and thus, at present, there is no accepted theory to completely 

analyze blade flutter in forward flight.  Currently, to meet forward flight blade flutter 

requirements the rotorcraft manufacturer must rely on: (1) a quasi-fixed wing blade 

flutter analysis, which does not account for the unsteady contribution of the wake below 

the rotor; and (2) costly rotor whirl tests at normal and over-speed conditions that, while 

providing information in regard to blade flutter, do not accurately simulate either blade 

dynamics or unsteady aerodynamics in forward flight. 

However, closer examination of the problem reveals that it is possible to make 

several simplifying assumptions that make the forward flight flutter problem tractable.  In 

particular, it is assumed that at the onset of flutter oscillations begin to build up prior to 

the blade reaching a critical azimuth position, then decay as the blade moves beyond this 

point.  Shipman and Wood [Ref. 5] provide the two-dimensional basis for this three-

dimensional analysis.  This thesis will follow the analysis of Shipman and Wood, using 

Theodorsen’s lift deficiency function (2-D approach), and further expand the theory to 
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encompass full blade-length dynamics (3-D effects).  A numerical example using UH-60 

blade data is included as a means of illustration and validation. 

B. BACKGROUND 

“Main and tail rotor blades of the A.T.H. have been 
designed so that center of gravity, elastic axis, and aerodynamic 
center are coincident.  Also, the control system for the main rotor 
is stiff with high internal damping.  No main or tail rotor blade 
flutter has been experienced with earlier model helicopters 
possessing these design features. 

Main and tail rotor blades for the HSS-2, which are the 
same as those of the A.T.H., have been installed on Sikorsky whirl 
stands, and tested at maximum design-limit speeds.  Main rotor 
blades were tested for power-on and power-off conditions.  Tail 
rotor test conditions were power-on and power-off.  Observation of 
blades during these tests indicated no flutter or divergence at 
maximum operating conditions.” [Ref. 6] 

This statement, from the 1960 Sikorsky Report No. 50131 for the Advanced 

Tactical Helicopter, is representative of the current methods for ascertaining freedom 

from flutter for new helicopter acquisitions.  Theoretical calculations consist of a 2-D 

flutter analysis of the blade tip as if it was a fixed wing, and whirl stand tests involve 

significant expense.  Much effort has been expended in the last century to improve flutter 

prediction and minimize the cost in time and money spent on whirl stand tests.  The 

following paragraphs are a review of some of the significant work that has advanced the 

study of flutter and provided methods of solving the flutter problem. 

1.  Theodorsen and Loewy 

In 1936, Theodorsen [Ref. 7] made the flutter problem somewhat tractable with 

certain simplifying assumptions.  He considered a wing of infinite aspect ratio, 

encountering small oscillations at a constant velocity through an incompressible, non-

viscous fluid.  By using these assumptions, the forces and moments could be determined 

from 2-D potential flow theory.  In addition, instead of using the actual mass and 

geometry distributions, he assumed that the results could be conservatively obtained for a 

unit span of the wing.  Using the nomenclature found in Scanlan and Rosenbaum [Ref. 

8], and excluding terms associated with an aileron, the unsteady force and moment per 

unit span are given by 
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3 2
h h

h 1L b L L a L
b 2α
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4 2
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where 

( )h
2iL 1 C k
k

= −  

( )1 2i 1 iL 1
2 k 2 kα

  = − + −    
C k  

h
1M
2

=  

3 iM
8 kα = −  

The term C(k) is Theodorsen’s well-known lift deficiency function defined by 

(2)
1

(2) (2)
1 0

HC(k)
H iH

=
+

 

where  is the Hankel function of the second kind of order n evaluated at 

reduced frequency k = ωb/V.  The force and moment equations take into account both 

pitch (torsion) and plunge (flapping) motion, and include circulatory and non-circulatory 

terms.  It is in the circulatory terms that the lift deficiency function is defined. 

(2)
n nH J i= − nY

 Inherent in Theodorsen’s 2-D thin airfoil theory is the assumption that the wake is  

carried downstream to infinity by the free-stream airflow [Ref. 9].  For work in rotor 

blade flutter, this assumption presents problems, since the rotor blade sections may 

encounter the shed wake from previous blades as well as the reference airfoil.  Loewy 

[Ref. 2] recognized this problem and developed a 2-D model for the hover case that 

accounted for the effects of previously shed wakes.  The wakes were modeled as a series 
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of planar 2-D vortex sheets separated by a distance ‘h’ that was dependent on the induced 

velocity through the rotor disk and the number of rotor blades.  Loewy then developed a 

modified lift deficiency function that could be used in conjunction with the force and 

moment equations.  This modified lift deficiency function is defined as 

 
(2)
1 1

(2) (2)
1 0 1 0

( ) 2 ( ) ( , , )( , , )
( ) ( ) 2[ ( ) ( )] ( , , )

H k J k W k m hC k m h
H k iH k J k iJ k W k m h

+′ =
+ + +

 

where 

( )2

1( , , )
1

kh
i mb

W k m h
e e π

=
−

 

and is evaluated at reduced frequency (k), wake spacing (h = 2πV/bQΩ) and frequency 

ratio (m = ω/Ω).  Note that as ,  W  and . h → ∞ 0→ ( ) ( )C k C k′ →

2.  Shipman and Wood 

In 1971, Shipman and Wood [Ref. 5] examined the unsteady aerodynamics acting 

on an advancing blade in steady-state level flight.  The basic assumptions of their work 

are as follows: 

1. Two-dimensional, inviscid, incompressible potential flow. 
2. Respective layers of the wake are two-dimensionalized and treated as parallel 

horizontal sheets. 
3. In forward flight, each blade of the rotor will respond in the same manner as 

every other blade. 
4. The most critical azimuth position of the blade in forward flight for the onset 

of flutter is at ψ = 90°. 
5. At the onset of blade flutter, oscillations will begin to build up prior to the 

blade reaching the critical azimuth position, and these oscillations will decay 
as the blade moves beyond the critical azimuth position. 

At a specified radial location r on the blade, the local tangential velocity is given 

by 

( )tU r r Vsin= Ω + ψ  

If it is assumed that the flutter speed for this blade segment is such that 

( )FLU r r< Ω + V  
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then during each blade revolution the blade segment at radius ‘r’ will experience 

velocities which will increase to the flutter speed and beyond, then return through the 

flutter point to lower airspeeds.  Extending this concept to both blade azimuth position 

and radial position, one can observe that the blade tangential velocity at a given radial 

position will exceed the flutter speed in some region of rotor azimuth position if: 

( )FLVsin U r rψ > −Ω  

This flutter region is illustrated in Fig. 1.   

 
Figure 1.   Unstable Region on Advancing Blade 

It should be noted that all points within the shaded region of Fig. 1 experience 

negative damping.  This negative damping when combined with transient oscillations in 

the blade and will cause blade motion to grow.  Also, in the region ψ ≤ π/2 - ∆ψFL, the 

damping will decrease as ψ approaches (π/2 - ∆ψFL), whereas in the region ψ ≥ π/2 + 

∆ψFL, damping will be positive and will increase such that blade transients tend to die 

out. 

Consider the effect of this variation in damping on an outboard portion of the 

advancing blade.   It is expected that damping would decrease as the blade approaches ψ 

= 90° and the amplitude of oscillations would build up.  Conversely, as the blade 

advanced beyond ψ = 90°, damping would increase, and there would be a corresponding 

decrease in blade vibratory amplitude.  This build-up and decay of blade amplitude would 

result in a distribution of shed vorticity as shown by Fig. 2.   Here, we observe that time-

wise variations in amplitude of blade vibrations have resulted in space-wise variations in 
5



shed vorticity.  Since we have assumed steady-state flight, each blade would shed similar 

segments of vorticity for each revolution.  These vortex segments constitute the wake that 

will be treated in this analysis. 

 
Figure 2.   Distribution of Shed Vorticity in Unstable Region 
Based on the foregoing, the bound vorticity on the airfoil can be expressed as the 

product of a function of chord-wise position, a decay function, and a harmonic function 

of time1.  We write the incremental bound vorticity as 

( ) ( ) ( )φ+ωξγ=γ ti
aa efx 0  

where f(ξ0) is an assumed decay function centered about ξ0 = 0.  The limiting case of 

constant-strength shed vorticity such as considered by Theodorsen [Ref. 7] and Loewy 

[Ref. 1] for their analyses, is simply achieved by taking f(ξ0 ) = 1.  

