
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 
 

 
Approved for public release; distribution is unlimited   

 

THE NEW DATA ASSIMILATION SYSTEM AT THE 
ITALIAN AIR FORCE WEATHER SERVICE: DESIGN AND 

PRELIMINARY RESULTS 
 

by 
 

Massimo Bonavita 
 

September 2002 
 

 Thesis Advisor:   Carlyle H. Wash 
 Second Reader: Roger T. Williams 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
September 2002 

3. REPORT TYPE AND DATES COVERED 
Master�s Thesis 

4. TITLE AND SUBTITLE The New Data Assimilation System at the Italian Air 
Force Weather Service: Design and Preliminary Results 

6. AUTHOR(S)  Massimo Bonavita 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and 

Climatology of the Italian Air Force (CNMCA) and it is undergoing testing before eventual operational use. The new system is 

based on an “observation space” version of the 3D-Var method for the objective analysis component, and on the High 

Resolution Regional Model (H.R.M) of CNMCA for the prognostic component. New features of the system include 

completely rewritten correlation functions in spherical geometry, derivation of the objective analysis parameters from a 

statistical analysis of the innovation increments, introduction of an anisotropic component in the correlation functions, 

solution of analysis equations by a preconditioned conjugate gradient descent method. The analysis and forecast fields derived 

from the assimilation system are being subjectively and statistically evaluated through comparisons with parallel runs based on 

European Centre for Medium Range Weather Forecast (ECMWF): preliminary results of these studies are also presented. 

 
15. NUMBER OF 
PAGES  

90 

14. SUBJECT TERMS  Meteorology, Objective Analysis, Data Assimilation 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

THE NEW DATA ASSIMILATION SYSTEM AT THE ITALIAN AIR FORCE 
WEATHER SERVICE: DESIGN AND PRELIMINARY RESULTS 

 
 

Massimo Bonavita 
Captain, Italian Air Force 

M.S., University of Rome �La Sapienza�, 1992 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN 
METEOROLOGY 

 
from the 

 
 

NAVAL POSTGRADUATE SCHOOL 
September 2002 

 
 
 

Author:  Massimo Bonavita 
 

 
Approved by:  Prof. Carlyle H. Wash 

Thesis Advisor 
 
 

Prof. Roger T. Williams 
Second Reader/Co-Advisor 

 
 

Prof. Carlyle H. Wash 
Chairman, Department of Meteorology 
 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 
A new data assimilation system has been designed and implemented at the 

National Center for Aeronautic Meteorology and Climatology of the Italian Air Force 

(CNMCA) in order to improve its numerical weather prediction capabilities and provide 

more accurate guidance to operational forecasters. The system, which is undergoing 

testing before eventual operational use, is based on an �observation space� version of the 

3D-Var method for the objective analysis component, and on the High Resolution 

Regional Model (H.R.M) of CNMCA for the prognostic component. New features of the 

system include completely rewritten correlation functions in spherical geometry, 

derivation of the objective analysis parameters from a statistical analysis of the 

innovation increments, introduction of an anisotropic component in the correlation 

functions, solution of analysis equations by a conjugate gradient descent method. The 

analysis and forecast fields derived from the assimilation system are subjectively and 

statistically evaluated through comparisons with parallel runs based on European Centre 

for Medium Range Weather Forecast (ECMWF): preliminary results of these studies are 

also presented. 
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I. INTRODUCTION  

 

Already in 1911 Bjerknes had clearly shown that the problem of weather 

forecasting could be thought of as an �initial condition problem� (Bjerknes, 1911). By 

this term we indicate the mathematical problem of predicting the future state of a physical 

system once the initial conditions of the system are known together with the equations 

governing its evolution in time. 

In order to solve it successfully Bjerknes had also proposed an operative 

procedure based on three main components: 

 

1. The Observing component; 

2. The Diagnostic component; 

3. The Prognostic component. 

 

A worldwide network of in-situ and satellite-based observing systems today 

composes the Observing component. The average daily numbers of the more common 

observations disseminated over the Global Telecommunications System to the main 

weather centers are summarized in Table 1.1 (ECMWF Global Data Monitoring Report, 

November 2001) 

This enormous quantity of data is composed of observations irregularly 

distributed in space and taken at different and often �asynoptic� times. The Diagnostic 

component of the forecasting system is responsible for producing an estimate of the  

�true� state of the atmosphere over a regular spatial grid at a given time.   

Starting from this well defined initial state, the �primitive� equations describing the 

behavior of the atmospheric system are marched forward in time in order to produce an 

estimate of the state of the atmosphere at some future time (Prognostic component). 

The main subject of the present thesis is the new diagnostic component of the 

CNMCA forecasting system: its design, implementation issues and preliminary results. 

The motivation for this work lies mainly in the deeply felt need to be able to take 

advantage of the increasing number of satellite derived observations which are nowadays 
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available and that cannot be easily accommodated in less recent objective analysis 

algorithms.  

 Also a brief description of the limited area model (HRM) used in the Prognostic 

component of the system will be given, together with a discussion of the main types of 

observations currently used and the relevant observation error statistics. 

 

Observation type  Number of Obs.   Description 
SYNOP/SHIP 53268 Surface weather observations 

over land or on the sea 
BUOY/DRIFTER 6300 Observations from moored/ 

drifting buoys 
TEMP 1162 Upper air radiosonde 

observations 
TEMP/PILOT 300 Upper air wind observations 

 AIRCRAFT 37359  Automatic and manual 
observations of Temperature and 
wind from aircraft 

 SATOB 230970  Cloud motion winds from 
geostationary satellites imagery 

NOAA 15/16 ATOVS 612488 Polar satellite derived 
temperature and humidity profiles 

 

Table 1.1 Meteorological observations disseminated daily over the Global 
Telecommunications System (GTS)  

 

 

A. ATMOSPHERIC DATA ASSIMILATION 

According to a widely accepted definition (Daley, 1991) a modern data 

assimilation system is composed of four main components: 

 

1. Data quality control; 

2. Objective analysis; 

3. Initialization of the analyzed fields; 

4. Short range run of the prognostic model in order to produce an initial estimate of 

the atmospheric state for the successive analysis step (First guess or background 

fields). 
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A schematic representation of the 6-h intermittent data assimilation system of 

CNMCA is given in Fig.1.1. A brief description of components 1., 2. and 4. follows, 

while discussion of the proposed new realization of the objective analysis component is 

deferred to Chapters 2-3.  

 

1. Data Quality Control 

The data quality control step is of paramount importance in order to prevent 

erroneous data from being fed to the objective analysis step with deleterious results to the 

performance of the system. Many notable cases of recent failures of numerical weather 

prediction (NWP) systems to correctly forecast high impact weather conditions (1999 

Christmas storm in Europe, January 2000 snow storm over the eastern coast of the US) 

can be attributed to the inaccuracies in the initial conditions. Often these problems can be 

traced back to the rejection of good observations, or the inclusion of faulty ones, by the 

data checking algorithms. 

At CNMCA the data quality control of the observations is performed in two 

distinct steps. The first one, called "Observation Pre-Processing" has the purpose of 

assigning a degree of confidence to each reported datum. This is done through a series of 

checks that include: 

 

1. Check against climatological gross limits; 

2. Internal consistency checks (for example between reported and recomputed 

heights in TEMP messages); 

3. Temporal and spatial consistency checks for observations from moving 

platforms (for example SHIP and DRIFTER messages). 

 

Observations whose confidence level is below the 70% mark are discarded. More 

details can be found in Norris (1990). 
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To reduce redundancy of information and prevent possible numerical problems in 

the subsequent solution of the analysis equations, observations whose relative distance is 

less than the average grid distance of the numerical model (∼ 55Km) are averaged 

together and combined in a "Super-Observation" (Lorenc, 1981).  

In the second step of the data quality control, the final decision on whether to 

accept for ingestion the observations that survived the pre-processing step is taken. At the 

moment the decision is based solely on the normalized distance of the observations with 

respect to the background field. Although this method is statistically accurate, it can lead 

to rejection of good data in cases of rapidly evolving and poorly forecasted weather 

situations. Work is in progress on a buddy-check type of algorithm for estimating the 

accuracy of marginal observations.   

 

2. Initialization 

After the objective analysis step has blended in a statistically �optimum� way the 

information from the first guess fields and the new observations, a set of analyzed 

meteorological fields is produced which is suitable for a �synoptic� use  (i.e. diagnosis of 

current state of the atmosphere for nowcasting and short range forecasting purposes), but 

not as initial conditions for the integration of a primitive equation model. The main 

reason for this lies in the fact that the imposed balance between the wind and mass 

observation increments are linear simplified conditions (approx. geostrophic, non-

divergent), while the first guess fields implicitly satisfy the multivariate nonlinear 

conditions of the numerical model. As a result, the integration of non-initialized fields 

would cause the model to go through a geostrophic adjustment process with the 

excitation of inertia-gravity waves and the consequent degradation and noisiness of the 

forecast fields in the first 6-12 h. 

To avoid these undesirable effects, the �Adiabatic Implicit Normal Mode 

Initialization� technique is used. A detailed explanation can be found in Temperton 

(1988), but the main ideas can be summarized as follows. The analyzed fields are 

projected over the normal modes of a linearized version of the model equations. These 
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normal modes can be classified (at least for the extratropics) based on their respective 

frequencies or propagation velocities: �fast� modes, corresponding to inertia-gravity 

waves, �slow� modes, corresponding to meteorological Rossby waves. The result of the 

projection operation are two sets of ordinary differential equations whose integration in 

time gives the time evolution of the amplitudes of the normal modes. The imposition of 

appropriate conditions (so called Machenauer conditions) on the time tendencies of the 

amplitudes of the normal modes leads to an effective filtering of the high-frequency 

modes and removal of spurious numerical noise (see pp.377-385 in Haltiner & Williams, 

1980). 

 

3. Prognostic Model 

The numerical model used to produce the first guess fields in the intermittent data 

assimilation scheme is the High-Resolution Regional Model (HRM) of CNMCA. The 

HRM is a modified version of the Deutscher Wetterdienst EM/DM model (Majewski, 

2001), adapted to run on Compaq Alpha servers. The main numerical features of this 

hydrostatic primitive equation model are summarized below: 

 

1. Lat/Lon rotated coordinates grid, 0.5° resolution; 

2. C-type Arakawa grid, 2nd order centered finite difference scheme; 

3. Hybrid vertical coordinate, 31 model levels; 

4. Split semi-implicit time integration scheme; 

5. Integration of Helmholtz equation through Fast Fourier Transform and Gauss 

method; 

6. Davies formulation of boundary conditions; 

7. 4th order diffusive damping term. 
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As for the physics package of the model, its main characteristics are: 

1. Rytter and Geleyn (1992) radiative scheme; 

2. Stratiform precipitation scheme with clouds microphysics parameterization; 

3. Mass flux convective scheme (Tiedtke, 1989); 

4. Two-level vertical diffusion scheme (Mellor and Yamada, 1974), similarity 

theory at the surface (Louis, 1979); 

5. Two-level soil scheme; 

The operational area of model integration is shown in Fig.1.2. Embedded in this 

model is another version of HRM (called Med-HRM) run at double horizontal resolution 

(0.25° effective grid spacing) over the Mediterranean basin (Fig.1.3). Three hourly 

ECMWF forecast fields give the boundary conditions for the HRM model. 