When the inflow velocity through the rotor is small, the shed vorticity remains 

close to the rotor and the wakes shed from each blade during several previous passes as 

well as the present pass must be considered.   The build-up and decay of vorticity occurs 

within a double azimuth angle on either side of ψ = 90°.   The solid lines of Fig. 3 

indicate this region of the wake.  In this region the azimuth angle between a shed vortex 

filament and the reference blade may be ignored.  The tip does not move very far from 

the vertical plane shown in Fig. 3 and so its path may be taken to lie in this plane.   

                                                 
1 W. P. Jones [Ref. 10] first treated the case of an oscillating airfoil where the strength of the airfoil’s 

position was allowed to grow or decay exponentially with time. As the buildup or decay rate approached 
zero, Jones’ lift deficiency function approached that of Theodorsen [Ref. 6]. 
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Figure 3.   Development of Skewed Helical Wake 

Combining the vorticity segments given in Fig. 2, the resulting wake pattern is 

shown in Fig. 4.  With the mathematical model defined, the problem now is to determine 

the pressure difference across the airfoil due to the vorticity shed in the wake, and 

consequently to determine the unsteady lift and moment acting on the airfoil. 

 
Figure 4.   2-D Wake Model for Forward Flight 
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Shipman and Wood developed their equation for the unsteady forces in forward 

flight that are analogous to Theodorsen and Loewy, but modified the lift deficiency 

function to account for the helicopter’s forward speed (advance ratio) and the build-up 

and decay function associated with the advancing blade illustrated in Fig. 2.  The forward 

flight lift deficiency function is defined by 

[ ]
( ) [ ]

(2)
1 2 4 1

1 (2) (2)
1 0 3 1 0

( ) ( ) ( ) 2 ( ) ( , , ) ( , , )
( , , )

( ) ( ) ( ) 2 ( ) ( ) ( , , ) ( , , )
H k F k F k J k W k h m W k h m

C k h m
H k iH k F k J k iJ k W k h m W k h m

+ ∆ + ∆ + + ∆
=

+ +∆ + + + ∆
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∫
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where f(y) is the assumed decay function.  Note that as , and , 

, and when V , C k . 

h → ∞ s → ∞
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II. THEORETICAL DEVELOPMENT 

A.  A FLUTTER THEORY FOR FORWARD FLIGHT 

Shipman and Wood, using the theory described in the previous section derived an 

equation analogous to Theodorsen and Loewy that accounted for the effects of forward 

flight and a shed skewed helical wake.  However, evaluation of some of the integrals 

required for the ∆F and ∆W terms is extremely difficult.  If the view is taken that the 

Theodorsen method, which neglects the effect of the shed wakes, is just a first-order 

approximation to the rotary-wing flutter problem, then use of the Theodorsen lift 

deficiency function should yield suitable first-order results.  Therefore, this thesis will 

rely on Theodorsen’s lift deficiency function, while following the methods of Shipman 

and Wood in modeling forward flight. 

1.  Mode Shapes and Natural Frequencies 

Blade bending frequencies and mode shapes used in this analysis were determined 

by a simplified method by assuming a uniform stiffness and mass distribution along the 

blade.  A more exact and detailed analysis would be required to account for such details 

such as local changes in stiffness and mass distribution due to blade features such as 

doublers near the blade root and outboard blade balance weights near the tip.  While these 

details would be desired for an actual blade design, they can be viewed as second order 

effects and not necessary for the first order flutter analysis. 

For the simplified model, the geometric and inertial properties of the subject blade 

are averaged between 20% and 90% of its length.  The Fourier-based solution of the 

pinned-free uniform beam from Young and Felgar [Ref. 11] are applied to determine the 

non-rotating mode shapes: 

( )( )n n
1y cosh(r) cos(r) A sinh(r) sin(r)
2

= + − +  

where An = 1.000777, 1.000001 and 1.0 for the first three bending modes.  Then the 

method given by Den Hartog [Ref. 12] for determining non-rotating natural frequencies 

is applied:   

9



xx
n n 4

EIa
R

ω =
µ

 

where an = 15.4182, 49.9649 and 104.2477 for the first three bending modes, and µ is the 

mass per unit length.   

Given the natural frequencies, the rotational velocity of the rotor head, and the 

non-rotating mode shapes, Yntema [Ref. 13] is called on to supply the rotating natural 

frequencies.  Figures 5 through 7, taken from Yntema’s report, compares rotating and 

non-rotating mode shapes for the first three bending modes of a pinned-free beam to 

validate the assumption that the non-rotating mode shape is a close approximation of the 

rotating mode shape. 

 

 
Figure 5.   Rotating and Non-Rotating Mode shapes for the First Bending Mode 
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Figure 6.   Rotating and Non-Rotating Mode shapes for the Second Bending Mode 

 
Figure 7.   Rotating and Non-Rotating Mode Shapes for the Third Bending Mode 
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Yntema notes that an exact value for the nth bending frequency of a beam rotating 

at any rotational speed, Ω, can be found if the nth natural bending mode shape is known 

for this value of rotational speed.  He obtains his frequency equation by equating the 

kinetic energy at zero displacement to the potential energy of both the bending and 

centrifugal forces at maximum displacement for vibration perpendicular to the plane of 

rotation. 

n

l l2 2
n 1 n2 0 0

R l l2 2
n n0 0

EIy dx T y dx

my dx my dx

′′ ′
ω = +∫ ∫

∫ ∫
   (1) 

where n refers to mode of vibration and 

( )l

1 x
T e m= η +∫ dη

2

n
e

 

He goes on to point out that while the rotating mode shape is unknown, a close 

approximation to the rotating natural frequency can be obtained by making use of 

Rayleigh’s Principle, and using the non-rotating mode shape in equation (1).  The report 

states that the non-rotating mode shape is consistent with the constraints of the system (in 

this case a pinned-free beam).  If the nth mode of the non-rotating mode shape, yn, is 

substituted into equation (1), the first term becomes exactly the square of the bending 

frequency of the non-rotating beam.  By denoting the ratio in the second term by Kn, a 

Southwell coefficient, the form of the frequency equation becomes: 

n n

2 2
nR NR

Kω =ω + Ω    (2) 

To account for blade offset, e, subdivide Kn into two independent parts: 

nn 0 1K K K= +    (3) 

where K0n  is referred to as the zero-offset Southwell coefficient and K1n  is referred to as 

the offset-correction factor for the Southwell coefficient.  As is frequently done, it is 

convenient to write the square of the non-rotating frequency in terms of a non-rotating-

beam frequency coefficient, an, and the mass and stiffness of the beam as: 

n

2 2 0
NR n 4

0

EIa
m l

ω =    (4) 

12



Combining equations (2), (3) and (4) yield: 

( )n n n n

2 2
R NR 0 1K K eω =ω + + Ω2  

Yntema’s report [Ref. 13] gives charts that provide an, K0n and K1n which, in 

conjunction with the mass and stiffness of the beam at the root, the length of the beam, 

the hinge offset, and the rotational speed, permit rapid estimation of the first three 

bending frequencies of rotating beams with hinged or cantilevered root-end support. As 

previously noted, once the frequencies have been found, the rotating beam mode shapes 

can then be approximated by non-rotating mode shapes which are defined by the Fourier-

based solutions contained in Young and Felgar [Ref. 11]. 