The interface between the objective analysis step and the prognostic model is 

realized through three additional software packages: 

1. Insertion: spline interpolation of analyzed fields on pressure levels to hybrid 

coordinate model levels; 

2. IFS2HRM: interpolation and adaptation of ECMWF boundary fields to HRM grid 

and prognostic variables; 

3. Daily blending of CNMCA 12Z analysis fields with ECMWF 12Z analysis fields.   

 

For testing purposes, the assimilation cycle is run on a Compaq DS20E server, 

with a 3-h data window around the analysis nominal time. The run time for an average 

number of independent observations (∼ 3500) is around 45 minutes, which, considering 

the time necessary for the post-processing elaborations, leads to the availability of the 
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analyzed fields three hours after the analysis nominal time. Twice daily (at 00Z and 12 

Z), an extended run (+48h) of the HRM model based on the assimilation cycle analysis is 

performed. 
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Figure 1.1 Data Assimilation Cycle at CNMCA.  
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Figure 1.2 Regional model (HRM) domain of integration. 
 
 

 
 
Figure 1.3  Regional model (MED-HRM) domain of integration. 
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II. MULTIVARIATE VARIATIONAL DATA ASSIMILATION   

 

Spatial objective analysis of meteorological fields can be traced back to the 

pioneering work of a group of research workers (J. Von Neumann, J. Charney, J. 

Smagorinsky and others) at Princeton Institute of Advanced Studies in the late 1940s (see 

Daley, 1991, for more details and a historical perspective). The early techniques were 

based on the concept of function fitting: the meteorological field to be analyzed was 

expanded in a finite series of known functions. The coefficients of the expansion were to 

be determined by a least square minimization of some function of the distance between 

the fitting function and the observation. The procedure leads to the solution of a linear 

system or, equivalently, the inversion of a square matrix (Gram matrix), which, in the 

case of global fitting, can become extremely large and expensive to compute. Due to this 

and other technical problems (possible ill-conditioning of the Gram matrix, underfitting 

or overfitting due to the non-stationariety of the observing system) the function fitting 

technique was quickly superseded in operational practice by the method of successive 

corrections (SCM) (Bergthorsson and Doos, 1955). In this technique, the function fitting 

is local instead of global (i.e., only the observations within a predetermined radius of the 

analyzed grid point influence the analysis) and the weights are specified a-priori as 

monotonically decreasing functions of the distance between observation and analysis grid 

point. Besides introducing a very efficient and robust algorithm, Bergthorsson and Doos 

also brought in a number of other ideas which are still in wide use in operational 

objective analysis schemes: the use of a forecast first guess (or background) field and the 

computation of the a-priori weights through a statistical analysis of the objective analysis 

errors. For all these attractive properties, the SCM has some important limitations, at least 

in its simpler formulations. It gives too much weight to the observations and it ignores the 

cross-correlations between observations.  

Although most of the problems can be overcome with more sophisticated, iterated 

version of the algorithm (Bratseth, 1986), in operational practice the SCM algorithm was 

superseded in the 1980s by a direct method of solution of the analysis equations known 

as �Statistical Interpolation� or �Optimal Interpolation� (OI). The roots of the method 
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go back to the work of Kolmogorov (1941) and Wiener (1949) and it is interesting to note 

that OI, as other recent techniques, found its early applications not in meteorology but in 

other fields of the Earth�s sciences and also in engineering. The seminal work that 

brought the technique to the attention of the meteorological community was that of 

Gandin (1963), who gave a theoretical derivation of the algorithm and discussed the main 

issues of its application in an operational environment.  

The OI method derives its name from the fact that it tries to minimize (optimality 

principle) the expected variance of the analyzed fields through the a-priori knowledge of 

the error characteristics of both the observations and the background fields. In operational 

practice a number of assumptions are made which make the method sub-optimal. Apart 

from fundamental issues such as the imperfect knowledge of the observations and 

background fields error statistics, which are also often assumed stationary, homogeneous, 

isotropic and separable into the horizontal (or constant pressure) and the vertical 

components, the main approximations commonly used are: 

 

1. Local approximation: only a limited number of observations enter into the solution 

of the analysis equations for any given grid point (or analysis volume, Lorenc, 

(1981)); 

2. Only observations that are linearly related to the prognostic variables of the model 

are commonly used, although extensions of the method to handle non-linear 

observations are possible (Ledvina and Pfaendtner, 1995). 

 

In the 1990s, due to progress in computer processing speed and data storage 

capabilities, the variational approach to the objective analysis problem has gained 

popularity as an elegant and powerful mathematical formalism capable of overcoming 

some of the problems mentioned above (Parrish and Derber, 1992; Rabier and Courtier, 

1992; Cohn et al., 1998; Daley and Barker, 2000).  The methods developed by these 

authors are known under the general name of 3D-Var algorithms and, apart from 

implementation details, are basically equivalent. A scalar measure (usually called cost 

function) of the distance between the observations and background fields to the analysis 

fields is minimized with respect to the unknown analysis values, thus producing the 
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maximum likelihood estimate of the atmospheric state. In the case of quadratic cost 

functions, the minimization procedure leads to a set of linear analysis equations that are a 

generalization of the OI analysis equations. This is not a mere coincidence since, for 

stochastic variables with a Gaussian error distribution (as many weather fields can be 

thought of having), it can be shown (Daley, 1991) that the minimum variance estimate 

and the maximum likelihood estimate are coincident. 

In the 3D-Var methods a basic assumption of OI is retained, namely that of the 

stationary character of the background error statistics. Relaxation of this hypothesis leads 

to various modern analysis techniques, commonly known as Four Dimensional Data 

Assimilation Methods (FDDA), which can be roughly divided in two main categories 

(Menard, 1994): time extensions of variational methods, known as 4D-Var, where the fit 

to the data is performed over an extended period of time (instead of intermittently) using 

the model as a strong constraint (i.e., strict consistency with the model, assumed perfect, 

is required); methods derived from estimation theory (Kalman-Bucy filter and its various 

modifications and extensions). In these latter methods no perfect model assumption is 

required; however, common to both kind of algorithms are the great computational and 

storage requirements that, at present, make them unfeasible options except for the largest 

weather centers. 

In the present work we concentrate on the version of the 3D-Var algorithm which 

forms the basis of the new objective analysis system at CNMCA. To the author�s 

knowledge, it was first implemented operationally at the Data Assimilation Office, 

NASA Goddard (Cohn et al, 1998), and more recently at Naval Research Laboratory, 

Monterey (Daley and Barker, 2000).  The basic theory will be reviewed, then a thorough 

description of the background error covariance models used in the CNMCA 

implementation of the algorithm will be given. Finally the topic of a possible anisotropic, 

flow-dependent extension to the standard covariance modeling will be addressed. 

   

 

A. THEORY OF 3D-VAR 

The following is only a short account of the main ideas of 3D-Var which are 

relevant to the present work: the interested reader can find more details and a wider 
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theoretical background in the works of Lorenc, 1986; Daley, 1997; Cohn, 1997; Cohn et 

al., 1998; Daley and Barker, 2000. 

Let y be the column vector containing all the p (∼ 104) observations at the analysis 

time; xt the column vector of the true values of the n (∼ 106) state (prognostic) variables at 

the same time at the model grid points; xa and xb the analogous quantities for the analyzed 

and background fields; then the forecast error vector is: 

 

eb = xb - xt         (2.1) 

 

while the observation error vector: 

 
eo = y � H(xt)         (2.2) 

  
where H is the observation (or forward) operator, i.e. the operator that performs the 

transformation from the state variables on grid points to the observed variables at the 

observing locations (in the case of linearly related variables it reduces to an interpolation 

operator). We make the usual assumptions that these error vectors, eb and eo have normal 

distribution functions with zero mean (i.e.: no bias) and are mutually uncorrelated. 

From these we can now define the forecast error covariance matrix: 

 

Pb= < eb eb
T>         (2.3) 

 

and the observation error covariance matrix: 

 

R = <eo eo
T>         (2.4) 

 

By definition, both matrices are symmetric, positive definite, with dimensions nxn 

and pxp respectively.  
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Given the statististical assumptions made on eb and eo, it can be shown (Daley, 

1991, Chap.2) that the maximum likelihood estimate of the state of the atmospheric 

system is the one the minimizes the following cost function: 

 

J = 0.5[y � H(xa)]TR-1[y � H(xa)] + 0.5[xb � xa]TPb
-1[xb � xa]  (2.5) 

 

i.e., minimize a scalar distance in L2 of the analysis fields from both the observations and 

the first guess fields based on their respective perceived accuracies. 

To find the minimum of the cost function (2.5), we differentiate it with respect to 

xa, obtaining the gradient of J: 

 

∇ J = - HTR-1[y � H(xa)] + Pb
-1xb      (2.6) 

 

where we made use of the property of bilinear symmetric forms ∂/∂x(xTAx) = (A + AT)x 

= 2Ax, and introduced the Jacobian matrix of the observation operator H: 

 

H ≡≡≡≡ ∂/∂x(H)         (2.7) 

 

A necessary condition for a minimum is obtained by setting ∇ J = 0: 

 

- HTR-1[y � H(xa)] + Pb
-1xb + HTR-1H[xa � xb] - HTR-1H[xa � xb] = 0 (2.8) 

 

where the vector HTR-1H[xa � xb] has been added and subtracted. Assuming the analysis 

fields to be only first order corrections to the first guess fields (�Tangent Linear� 

approximation) we have: 

 

 H(xa) = H(xb � (xa � xb)) ≅  H(xb) � H(xa � xb)    (2.9) 
 

which, when substituted into (2.8), yields: 
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 - HTR-1[y � H(xb)] + (Pb
-1+ HTR-1H) (xa � xb) = 0   (2.10) 

 

or, 

 

xa � xb = (Pb
-1+ HTR-1H)-1 HTR-1[y � H(xb)]    (2.11) 

 

This form of the analysis equations involves covariance matrices computed in the 

grid space of the model (or, equivalently, in its spectral space), which, in the present case, 

would involve matrices of order ∼ 106x106 (although, in spectral space and under the 

assumptions of homogeneity and horizontal isotropy for correlations, they can be shown 

to be diagonal or block diagonal: Courtier, 1997; Courtier at al, 1998). 