The next problem is to determine the mode shapes and frequencies for the 

uniform beam blade model in the torsional case.  For this, Den Hartog [Ref. 13] provides 

a relatively simple solution.  Given that the torsional stiffness along the beam is constant, 

the torsional mode shapes are given by 

n

1n r
2y sin

R

  − π    =
 
 
 

 

The non-rotating torsional natural frequencies are given by 

NRn ' 2
1 Gn
2 I Rα

 ω = − π 
 

J

2

 

Bramwell [Ref. 14], gives the exact solution for rotating natural frequencies in the 

torsional case as 

n n

2 2
R NRω =ω + Ω  

 

2.  Normal Mode Analysis 

With the rotor blade free vibration problem solved, the bending deflection may be 

defined as  

13



( ) ( ) (
N

n n
n 1

h x, t f x q t
=

=∑ )

)

 

where fn(x) is the characteristic function (mode shape) for the nth vertical bending mode 

of the rotor blade.  The quantities qn(t) can be considered as weighting functions for each 

mode that contributes to the deflection.  They are called the normal coordinates since 

they can be shown to reduce the kinetic and potential energy expressions to sums of 

squares of the coordinates with no cross product terms. 

The corresponding torsional deflection of the rotor blade can be written in terms 

of the blade torsion modes as: 

( ) ( ) (
N

n n
n 1

x, t F x q t
=

α =∑  

where Fn(x) is the characteristic function of the nth torsional mode of the rotor blade and 

qn(t) is the corresponding normal coordinate.  Consider the five-degree of freedom (DOF) 

case with three bending modes and two torsion modes.  The bending and torsional 

deflections can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3h x, t h t f x h t f x h t f x= + +  

and 

( ) ( ) ( ) ( ) ( )1 1 2 2x, t t F x t F xα = α + α  

where 

f1(x) = 1st vertical bending mode 
f2(x) = 2nd vertical bending mode 
f3(x) = 3rd vertical bending mode 
F1(x) = 1st torsion mode 
F2(x) = 2nd torsion mode 

Now all the tools are in place to begin the detailed flutter analysis, which is the 

combination of Lagrange’s equation with Theodorsen’s work to provide the equations of 

motion. 
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3.  Lagrange and The Equations of Motion 

Lagrange’s equation is given as: 

n
n n n n

d T T U D Q
dt q q q q
 ∂ ∂ ∂ ∂− + + = ∂ ∂ ∂ ∂ 

 

where T ≡ kinetic energy, U ≡ potential energy, D ≡ dissipation function, and Qn ≡ 

generalized force.  For the five DOF case, 

1 2

11 12 21

22 31 32

2 2 2 2
1 1 2 2 3 3 1 2

1 1 1 2 2 1

2 2 3 1 3 2

1 1 1 1 1T M h M h M h I I
2 2 2 2 2
S h S h S h

S h S h S h

α α

α α α

α α α

= + + + α +

+ α + α + α

+ α + α + α

2α

 

1 2

1 1 2 2

2 2 2 2 2
1 h 1 2 h 2 3 h 3

2 2 2 2
1 2

1 1 1U M h M h M
2 2 2

1 1I I
2 2α α α α

= ω + ω + ω

+ ω α + ω α

3

2h
 

3 31 1 2 2

1 1 1 2 2 2

2 22 2 2 2
3 h h 31 h h 1 2 h h 2

2 2 2 2
1 2

M g hM g h M g h
D

2 2 2
I g I g

2 2
α α α α α α

ωω ω
= + +

ω ω
ω α ω α

+ +
ω ω

ω

25 2

35 2

 

and the generalized forces including aerodynamic terms are defined as: 

( )
( )
( )
( )
( )

1

2

3

1

2

2
h 11 1 12 2 13 3 14 1 15 2

2
h 21 1 22 2 23 3 24 1

2
h 31 1 32 2 33 3 34 1

2
41 1 42 2 43 3 44 1 45 2

2
51 1 52 2 53 3 54 1 55 2

Q A h A h A h A A

Q A h A h A h A A

Q A h A h A h A A

Q A h A h A h A A

Q A h A h A h A A
α

α

= πρω + + + α + α

= πρω + + + α +

= π

α

ρω + + + α +

= π

α

ρω + + + α +

= π

α

ρω + + + α + α

 

The expressions for aerodynamic terms that couple the modes together and incorporate 

Theodorsen’s lift deficiency function are given as 
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      (5) ( )l 22
11 1 h0

A b f x L =  ∫ dx

dx

dx

( ) ( )l 2
12 1 2 h0

A b f x f x L= ∫  

( ) ( )l 2
13 1 3 h0

A b f x f x L= ∫  

( ) ( )l 3
14 1 1 h0

1A b f x F x L a L
2α dx  = − +    

∫  

( ) ( )l 3
15 1 2 h0

1A b f x F x L a L
2α

  = − +    
∫ dx

dx

dx

 

( ) ( )l 2
21 2 1 h 120

A b f x f x L dx A= =∫  

( )l 22
22 2 h0

A b f x L =  ∫  

( ) ( )l 2
23 2 3 h0

A b f x f x L= ∫  

( ) ( )l 3
24 2 1 h0

1A b f x F x L a L
2α

  = − +    
∫ dx  

( ) ( )l 3
25 2 2 h0

1A b f x F x L a L
2α

  = − +    
∫ dx

A

A

dx

 

( ) ( )l 2
31 3 1 h 130

A b f x f x L dx= =∫  

( ) ( )l 2
32 3 2 h 230

A b f x f x L dx= =∫  

( )l 22
33 3 h0

A b f x L =  ∫  

( ) ( )l 3
34 3 1 h0

1A b f x F x L a L
2α

  = − +    
∫ dx  

( ) ( )l 3
35 3 2 h0

1A b f x F x L a L
2α

  = − +    
∫ dx  
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( ) ( )l 3
41 1 1 h h0

1A b F x f x M a L
2

dx  = − +    
∫  

( ) ( )l 3
42 1 2 h h0

1A b F x f x M a L
2

dx  = − +    
∫  

( ) ( )l 3
43 1 3 h h0

1A b F x f x M a L
2

dx  = − +    
∫

( ) ( )
2

l

44 h0
A b a L

24
1 h

1 1F x M a L M
2 2α α dx

  + +  = − + +  
 

      
∫

( ) ( ) ( )
2

l 4
45 h0

A b a L
 + +  

  
∫ 1 2 h

1 1F x F x M a L M
2 2α α

  = − + +   
dx  

( ) ( )l 3
51 2 1 h h0

1A b F x f x M a L
2

  = − +    
∫ dx  

( ) ( )l 3
52 2 2 h h0

1A b F x f x M a L
2

dx  = − +    
∫  

( ) ( )l 3
53 2 3 h h0

1A b F x f x M a L
2

dx  = − +    
∫  

( ) ( ) ( )
2

l 4
54 2 1 h h 450

1 1A b F x F x M a L M a L dx A
2 2α α

    = − + + + +         
∫ =  

( ) ( )
2

l 24
55 2 h h0

1 1A b F x M a L M a L
2 2α α

     = − + + + +           
∫ dx

x

dx

dx

 

The generalized masses of the three bending modes and two torsion modes can be 

written as: 

( ) ( )l 2
1 10

M m x f x d =  ∫  

( ) ( )l 2
2 20

M m x f x =  ∫  

( ) ( )l 2
3 30

M m x f x =  ∫  
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( ) ( )
1

l 2
10

I I x F xα α  =  ∫ dx

dx

dx

 

( ) ( )
2

l 2
20

I I x F xα α  =  ∫  

The coupled static unbalance terms are defined as: 

( ) ( ) ( )
11

l

1 10
S S x f x F xα α= ∫  

( ) ( ) ( )
12

l

1 20
S S x f x F x dxα α= ∫  

( ) ( ) ( )
21

l

2 10
S S x f x F x dxα α= ∫  

( ) ( ) ( )
22

l

2 20
S S x f x F x dxα α= ∫  

( ) ( ) ( )
31

l

3 10
S S x f x F x dxα α= ∫  

( ) ( ) ( )
32

l

3 20
S S x f x F x dxα α= ∫  

First it is noted that the kinetic energy equation is only a function of the derivative 

of the generalized displacement (  or ).  Thus, Lagrange’s equation reduces to:  nh nα

n
n n n

d T U D Q
dt q q q
 ∂ ∂ ∂+ + = ∂ ∂ ∂ 

 

Applying Lagrange’s equation to each of the five DOFs yields the following five 

equations: 