A less expensive but equivalent form of the analysis equations can be derived 

making use of the Sherman-Morrison-Woodbury formula (for the details of the derivation 

see Courtier, 1997), or, more simply by noting that: 

 

HTR-1 (Pb
-1+ HTR-1H)-1 =  (H Pb HT + R) Pb HT    (2.12) 

 

and that all the matrices considered and their inverse are positive definite. Inserting 2.12 

into 2.11 we find: 

 

xa � xb = Pb HT (H Pb HT + R)-1[y � H(xb)]    (2.13) 

 
This formulation is the one used in the present work. To the author�s knowledge, 

it was first implemented in the NASA/Goddard Data Assimilation Office �Physical Space 

Statistical Analysis System� (Cohn et al., 1998) and, more recently, in the NAVDAS 

assimilation system of NRL Monterey (Daley and Barker, 2000).  

From inspection it is clear that we are dealing with an observation space 

algorithm: R is defined in observation space while Pb is projected into it by means of the 

observation operator H. Taking into account the average number of observations 

currently entering into the CNMCA assimilation system (∼ 104), we can see that this 
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approach is able to considerably reduce the computational and storage load on the 

computing facilities without placing any constraint on the covariance function models. 

The main differences with respect to standard OI algorithms are twofold: first 

there is the explicit use of the observation operator H, which will provide a natural way to 

extend the objective analysis to include observations related in a nonlinear way to the 

prognostic variables of the model (see below); secondly, as it will be shown below, the 

solution to (2.12) is computed globally (i.e.: making use of all available observations for 

every grid point), without the need for data selection procedures.  

 

The extension of (2.12) to non-linear observations (such as radiances, wind 

speeds, total column water content, etc., where H depends on the model state x) is 

conceptually simple: we define a series of system states: 

 

x0=xb, x1, x2,�,xi-1,xi,xi+1,�       (2.14) 

 

where the starting state coincides with the first guess fields. 

Then, defining the Jacobian of the observation operator around the i state of the 

system  

 

Hi ≡≡≡≡ ∂/∂x(H)x=xiiii          (2.15) 

 

the nonlinear version of the analysis equations is found by looking for a Newtonian 

iterative solution to the problem of  finding the root of  the Jacobian of the cost function 

(∇ J=0; eq. 2.8) : starting from a first guess state x0=xb, the i+1 state is given by: 

 

xi+1 =  xi -∇ 2J(xi)-1·∇ J(xi)          (2.16) 

 

where ∇ 2J(xi)-1 = (Pb
-1+ HT

i
 R-1 Hi) is the Hessian matrix of the cost function J and it can 

be shown to be the inverse of the analysis error covariance matrix. 
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After some manipulation, 2.16 can be recast in the computationally more efficient 

form: 

 

xi+1 =  x0 + Pb HT
i (Hi Pb HT

i
 + R)-1[y � H(xi)+ Hi(xi � x0)]     (2.17) 

 

The iterative procedure stops when the difference between xi+1 and xi becomes 

smaller than a predefined value. Unlike the linearized version of the analysis equations, 

which result from a quadratic cost function, the minimization procedure (2.15) cannot be 

guaranteed to converge and it can have more the one minimum. Up to now only 

observations linearly related to the prognostic variables of the model have been used in 

the experimental phase. 

   

 

B. IMPLEMENTATION ISSUES 

The practical implementation of objective analysis equations (2.13) has been 

carried out as follows. The set of equations (2.13) can be solved in two steps. First 

solution of the linear pxp system: 

(H Pb HT + R) z = y � H (xb)       (2.18) 

in the unknown vector z. Secondly, projection of the solution on grid space via: 

xa � xb = Pb HTz        (2.19) 

The second step amounts to perform a matrix-vector product between the pxn 

matrix Pb HT and the p vector z, which can be computed efficiently in Fortran90 code. 

The first step involves the solution of a large, sparse, symmetric and definite 

positive linear system. It can be shown (Golub and van Loan, 1996) that this step is 

mathematically equivalent to finding the minimum of the following cost function: 

F(z) = 1/2zT(H Pb HT + R)z - zT (y � H(xb))     (2.20) 

which can be done using a standard Conjugate Gradient (CG) Algorithm (Subroutine 

F11GBZ, NAG Library, Mark 17,1995, has been used). 
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In numerical experiments, it has been found convenient to implement a scaled 

version of 2.13. This is due to the reason that, in this way, the condition number of the 

matrix (H Pb HT + R) (defined as the absolute value of the ratio of the maximum to the 

minimum eigenvalue) shows a considerable decrease, thus speeding up the convergence 

of the descent algorithm. 

 The scaled version of (2.13) is found following Daley and Barker (2000).  If we 

redefine the observation operator H as the product of a spatial interpolation operator H* 

and a real observation operator H (i.e. H→ H* H) and set: 

Pb H*
T= Pb

gr/ob  and, H* Pb H*
T= Pb

ob/ob         (2.21) 

Pb
gr/obHT= Sb

1/2 Cb
gr/ob [Sb

ob]1/2HT        (2.22) 

HPb
ob/obHT= H[Sb

ob]1/2 Cb
ob/ob [Sb

ob]1/2HT       (2.23) 

Sh= diag(H* Pb
ob/ob H*

T)         (2.24) 

Where  Sb=diag(Pb), (i.e. the background variances of the analysis variables), 

Sb
ob=diag(Pb

ob), (i.e. the observation variances of the analysis variables), and Cb
gr/ob, 

Cb
ob/ob are the corresponding correlation matrices., then the scaled form of 2.13 is: 

xa � xb = Sb
1/2 Cb

gr/ob [Sb
ob]1/2HT Sh

-1/2[Ch
ob/ob+ Sh

-1/2R Sh
-1/2] Sh

-1/2[y � H(xb)]   

  (2.25) 

 and Ch
ob/ob = Sh

-1/2H[Sb
ob]1/2 Cb

ob/ob[Sb
ob]1/2HT Sh

-1/2. 

The main point here is the rescaling of the (H Pb HT + R) covariance matrix in the 

non-dimensional form [Ch
ob/ob+ Sh

-1/2R Sh
-1/2]. 

In experimental runs, without preconditioning, for an average number of 

observations (p∼ 3500), the cost function (2.20) converges to within machine precision in 

around 150 steps (average time ∼ 90 seconds on Compaq DS20E server). Since the 

computational cost of the algorithm scales as number of CG iterations multiplied by p2, it 

is important, in view of ingesting asynoptic type of observations, to implement an 
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effective pre-conditioner for the (H Pb HT + R) matrix. Work in this direction is still in 

progress. 

   

 

C. BACKGROUND ERROR COVARIANCES 

�The most important element in the statistical interpolation algorithm is the 

background error covariance matrix. To a large extent, the form of this matrix governs 

the resulting objective analysis�� (Daley, 1991). Much effort has so far gone into the 

redefinition of the background error covariance model. The derivation follows the main 

ideas of Bergman (1979), Thiebaux et al. (1986), Thiebaux at al. (1990), Tillmann 

(1999). An original contribution has been the explicit formulation of the temperature-

wind cross correlations in spherical coordinates, using the thermal wind relationship as a 

constraint. This, to the author�s knowledge, is not to be found in the relevant literature. 

The need to express the auto and cross-correlations in spherical coordinates 

instead of using a local plane projection arises from the fact that, for the correlation 

model used, one has non negligible correlation values at distances comparable to the 

Earth�s radius.  

Taking into account the narrower structure shown by the background vertical 

correlations of temperature with respect to those of geopotential and the weaker vertical 

correlation of radiosondes� temperature measurements with respect to geopotential 

observations, the choice was made to adopt the following analysis variables: temperature 

(T), zonal (u) and meridional (v) components of wind, surface pressure (SP) and relative 

humidity (RH).  

 

1. Upper Air Analysis Covariance Model 

The upper air analysis is multivariate in (T, u, v). The covariance model has been 

derived as follows. 

Starting from the geostrophic constraint: 
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u = -(k/sinφ) ∂Φ/∂φ         (2.26) 

v = k/(sinφcosφ) ∂Φ/∂λ        (2.27) 

 

where (φ, λ) are the latitude-longitude coordinates, Φ is the geopotential, and k≡µ/2Ω is a 

constant that takes into account the geostrophic coupling parameter µ and the orbital 

angular velocity of the Earth Ω. Making use of the equation of state for dry air (p=ρRdT) 

and the hydrostatic equation (∂p/∂Φ=-ρ), (2.25-26) can be recast as a form of the thermal 

wind constraint: 

  

∂u/∂p = kRd/(p sinφ) ∂T/∂φ        (2.28) 

∂v/∂p = -k/(psinφcosφ) ∂T/∂λ        (2.29) 

 

Under the usual hypothesis of homogeneity, isotropy and separability for the 

temperature autocorrelation function, we assume the following functional form for the 

temperature covariance: 

 

Cov(Ti,Tj) = σT
2 R(τ) χTT(pi,pj)      (2.30)  

where σT
2 is the background error temperature variance (which can vary both in latitude 

and in pressure level), R(τ) is the quasi-horizontal (isobaric) component of the correlation 

model (function only of the Great Circle distance τ = cos-1(sinφisinφi + cosφicosφj 

cos∆λ )of points i,j) and χTT is the vertical part of the correlation function. Following 

Thiebaux et al. (1986) and Daley and Barker (2000), the functional representation for 

R(τ) has been chosen as a Second Order Autoregressive (SOAR) Function of the form: 

  
R(τ) = (1+c τ)exp(-c τ)       (2.31) 

 

Where the length scale c-1 will be specified through a statististical analysis of the 
observed minus forecast increments, as will be shown in Chapter 3.  
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The derivation that follows is, however, independent of the specific form of either R(τ) or 

χTT. Making use of (2.27-28) is easily seen that: 

 

∂/∂lnpi Cov(ui,Tj) = σT
2 kRd/sinφi dR(τ)/dτ ∂τ/∂φi χTT(pi,pj)   (2.32) 

∂/∂lnpj Cov(Ti,uj) = σT
2 kRd/sinφj dR(τ)/dτ ∂τ/∂φj χTT(pi,pj)   (2.33) 

∂/∂lnpi Cov(vi,Tj) = - σT
2 kRd/(sinφicosφi) dR(τ)/dτ ∂τ/∂λi χTT(pi,pj)  (2.34) 

∂/∂lnpj Cov(Ti,vj) = - σT
2 kRd/(sinφjcosφj) dR(τ)/dτ ∂τ/∂λj χTT(pi,pj)  (2.35) 

∂2/(∂lnpi∂lnpj) Cov(ui,uj) = (σT kRd)2/(sinφisinφi) (d2R(τ)/dτ2∂τ/∂φi∂τ/∂φj + 

 dR(τ)/dτ ∂2τ/∂φi∂φj) χTT(pi,pj)    (2.36) 