1 1

11 12 1 1

2
1 h h2

1 1 1 2 1 h 1 1 h

M g
M h S S M h h Qα α

ω
+ α + α + ω + =

ω
 

2 2

21 22 2 2

2
2 h h2

2 2 1 2 2 h 2 2 h

M g
M h S S M h h Qα α

ω
+ α + α + ω + =

ω
 

3 3

31 32 3 3

2
3 h h2

3 3 1 2 3 h 3 3 h

M g
M h S S M h h Qα α

ω
+ α + α + ω + =

ω
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1 1 1

1 11 21 31 1 1

2
2

1 1 2 3 1 1

I g
I S h S h S h I Qα α α

α α α α α α

ω
α + + + + ω α + α =

ω 1α  

2 2 2

2 12 22 32 2 2

2
2

2 1 2 3 2 2

I g
I S h S h S h I Qα α α

α α α α α α

ω
α + + + + ω α + α =

ω 2α

n ,

 

If simple harmonic motion is assumed, that is:    and 

 and the expressions for Q

2
n nh h= −ω , n nh i h= ω , 2

n n ,α = −ω α

n iα = ωα hn and Qαn are substituted into the equations of 

motion, the results are: 

( ) ( ) ( )

( ) ( )

1

1

11 12

2
h

11 1 1 h 1 12 2 13 3

14 1 15 2

A M M 1 ig h A h A h

A S A S 0α α

 ω 
 πρ + − + + πρ + πρ ω   

+ πρ + α + πρ + α =

 

( ) ( ) ( )

( ) ( )

2

2

21 22

2
h

21 1 22 2 2 h 2 23 3

24 1 25 2

A h A M M 1 ig h A h

A S A S 0α α

 ω 
 πρ + πρ + − + + πρ ω   

+ πρ + α + πρ + α =

 

( ) ( ) ( )

( ) ( )

3

3

31 32

2
h

31 1 32 2 33 3 3 h 3

34 1 35 2

A h A h A M M 1 ig h

A S A S 0α α

 ω 
 πρ + πρ + πρ + − +  ω   

+ πρ + α + πρ + α =

 

( ) ( ) ( )

( )
11 21 31

1

1 1 1

41 1 42 2 43 3

2

44 1 45 2

A S h A S h A S h

A I I 1 ig A

α α

α
α α α

πρ + + πρ + + πρ +

 ω 
 + π 0

α

ρ + − + α + πρ α = ω   

 

( ) ( ) ( )

( )
12 22 32

2

2 2 2

51 1 52 2 53 3

2

54 1 55 2

A S h A S h A S h

A A I I 1 ig

α α

α
α α α

πρ + + πρ + + πρ +

 ω 
 +π 0

α

ρ α + πρ + − + α = ω   
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The five equations to the flutter problem can be written in matrix form as  

           (6) 

[

( )
[

( )
[

( )

11 121

1

21 222

2

31 323

3

11

11 1

2
12 13 14 15h

1 h

22 2

2
21 23 24 25h

2 h

33 3

2
31 32 34 35h

3 h

41 4

A M

A A A S A S
M 1 ig

A M

A A A S A
M 1 ig

A M

A A A S A S
M 1 ig

A S A

α α

α α

α α

α

πρ +

 πρ πρ πρ + πρ +ω 
− +  ω   

πρ +

πρ πρ πρ + πρ +ω 
− +  ω   

πρ +

πρ πρ πρ + πρ +ω 
− +  ω   

πρ + πρ
( )

S

( )

1

21 31 1

1 1

2

12 22 32 2

2 2

1

2

3

1

2
44

2
2 43 45

55

2
51 52 53 54

h
h
h

A I

S A S A
I 1 ig

A I

A S A S A S A
I 1 ig

α

α α α
α α

α

α α α α
α α

 
 
 
 
 
 
 
 
 
 
    
  α
  α πρ + 
 + πρ + πρω  − +  ω    

πρ + 
 

πρ + πρ + πρ + πρ  ω 
− +   ω     

0



 = 

 
 

 

4.  Eigenvalues  

Equation (6) is a complex eigenvalue problem.  In order to solve the flutter 

problem, it is convenient to rewrite the problem in the form (  by arbitrarily 

letting 

)A IZ X 0− =

( )1

2

Z 1αω 
= + ω 

ig , 

which results in 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

A Z A A A A
A A Z A A A

0A A A Z A A
A A A A Z A
A A A A A Z

−
−

=−
−

−
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The determinant elements are defined as: 

  1

1

2

11
11

1 h

AA 1
M

α ω πρ= +   ω  
   1

1

2

12
12

1 h

A
M

α ω πρ=    ω  
A  (7) 

1

1

2

13
13

1 h

AA
M

α ω πρ=    ω  
 11 1

1

2

14
14

1 h

A S
A

M
α α πρ + ω 

=    ω  
 

12 1

1

2

15
15

1 h

A S
A

M
α α πρ + ω 

=    ω  
 

1

2

2

21
21

2 h

AA
M

α ω πρ=    ω  
 1

2

2

22
22

2 h

AA 1
M

α ω πρ= +    ω  
 

1

2

2

23
23

2 h

AA
M

α ω πρ=    ω  
 21 1

2

2

24
24

2 h

A S
A

M
α α πρ + ω 

=    ω  
 

22 1

2

2

25
25

2 h

A S
A

M
α α πρ + ω 

=    ω  
 

1

3

2

31
31

3 h

AA
M

α ω πρ=    ω  
 1

3

2

32
32

3 h

AA
M

α ω πρ=    ω  
 

1

3

2

33
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It should be noted that the coefficients of the characteristic equation of the 

(A IZ− )  matrix (a quintic in Z) are complex, due to Theodorsen’s lift deficiency 

function, and thus the eigenvalues will be complex.  The coupled frequency of oscillation 

(ω) for each eigenvalue can be found from the real part of Z, since the first torsional 

natural frequency is already known: 

( )
1

i
Re Z

αω
ω =  

The damping coefficient required for flutter to exist (g) for each eigenvalue can 

be found from the imaginary part of Z: 

( )
1

2

i
ig Im Z

α

 ω=   ω 
 

If g is negative for the reduced frequency chosen, then damping must be 

decreased in order to obtain flutter.  Negative values of g represent the stable, or non-

flutter, condition.  If g is positive, then damping must be increased to be at the flutter 

point.  Positive values of g represent the unstable, or flutter condition.  When a plot of g 

is made against 1/k (k being reduce frequency), there will be five curves corresponding to 

the variation of each eigenvalue as the reduced frequency varies.  Some of these curves 

will have only values of g that are negative.  These are the non-critical curves that 
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represent stable coupled modes and do not influence the flutter solution.  However, at 

least one curve will start with a negative value of g and then at some point cross the 

abscissa (1/k) to a positive value of g.  This curve is called the critical curve, and the 

value of 1/k where this curve crosses the abscissa represents the critical flutter speed, or 

flutter point.  The critical flutter speed is found from the relationship: 

FL
crit

bU
k
ω=  

where ω is found from the real part of the eigenvalue relationship described above for the 

critical curve evaluated at the reduced frequency that corresponds to the crossover point 

(kcrit).  Once the unstable mode is identified, results are commonly plotted as g vs. UFL. 
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III.  RESULTS 

A.  UH-60 BLADE EXAMPLE 

Using the data accumulated by NASA for Sikorsky’s UH-60, a sample numerical 

problem will now be presented. The UH-60’s blade is modeled as a uniform beam, 

incorporating the average geometric and inertial characteristics of the blade between 20% 

and 90% of its length.  The flutter determinant for the blade is repeatedly solved for 

multiple elements along the blade model, as well as a range of forward velocities, in the 

conventional manner to obtain the blade flutter speed [Ref. 8].  UH-60 blade parameters 

will be used in the sample problem in deference to the extensive database now available 

for this blade.  However, for the demonstration analysis the UH-60 blade will be 

modified to make it “flutter susceptible” by moving the chord-wise position of the blade 

CG aft while keeping its elastic axis at the quarter chord.  This also introduces flap 

torsion coupling, a desirable feature for a sample problem of this type. 

For the numerical example, the blade will be divided into radial segments in the 

usual manner with unsteady aerodynamics applied to the blade at each panel point.  The 

number of elements chosen has some effect on the accuracy of the solution, since the 

variation of velocity along the span must be adequately incorporated.  Through trial and 

error, it has been found that the change in flutter point as the number of elements exceeds 

50 is insignificant (<1%), while using only 5 or 10 elements can give variations as great 

as 10%. 

Physically, the method of solution in this thesis is equivalent to locking the blade 

at the 90-degree azimuth position and solving the flutter problem, similar to a fixed wing 

case with Theodorsen lift deficiency values, yet allowing radial velocity, and thus, 

reduced frequency, to vary with span as in the case of the tangential velocity of a rotor 

blade in forward flight, ψ = 90°. 
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The average characteristics of the H-60 rotor blade are given in Table 1 [Ref. 15].  

Scanlan and Rosenbaum [Ref. 8] state that any mode with a natural frequency greater 

than 1.2 times the frequency of the first torsion mode will not have a significant effect on 

the flutter point.  The third bending mode (>7.5Ω) and the second torsion mode (>11Ω) 

are both significantly outside this range.   

Table 1.   UH-60 Blade Characteristics 
PARAMETER VALUE UNITS 

M 0.00164 lb-s2/in2 

C 20.76 in 
Iα 0.037 lb-s2-in/in 
R 322 in 
E 15 in 

EA 25% chord  
CG Variable  
Ω 27.02 rad/s 

ΩR 725 ft/s 

Hence, only the first two flap-wise bending modes with natural frequencies of 

2.8Ω and 4.7Ω are incorporated in the flutter analysis together with one torsion mode, 

occurring at 4.3Ω.  The rotating natural frequencies of the uniform beam model are 

compared to that of the real blade in Table 2.  Note that the frequencies in each case are 

within 10% of the real values, giving confidence that the uniform beam model is 

sufficient for a first order approximation. 

Table 2.   Comparison of Rotating Natural Frequencies 
MODE BLADE MODEL UH-60 BLADE 

1st Bending 72.75 75.93 
2nd Bending 130.47 140.23 
1st Torsion 128.84 116.1 

With the mode shapes and natural frequencies calculated, the flutter analysis 

portion of the program yielded results for a range of velocities for each CG location 

specified, from the quarter chord aft to the ¾ chord.  After this analysis was conducted, it 

was done again, this time holding the forward velocity at zero and using the same tip 

velocity range as the forward flight case.  This effort simulates whirl-stand over-speed 

tests.  Figures 8 and 9 show the results of ω vs. UFL and g vs. UFL for both the forward 

velocity and over-speed cases with zero CG offset. 
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Figure 8.   CG Offset Zero, Forward Flight 
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Figure 9.   CG Offset Zero, Over-Speed 
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Note that the blade model is stable in both cases, with the natural frequencies 

remaining relatively constant, and the damping coefficients negative throughout the 

velocity range.  Incidentally, the velocity range plotted is equivalent to the forward flight 

airspeeds of 0 – 220kts (approximately), which is the published flight envelope for the 

UH-60, plus 40kts. 

Figures 10 through 21 show the progression of results, in the same format, as the 

CG is moved to the mid-chord position and subsequently aft to the ¾ chord position. 
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Figure 10.   CG Offset 0.5b, Forward Flight 
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Figure 11.   CG Offset 0.5b, Over-Speed 
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Figure 12.   CG Offset 0.75b, Forward Flight 
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Figure 13.   CG Offset 0.75b, Over-Speed 
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Figure 14.   CG Offset 0.85b, Forward Flight 
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Figure 15.   CG Offset O.85b, Over-Speed 
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Figure 16.   CG Offset 0.9b, Forward Flight 
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Figure 17.   CG Offset O.9b, Over-Speed 
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Figure 18.   CG Offset 0.95b, Forward Flight 
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Figure 19.   CG Offset O.95b, Over-Speed 
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Figure 20.   CG Offset 1.0b, Forward Flight 
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Figure 21.   CG Offset 1.0b, Over-Speed 
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B.  DISCUSSION OF RESULTS FOR UH-60 BLADE EXAMPLE 

From Figures 10 and 11, it can be seen that the first two coupled modes, 

corresponding to the first bending and torsion modes, begin to converge in frequency, 

causing one of the modes to become more stable while the other becomes less stable.  

The movement of the damping coefficient curves, show this stability, or instability: larger 

negative values equals increased stability, and vice-versa.  The first flutter point appears 

for the over-speed test at 1017ft/s tip speed, with the CG at 0.75b, or 62.5% chord.  The 

forward flight curve is stable at this point.  The forward flight condition remains stable 

until the CG is moved to the 0.9b position, or 70% chord.  The tip speed for this case is 

1054ft/s, corresponding to a forward flight velocity of 194kts.  Note that the flutter point 

for each test occurs at a lower tip speed, as the CG is moved further aft.  Table 3 provides 

a summary of the flutter points, for both the maximum forward flight velocity and 

maximum over-speed.  The forward flight column lists the tip speed and forward velocity 

of the flutter point, and the over-speed column lists the flutter point tip speed. 

 

Table 3.   Flutter Points 

CG Offset CG (% chord) Forward Flight Over-speed 

0.75b 62.5% - 1017fps 

0.85b 67.5% - 960fps 

0.90b 70.0% 1054fps / 194kts 937fps 

0.95b 72.5% 981fps / 151kts 917fps 

1.00b 75.0% 933fps / 123kts 893fps 
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IV. SUMMARY 

A.  CONCLUSIONS 

This thesis has presented a fully coupled, quasi-3D analysis of rotor blade flutter 

that can accommodate forward flight conditions.  The rotor blade is modeled as a uniform 

beam, taking the average characteristics of a real blade between 20% and 90% of its 

length.  Applying Rayleigh’s method, the first few bending and torsion normal mode 

shapes and natural frequencies are determined, and then adjusted for the rotating case.  

With this data, force and moment equations of motion are developed using LaGrange’s 

equation along with a normal mode analysis.  Theodorsen’s lift deficiency function is 

calculated over a range of forward velocities, or reduced frequencies, for a specified 

number of elements along the blade model.  Incorporating these coefficients into the 

equations of motion, a square matrix is generated from which complex eigenvalues can 

be derived.  These eigenvalues provide the aeroelastic natural frequencies and damping 

coefficients for each coupled mode.  The forward velocity at which one of the modes 

produces a damping coefficient of zero gives the value of reduced frequency for the 

flutter point.  The resulting forward speed and blade tip speed can then be determined. 

The results of this analysis appear to validate the methods used.  The UH-60 

model blade remains stable within a feasible forward velocity range (0 to 180kts) until 

the CG is moved aft of 70% chord.  As the CG is moved aft, two of the coupled modes, 

corresponding to the first torsion and first bending modes, converge on a single 

frequency, approximately 91.8rad/s.  As this convergence approaches, the mode 

corresponding to the first torsion mode becomes decreasingly stable, while the other 

becomes increasingly stable.  Once the modes converge sufficiently, due to CG location, 

the coupled first torsion mode rapidly becomes unstable in the characteristic ‘S-curve’ 

manner.  As a final indication of the validity of this analysis, the flutter point occurs at 

decreasing forward speeds as the CG is moved even further aft than the 70% chord point.  

The over-speed method of approximating forward flight flutter conditions, in contrast to 

the forward flight analysis presented above, seems to provide more conservative results. 
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The method presented in this thesis appears to be a valid and useful cost- and 

weight-saving tool for the rotor blade designer.  This relatively simple approach can 

provide vital information for designing whirl-stand as well as flight tests of newly 

developed rotor blades, without being excessively conservative.  The weight savings 

provided by allowing CG repositioning can be used to optimally weight the blade for 

better autorotative performance, or decreased design/weight/cost expenditures on blade 

damping.  Altogether, further development of pre-existing flutter theory and unification 

with the power of modern computers allows advanced prediction without extensive cost. 

B.  RECOMMENDATIONS 

Some of the simplifications made are not necessary, given the power and speed of 

modern computers.  It should be noted that the simplifications of uniform blade and 

Yntema’s method were used here to make possible rapid parametric studies.  For detailed 

analysis of an actual rotor blade, the blade frequencies and mode shapes can be more 

accurately determined by a transfer matrix approach, such as the Mykelstad and/or 

Holtzer methods.  In addition, the incorporation of more advanced lift deficiency 

functions, such as those developed by Loewy, and Shipman and Wood, which take into 

account the contributions of an unsteady wake, could further increase the accuracy of 

flutter prediction. 