∂2/(∂lnpi∂lnpj) Cov(vi,vj) = (σT kRd)2/(sinφicosφisinφicosφj) (d2R(τ)/dτ2∂τ/∂λi∂τ/∂λj 

+  dR(τ)/dτ ∂2τ/∂λi∂λj) χTT(pi,pj)      (2.37) 

∂2/(∂lnpi∂lnpj) Cov(ui,vj) = - (σT kRd)2/(sinφisinφicosφj) (d2R(τ)/dτ2∂τ/∂φi∂τ/∂λj + 

     dR(τ)/dτ ∂2τ/∂φi∂λj) χTT(pi,pj)    (2.38) 

∂2/(∂lnpi∂lnpj) Cov(vi,uj) = - (σT kRd)2/(sinφisinφicosφj) (d2R(τ)/dτ2∂τ/∂φj∂τ/∂λi + 

     dR(τ)/dτ ∂2τ/∂φj∂λi) χTT(pi,pj)    (2.39) 

 

Similarly to (2.29) the other covariances can be written as: 

Cov(ui,Tj) = σu σT RuT(ri,rj) χuT(pi,pj)      (2.40) 

Cov(vi,Tj) = σv σT RvT(ri,rj) χvT(pi,pj)      (2.41) 

Cov(ui,uj) = σu
2 Ruu(ri,rj) χuu(pi,pj)      (2.42) 

Cov(vi,vj) = σv
2 Rvv(ri,rj) χvv(pi,pj)      (2.43) 

Cov(ui,vj) = σu σv Ruv(ri,rj) χuv(pi,pj)      (2.44) 

and substituted into (2.25-32), thus obtaining for the vertical components: 

 χuu(pi,pj) = χvv(pi,pj) = χuv(pi,pj) = χvu(pi,pj)     (2.45) 
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χuT(pi,pj) = χvT(pi,pj) = ∂/∂lnpj χuu(pi,pj)     (2.46) 

χTu(pi,pj) = χTv(pi,pj) = ∂/∂lnpi χuu(pi,pj)     (2.47) 

χTT(pi,pj) = ∂2/(∂lnpi∂lnpj) χuu(pi,pj)      (2.48) 

while for the isobaric components we find: 

σu RuT(ri,rj) = σT kRd/sinφi dR(τ)/dτ ∂τ/∂φi      (2.49) 

σv RvT(ri,rj) = - σT kRd/(sinφi cosφi) dR(τ)/dτ ∂τ/∂λi    (2.50) 

σu
2 Ruu(ri,rj) = (σT kRd)2/(sinφi sinφi) (d2R(τ)/dτ2∂τ/∂φi∂τ/∂φj + 

      dR(τ)/dτ∂2τ/∂φi∂φj)     (2.51) 

σu σv Ruv(ri,rj) = - (σT kRd)2/(sinφi sinφi cosφj) (d2R(τ)/dτ2∂τ/∂φi∂τ/∂λj + 

      dR(τ)/dτ∂2τ/∂φi∂λj)     (2.52) 

σv
2 Rvv(ri,rj) = (σT kRd)2/(sinφicosφisinφi cosφj) (d2R(τ)/dτ2∂τ/∂λi∂τ/∂λj + 

      dR(τ)/dτ∂2τ/∂λi∂λj)     (2.53) 

 

 

Setting 

 

Lim(τ → 0) τ-1 dR(τ)/dτ ≡ L        (2.54) 

 

we obtain for the geostrophically constrained wind variances: 

 

Lim(τ → 0) Cov(ui,uj) = σu
2 =  Lim(τ → 0) Cov(vi,vj) = σv

2 = -(σT kRd/sinφi)2L (2.55) 

 

Substituting (2.54) into (2.48-52) we completely determine the isobaric correlations: 

 

RuT(ri,rj) =  dR(τ)/dτ ∂τ/∂φi (-L)-1/2      (2.56) 
RvT(ri,rj) = - (cosφi)-1 dR(τ)/dτ ∂τ/∂λi (-L)-1/2

     (2.57) 

Ruu(ri,rj) =  (d2R(τ)/dτ2∂τ/∂φi∂τ/∂φj + dR(τ)/dτ∂2τ/∂φi∂φj) (-L)-1  (2.58) 
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Ruv(ri,rj) = - (d2R(τ)/dτ2∂τ/∂φi∂τ/∂λj + dR(τ)/dτ∂2τ/∂φi∂λj) (-L cosφj)-1  (2.59) 

Rvv(ri,rj) =  (d2R(τ)/dτ2∂τ/∂λi∂τ/∂λj + dR(τ)/dτ∂2τ/∂λi∂λj) (-L cosφi cosφj)-1 (2.60) 

 

The above formulas are independent of the chosen correlation model. In the 

present case, assuming (2.29) as the functional representation for the isobaric temperature 

autocorrelation model, we obtain: 

  

RuT(ri,rj) =  c(τ/sinτ)exp(-cτ)( cosφi sinφj � cosφj sinφi cos∆λ )  (2.61)   
RTu(ri,rj) = - RuT(ri,rj)        (2.62)  
RvT(ri,rj) =  c(τ/sinτ)exp(-cτ)(cosφj sin(λ i-λj))     (2.63) 
RTv(ri,rj) = - RvT(ri,rj)        (2.64) 

Ruu(ri,rj) =  - ((sinτ(1-cτ)- τcosτ)/(sin3τ) (cosφi sinφj � cosφj sinφi cos∆λ ) 