Another area to consider is that compressibility effects are not taken into account 

in spite of the fact that, even in a hover, the tip speed of most rotor blades is well into the 

compressible region.  At high forward velocities, the tip speed often approaches Mach 1, 

and is likely to encounter transonic effects as well.  The incorporation of compressibility 

effects promises to be challenging, but is likely to increase the accuracy of prediction. 
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APPENDIX A. 3D BLADE FLUTTER PROGRAM 

A.  PROGRAM WALK-THROUGH 

A MATLABTM program was written to conduct the flutter analysis using a 

uniform beam model of a real blade.  MATLABTM provides the user with the ability to 

make calculations simultaneously for large multi-dimensional matrices, making it 

appropriate for this subject matter.  The steps of the program, along with an explanation 

of the methodology, follows: 

1.   Step 1 – User Input 

The program begins by clearing the workspace variables.  Then the user must 

choose the number of modes (3 or 5), the number of blade elements and the altitude (for 

air density variation).  The separation between the CG and EA (positive for CG aft of 

EA) and the estimated forward velocity range must also be chosen.  For the sample 

problem, a three-mode analysis was conducted over 100 blade elements at sea level. 

2.   Step 2 – Establish Blade Model Properties 

The UH-60 blade was modeled as a uniform beam.  The values chosen to 

represent the blade are the average values between 20% and 90% of the blade’s length.  

Properties needed for this analysis include the mass per unit length (µ), Young’s Modulus 

(E), the flap-wise (EIxx) and polar (Iα) mass moments of inertia, and torsional stiffness 

(GJ).  Throughout the program, the units of important quantities are denoted for 

clarification.  In addition, this step establishes important aspects of the UH-60 such as 

rotor speed and blade offset, as well as the location of the elastic axis (in percent semi-

chord from the mid-chord). 

3.  Step 3 – Calculate Mode Shapes and Natural Frequencies 

This step establishes the elastic and inertial properties of the uniform beam and 

displays them, for comparison to real blade properties.  First, the constants for the 

analysis are set.  The references for these constants are noted in the program itself, and 

explained in the section on theoretical development.  The beam is then divided into the 

user-specified number of elements, and the radii to the midpoints of the elements are 

calculated.  The midpoints are the locations where the 2-D calculations will be made.  
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The mode shapes for bending and torsion are then calculated and normalized to a 

maximum deflection of one and a positive initial slope.  These mode shapes are shown in 

Fig. 22.  A small ‘f’ denotes a bending mode and a capital ‘F’ denotes a torsion mode. 
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Figure 22.   Normal Bending and Torsion Mode Shapes 

The generalized mass for each mode is now calculated, using the mode shapes 

just obtained.  The integral for the generalized masses is approximated by a summation as 

in the following example: 

( ) ( ) ( )
p1 2

2 20
n 1

M m x f x dx df
=

 = =  ∑∫ 2 nµ  

where p is the number of elements and d is the length of each element.  Finally, the non-

rotating and rotating natural frequencies are calculated with the equations above and 

displayed for comparison with values from the real blade. 
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4.  Step 4 – Construct Matrices for Velocity Range 

The fourth step is the heart of the program.  This section begins the loop that 

calculates the matrix and its eigenvalues for each forward velocity.  The range of 

velocities is set by the user’s estimate and divided into 300 equally spaced velocities.  

This number seems to provide good resolution throughout the range of calculations.  

Next, a set of reduced frequencies is calculated using the semi-chord and the first torsion 

mode rotating natural frequency: 

1
tip

fwd

b
k

V R
αω

=
+ Ω

 

This frequency is used as an approximation to the actual coupled frequency that is 

expected to become unstable and is only used as a means to obtain a reasonable range of 

reduced frequencies. 

Following this, the static moment coupling terms must be calculated.  Again, the 

integral is approximated with a summation as follows: 

( ) ( ) ( ) ( ) ( ) ( )
12

p1

1 2 1 20
n 1

S S x f x F x dx S n f n F n dα α α
=

= =∑∫  

where p is the user-specified number of elements, and d is the length of each element. 

Now the program is set to begin iterative calculations.  For each step of forward 

velocity, Theodorsen coefficients are calculated for every element along the blade, 

according to the differing local velocities, and thus, reduced frequencies.  Arrays are 

created of reduced frequencies, lift deficiency functions, and coefficients, corresponding 

to the array of element midpoints.  Then, the matrix of integrals in equation set (5) is 

constructed as a set of summations in the same manner as previously noted.  The program 

variable for this matrix is ‘A’.  The ‘A’ matrix is then modified to incorporate the 

dimensional quantities of air density, generalized mass, and coupled static moment, as 

well as the factor π.  This matrix, denoted ‘Adim,’ is analogous to the matrix given in 

equation (6).  Finally, the ‘Adim’ matrix is ‘re-dimensionalized’ with the generalized 

masses and squared natural frequency ratios in order to generate eigenvalues of the 
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desired form.  The resulting matrix, ‘Abar’ in the program, is the final five by five, 

generalized forces and moments given in equation set (7). 

5.  Step 5 – Calculate Eigenvalues 

The user-specified number of modes must be accounted for before the 

eigenvalues can be calculated.  If the user picks five modes, the full matrix will be used, 

but this currently yields a result that has one eigenvalues with a negative real part, which 

corresponds to an imaginary frequency that is not physically permissible.  Therefore, the 

three-mode matrix must be used.  Luckily, no further calculations need be made to enact 

this solution.  A new matrix is formed from the 5 by 5 matrix by simply eliminating all 

terms with the subscripts 3 and 5, which correspond to the third bending mode and the 

second torsion mode, creating the appropriate 3 by 3 coupled matrix.  Conveniently 

enough, it is noted in Scanlan and Rosenbaum [Ref. 7] that any mode with a natural 

frequency greater than 1.2 times the frequency of the first torsion mode will not have a 

significant effect on the flutter point.  Both of the eliminated modes fall into this 

category. 

Finally, the eigenvalues are calculated using MATLABTM’s ‘eig’ command.  This 

command is executed without balancing in order to eliminate the possibility that a small 

value off the diagonal will be inordinately skewed in the balancing process.  The 

eigenvalues are then sorted according to their real part and broken down into coupled 

frequencies and damping coefficients as discussed above. 

6.  Step 6 – Display Results and Save Data   

The last step is to save and display the data in a useful manner.  Recall that the 

values of reduced frequency were obtained using the natural frequency of the first torsion 

mode.  However, the coupled frequency corresponding to the first torsion mode varies 

with velocity in a non-linear fashion.  To obtain the actual velocity for each point 

calculated, the range of reduced frequencies must be divided into the semi-chord and the 

range of coupled (1st torsion mode) frequencies. 

[ ]2
tip

tip

b
V

k
ω

  =    
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The frequencies and damping ratios are then plotted versus this velocity 

such that the user can view the flutter point (damping coefficient ‘g’ = 0), if any.  The 

data is also saved to a file for incorporation into a spreadsheet for further data analysis, as 

desired. 

   

B.  PROGRAM LISTING 
 
%  Program to find natural static & rotating  
% mode shapes & frequencies of a uniform beam 
%  Used to model the UH-60 rotor blade  
% (no aerodynamic effects taken into account) 
%  Following frequency determination, all effects  
% are taken into account to determine 
% the flutter point (g=0 for one mode) 
clear 
mode=3;    % input('5x5 (5) or 3x3 (3)?  '); 
p=100;                                           % input('How many elements?  '); 
alt=0;                                    % input('What altitude? (0, 5k, 10k) '); 
cgea=input('CG - EA separation?  '); 
mn=1;                                                  % input('Vfwd minimum? '); 
mx=901;                                              % input('Vfwd maximum? '); 
 
R=322; offset=15; chord=20.76;      % inches 
L=R-offset; e=offset/L;             % inches 
O=27.02;                             % Rotor Speed rad/s 
mu=0.00164167;                      % lbs^2/in^2 
E=10000000;                          % lb/in^2 
EIxx=2.27859e7; EIyy=7.71261e8;   % lbin^2 
I=(EIxx+EIyy)/E;                     % in^4 
Ia=0.037006386;                      % lbins^2/in  polar mass MOI about e.a. 
GJ=2.467909e7;                       % lbin^2 
 
a=-0.5;                     % non-dim elastic axis location measured from midchord 
b=chord/2;                  % Half chord length in inches 
if alt==10 
    rho=0.0017556/(12^4);     % 10000 ft % lbs^2/in^4 density of air 
elseif alt==5 
    rho=0.0020482/(12^4);       % 5000 ft 
else 
    rho=0.0023769/(12^4);       % Sea Level 
end 

% for rho = 0  AND  cg - ea = 0 : the natural frequencies are returned 
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asubn=[15.41820562 49.96486209 104.2476966];  % Hartog 
K0=[6.38 17.63 35.05]; K1=[9.18 26.02 52.2];                     % Yntema 
BnR=[3.926602 7.068583 10.21018];           % Young/Felgar Free-Supported 
An=[1.000777 1.000001 1];                           % Young/Felgar Free-Supported 
 
d=R/p;                          % length in inches of one element 
Salf=mu*d*cgea*b;              % Calculate the static moment of each element 
 
r(1)=0;                        % r is the vector of element edges in percent R 
for q=1:p 
    r(q+1)=q/p; 
end 
for n=1:p 
    mid(n)=(r(n+1)+r(n))/2;    % midpoints of elements 
end 
 
u=mid'*BnR;                    % This section calculates the bending mode shapes 
for n=1:3                      % According to Young and Felgar Supported-Free  
    for m=1:p                        
        h=u(m,n); 
        f(p+1-m,n)=(cosh(h)+cos(h)-An(n)*(sinh(h)+sin(h)))/2;  
        % divide by two to normalize max deflection to one 
    end 
end 
 
for n=1:3                      % This section normalizes mode shape  
    if f(1,n)<0                 % to all begin with a positive slope 
        h=-1*f(:,n);           % for display purposes 
        f(:,n)=h;   % (does not affect calculations) 
    end 
end 
 
for n=1:3                     % This section calculates the torsional mode shapes  
    for m=1:p                % According to Hartog (already normalized to 1) 
        F(m,n)=sin((n-.5)*pi*mid(m)); 
    end 
end 
 
figure(1)    % Plot of mode shapes 
plot(mid,f(:,1),mid,f(:,2),mid,f(:,3),mid,F(:,1),mid,F(:,2)) 
legend('f(1)','f(2)','f(3)','F(1)','F(2)') 
 
fSqr=f.*f;         % Calculate Generalized Mass for bending and torsion modes 
FSqr=F.*F; 
fMsqr=mu*d*fSqr; 
FMsqr=d*Ia*FSqr;  
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Gmass=sum(fMsqr); 
GTmass=sum(FMsqr); 
 
oN=asubn*sqrt(EIxx/(mu*R^4));  % Calculate natural non-rotating freqs 
oTN=[0.5 1.5 2.5]*pi*sqrt(GJ/(Ia*R^2)); 
oR=sqrt(oN.*oN+(K0+K1*e).*O^2);           % Calculate natural rotating freqs 
oTR=(O.^2+oTN.^2).^(1/2); 
W=[Gmass; oN; oR]'                    % Display bending results 
X=[GTmass; oTN; oTR]'                % Display torsion results 
 
Vfwd=linspace(mn,mx,300)*12;   % Set range of airspeeds for helicopter 
ktip=b*oTR(1)./(Vfwd+O*R);       % Define reduced frequency for tip 
 
for q=1:length(ktip)               % validate Theodorsen calculations 
    H1(q)=besselh(1,2,ktip(q));         % by comparing w/ F and -G plots 
    H0(q)=besselh(0,2,ktip(q)); % from prior works 
    C(q)=H1(q)/(H1(q)+i*H0(q)); 
    RE(q)=real(C(q)); 
    IM(q)=imag(C(q)); 
end 
figure(2)   % Plot Theodorsen lift deficiency function for our range 
semilogx(ktip,RE,ktip,-IM) 
legend('F','-G'); 
 
for n=1:3                            % Calculate static moments for mode coupling 
    for m=1:2 
        Sa(n,m)=sum(Salf*f(:,n).*F(:,m)); 
    end 
end 
 
pirho=pi*rho; 
oa1=oTR(1); 
for q=1:length(Vfwd)   % Run entire blade for range of values k at blade tip 
    for t=1:length(mid)     % Calc Theodorsen coeff’s for each element of blade 
        K(t)=(b*oa1)./(Vfwd(q)+(O*R*mid(p+1-t))); 
        H1(t)=besselh(1,2,K(t)); 
        H0(t)=besselh(0,2,K(t)); 
        C(t)=H1(t)/(H1(t)+i*H0(t));   % Theodorsen’s function 
        Lh(t)=(1-2*i*C(t)/K(t));    % Lift - plunge 
        La(t)=(0.5-2*i*(0.5+(1-i/K(t))*C(t))/K(t)); % Lift - pitch 
        Mh(t)=(0.5);     % Moment - plunge 
        Ma(t)=(3/8-i/K(t));    % Moment - pitch 
    end 
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% % % % % Calculate A matrix (Generalized Force Matrix) 
    A(1,1)=sum(d*Lh(:)*b^2.*f(:,1).^2);                % in^3 
    A(1,2)=sum(d*Lh(:)*b^2.*f(:,1).*f(:,2));                  % in^3 
    A(1,3)=sum(d*Lh(:)*b^2.*f(:,1).*f(:,3));                  % in^3 
    A(1,4)=sum(d*(La(:)-(0.5+a)*Lh(:))*b^3.*f(:,1).*F(:,1));  % in^4 
    A(1,5)=sum(d*(La(:)-(0.5+a)*Lh(:))*b^3.*f(:,1).*F(:,2));  % in^4 
    A(2,1)=A(1,2);                                              % in^3 
    A(2,2)=sum(d*Lh(:)*b^2.*f(:,2).^2);                       % in^3  
    A(2,3)=sum(d*Lh(:)*b^2.*f(:,3).*f(:,2));                  % in^3 
    A(2,4)=sum(d*(La(:)-(0.5+a)*Lh(:))*b^3.*f(:,2).*F(:,1)); % in^4 
    A(2,5)=sum(d*(La(:)-(0.5+a)*Lh(:))*b^3.*f(:,2).*F(:,2));  % in^4 
    A(3,1)=A(1,3); A(3,2)=A(2,3);                              % in^3 
    A(3,3)=sum(d*Lh(:)*b^2.*f(:,3).^2);                       % in^3 
    A(3,4)=sum(d*(La(:)-(0.5+a)*Lh(:))*b^3.*f(:,3).*F(:,1));  % in^4 
    A(3,5)=sum(d*(La(:)-(0.5+a)*Lh(:))*b^3.*f(:,3).*F(:,2));  % in^4 
    A(4,1)=sum(d*(Mh(:)-(0.5+a)*Lh(:))*b^3.*f(:,1).*F(:,1)); % in^4 
    A(4,2)=sum(d*(Mh(:)-(0.5+a)*Lh(:))*b^3.*f(:,2).*F(:,1));  % in^4 
    A(4,3)=sum(d*(Mh(:)-(0.5+a)*Lh(:))*b^3.*f(:,3).*F(:,1));  % in^4 
    A(4,4)=sum(d*(Ma(:)-(0.5+a)*(La(:)+Mh(:))+(0.5+a)^2*Lh(:)) 

*b^4.*F(:,1).^2);           % in^5 
    A(4,5)=sum(d*(Ma(:)-(0.5+a)*(La(:)+Mh(:))+(0.5+a)^2*Lh(:)) 

*b^4.*F(:,1).*F(:,2));      % in^5 
    A(5,1)=sum(d*(Mh(:)-(0.5+a)*Lh(:))*b^3.*f(:,1).*F(:,2));  % in^4 
    A(5,2)=sum(d*(Mh(:)-(0.5+a)*Lh(:))*b^3.*f(:,2).*F(:,2));  % in^4 
    A(5,3)=sum(d*(Mh(:)-(0.5+a)*Lh(:))*b^3.*f(:,2).*F(:,2));  % in^4 
    A(5,4)=A(4,5);             % in^5 
    A(5,5)=sum(d*(Ma(:)-(0.5+a)*(La(:)+Mh(:))+(0.5+a)^2*Lh(:)) 

*b^4.*F(:,2).^2);           % in^5 
  
% % % % % Incorporate pi, rho, generalized masses and MOI correction 
    Adim(1,1)=pirho*A(1,1)+Gmass(1);                          % lbs^2/in 
    Adim(1,2)=pirho*A(1,2);                                            % lbs^2/in 
    Adim(1,3)=pirho*A(1,3);                                            % lbs^2/in 
    Adim(1,4)=pirho*A(1,4)+Sa(1,1);                                    % lbs^2 
    Adim(1,5)=pirho*A(1,5)+Sa(1,2);                                    % lbs^2 
    Adim(2,1)=pirho*A(2,1);                                            % lbs^2/in  
    Adim(2,2)=pirho*A(2,2)+Gmass(2);                          % lbs^2/in 
    Adim(2,3)=pirho*A(2,3);                                            % lbs^2/in 
    Adim(2,4)=pirho*A(2,4)+Sa(2,1);                                    % lbs^2 
    Adim(2,5)=pirho*A(2,5)+Sa(2,2);                                    % lbs^2 
    Adim(3,1)=pirho*A(3,1);                                            % lbs^2/in 
    Adim(3,2)=pirho*A(3,2);                                            % lbs^2/in 
    Adim(3,3)=pirho*A(3,3)+Gmass(3);                         % lbs^2/in 
    Adim(3,4)=pirho*A(3,4)+Sa(3,1);                                    % lbs^2 
    Adim(3,5)=pirho*A(3,5)+Sa(3,2);                                    % lbs^2 
    Adim(4,1)=pirho*A(4,1)+Sa(1,1);                                    % lbs^2 
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    Adim(4,2)=pirho*A(4,2)+Sa(2,1);                                    % lbs^2 
    Adim(4,3)=pirho*A(4,3)+Sa(3,1);                                    % lbs^2 
    Adim(4,4)=pirho*A(4,4)+GTmass(1);                      % lbins^2 
    Adim(4,5)=pirho*A(4,5);                                            % lbins^2 
    Adim(5,1)=pirho*A(5,1)+Sa(1,2);                                    % lbs^2 
    Adim(5,2)=pirho*A(5,2)+Sa(2,2);                                    % lbs^2 
    Adim(5,3)=pirho*A(5,3)+Sa(3,2);                                   % lbs^2 
    Adim(5,4)=pirho*A(5,4);                                            % lbins^2 
    Adim(5,5)=pirho*A(5,5)+GTmass(2);                        % lbins^2 
     
% % % % % Manipulate A matrix to be eigenvalue friendly 
    Abar(1,1)=(Adim(1,1)/Gmass(1))*(oTR(1)/oR(1))^2;  
    Abar(1,2)=(Adim(1,2)/Gmass(1))*(oTR(1)/oR(1))^2; 
    Abar(1,3)=(Adim(1,3)/Gmass(1))*(oTR(1)/oR(1))^2; 
    Abar(1,4)=(Adim(1,4)/Gmass(1))*(oTR(1)/oR(1))^2;    % in 
    Abar(1,5)=(Adim(1,5)/Gmass(1))*(oTR(1)/oR(1))^2;    % in 
    Abar(2,1)=(Adim(2,1)/Gmass(2))*(oTR(1)/oR(2))^2;  
    Abar(2,2)=(Adim(2,2)/Gmass(2))*(oTR(1)/oR(2))^2; 
    Abar(2,3)=(Adim(2,3)/Gmass(2))*(oTR(1)/oR(2))^2; 
    Abar(2,4)=(Adim(2,4)/Gmass(2))*(oTR(1)/oR(2))^2;    % in 
    Abar(2,5)=(Adim(2,5)/Gmass(2))*(oTR(1)/oR(2))^2;    % in 
    Abar(3,1)=(Adim(3,1)/Gmass(3))*(oTR(1)/oR(3))^2;  
    Abar(3,2)=(Adim(3,2)/Gmass(3))*(oTR(1)/oR(3))^2; 
    Abar(3,3)=(Adim(3,3)/Gmass(3))*(oTR(1)/oR(3))^2; 
    Abar(3,4)=(Adim(3,4)/Gmass(3))*(oTR(1)/oR(3))^2;    % in 
    Abar(3,5)=(Adim(3,5)/Gmass(3))*(oTR(1)/oR(3))^2;    % in 
    Abar(4,1)=Adim(4,1)/GTmass(1);            % /in 
    Abar(4,2)=Adim(4,2)/GTmass(1);            % /in 
    Abar(4,3)=Adim(4,3)/GTmass(1);            % /in 
    Abar(4,4)=Adim(4,4)/GTmass(1);  
    Abar(4,5)=Adim(4,5)/GTmass(1);  
    Abar(5,1)=(Adim(5,1)/GTmass(2))*(oTR(1)/oTR(2))^2; % /in 
    Abar(5,2)=(Adim(5,2)/GTmass(2))*(oTR(1)/oTR(2))^2; % /in 
    Abar(5,3)=(Adim(5,3)/GTmass(2))*(oTR(1)/oTR(2))^2; % /in 
    Abar(5,4)=(Adim(5,4)/GTmass(2))*(oTR(1)/oTR(2))^2;  
    Abar(5,5)=(Adim(5,5)/GTmass(2))*(oTR(1)/oTR(2))^2; 
 
% Define Matrix for 3 or 5 mode analysis 
    if mode==3 
        T(1,1)=Abar(1,1); T(1,2)=Abar(1,2); T(1,3)=Abar(1,4); 
        T(2,1)=Abar(2,1); T(2,2)=Abar(2,2); T(2,3)=Abar(2,4); 
        T(3,1)=Abar(4,1); T(3,2)=Abar(4,2); T(3,3)=Abar(4,4); 
    else 
        T=Abar; 
    end 
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    Z(:,q)=eig(T,'nobalance');           % Calculate eigenvalues w/o conditioning 
    [Zz(:,q),index]=sort(real(Z(:,q)));  % sort by real part (frequency part) 
    Z1(:,q)=Z(index,q);                  % must keep real & imag parts together 
    ZR(:,q)=real(Z1(:,q)); 
    ZI(:,q)=imag(Z1(:,q)); 
    o(:,q)=real(oTR(1)./sqrt(ZR(:,q)));  

% the assumption of real frequencies is implicit p.340 S&R 
    g(:,q)=ZI(:,q)./ZR(:,q);             % damping matrix 
end 
 
% Generate x-axis values for plotting 
% Only need to calculate values for the unstable mode 
% Since only the flutter point is a true representation of reality 
x=1./ktip; 
if mode==3 
    V2=(o(2,q)*b/12).*x; % velocity corresponding to actual oTR(1) in fwd flight 
else 
    V2=(o(4,q)*b/12).*x; % velocity corresponding to actual oTR(1) in fwd flight 
end 
 
% Save output file for incorporation into spreadsheet program (better plotting) 
spread=[g; o; V2]'; 
dlmwrite('APlot100.txt',spread,'\t',1,1); 
% Display graphs of mode freqs & damping coeff’s versus tip velocity and 1/Ktip 
figure(3); 
subplot(2,1,1) 
plot(V2,g) 
axis([700,1100,-0.5,0.1]) 
grid on 
xlabel('Tip Velocity (ft/s)'); ylabel('damping coefficient'); 
subplot(2,1,2) 
plot(V2,o) 
axis([700,1100,50,150]) 
grid on 
xlabel('Tip Velocity (ft/s)'); ylabel('frequency of oscillation'); 
figure(4) 
subplot(2,1,1) 
semilogx(x,g) 
grid on 
xlabel('1 / Ktip'); ylabel('damping coefficient'); 
axis([min(x),max(x),-0.5,0.1]) 
subplot(2,1,2) 
semilogx(x,o) 
grid on 
xlabel('1 / Ktip'); ylabel('frequency of oscillation'); 
axis([min(x),max(x),50,150]) 
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