(cosφj sinφi � cosφi sinφjcos∆λ ) - (τ/sinτ) (cosφi sinφj �  

cosφj sinφi cos∆λ )) exp(-cτ)    (2.65)  

Rvv(ri,rj) =  ((sinτ(1-cτ)- τcosτ)/(sin3τ) (cosφi cosφj sin2∆λ ) + 

      (τ/sinτ) cos∆λ )) exp(-cτ)     (2.66) 

Ruv(ri,rj) =  ((sinτ(1-cτ)- τcosτ)/(sin3τ) (cosφi sinφj � cosφj sinφi cos∆λ ) 

      (cosφi sin(λ i-λ j) + (τ/sinτ) ( sinφi sin(λ i-λ j)) exp(-cτ)  (2.67) 

 

The above isobaric correlations are shown in Fig.2.1 through 2.6. 
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Figure 2.1 T-T correlation function (SOAR Model, c = 0.1 rad). 

. 

Figure 2.2 U-T correlation function (SOAR Model, c = 0.1 rad). 
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Figure 2.3 V-T correlation function (SOAR Model, c = 0.1 rad). 

 

 

Figure 2.4 U-U correlation function (SOAR Model, c = 0.1 rad). 
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Figure 2.5 V-V correlation function (SOAR Model, c = 0.1 rad). 

Figure 2.6 U-V correlation function (SOAR Model, c = 0.1 rad). 
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The vertical part of the correlation function has been modeled after Bergman 

(1979): 

 

χuu(pi,pj) = (1+kplog2(pi/pj))-1       (2.68) 

 

which, for the other correlations, gives: 

 

χvv(pi,pj) = χuv(pi,pj)  = χvu(pi,pj) =  (1+kplog2(pi/pj))-1   (2.69) 

 χuT(pi,pj) = χvT(pi,pj) = 2kp
1/2log(pi,pj)  (1+kplog2(pi/pj))-2   (2.70) 

 χTu(pi,pj) = χTv(pi,pj) = -2kp
1/2log(pi,pj)  (1+kplog2(pi/pj))-2   (2.71) 

 χTT(pi,pj)  =(1- 4kplog2(pi,pj) χuu(pi,pj)) (1+kplog2(pi/pj))-2   (2.72) 

 

Sketches of the functions are given below for kp=5, in Fig. 2.7 through 2.10. 

The vertical correlation parameter kp will be determined through a statististical 

analysis of the observed minus forecast increments, as will be shown in Chapter 3. 
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Figure 2.7 U-U Vertical Correlation function (kp = 5) 

 

 
Figure 2.8 U-T Vertical Correlation function (kp = 5) 



30 

 

Figure 2.9 T-U Vertical Correlation function (kp = 5) 

 

Figure 2.10 T-T Vertical Correlation function (kp = 5) 
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It is also useful to derive the mutual correlations of temperature and wind field 

with the geopotential. In order to do this, elimination of u,v from (2.26-2.29) leads to: 

 

∂T/∂φ = -1/(Rd) ∂2ΦΦΦΦ/∂φ∂ln(p)       (2.73) 

 ∂T/∂λ = -1/(Rd) ∂2ΦΦΦΦ/∂λ∂ln(p)         (2.74) 

 

From these relations, assuming that the geopotential autocovariance can modeled 

as: 

 

Cov(ΦΦΦΦi, ΦΦΦΦj) = σΦΦΦΦ
2 R(τ) χΦΦΦΦΦΦΦΦ (pi,pj)      (2.75) 

  

we can derive the correlations: 

 

∂/∂φ i Cov(Ti,ΦΦΦΦj) = -σΦΦΦΦ
2Rd

-1 dR(τ)/dτ ∂τ/∂φi∂/∂ln(pi) χΦΦΦΦΦΦΦΦ (pi,pj)  (2.76) 

∂/∂λ  iCov(ΦΦΦΦi,T j) = -σΦΦΦΦ
2Rd

-1 dR(τ)/dτ ∂τ/∂λ j∂/∂ln(pj) χΦΦΦΦΦΦΦΦ (pi,pj)  (2.77) 

∂2/∂λ  i∂φ i Cov(Ti,Tj) = -σΦΦΦΦ
2Rd

-2 dR(τ)/dτ ∂2τ/∂λ  i∂φi ∂2/∂ln(pi)∂ln(pj)χΦΦΦΦΦΦΦΦ (pi,pj) 

           (2.78) 

Separating the vertical and isobaric components of the correlations, we find: 

χTΦΦΦΦ(pi,pj) = ∂/∂lnpi χΦΦΦΦΦΦΦΦ (pi,pj) = χTu(pi,pj)     (2.79) 

χΦΦΦΦT(pi,pj) = ∂/∂lnpj χΦΦΦΦΦΦΦΦ (pi,pj) = χuT(pi,pj)     (2.80) 

χTT(pi,pj) = ∂2/(∂lnpi∂lnpj) χΦΦΦΦΦΦΦΦ(pi,pj) = χuu(pi,pj)    (2.81) 

while the isobaric components are given by: 

σTσΦΦΦΦ RΦΦΦΦT(ri,rj) = -σΦΦΦΦ
2 Rd

-1 dR(τ)/dτ ∂τ/∂λj      (2.82)  

σTσΦΦΦΦ RTΦΦΦΦ (ri,rj) = -σΦΦΦΦ
2 Rd

-1 dR(τ)/dτ ∂τ/∂ϕi      (2.83) 

 σT
2 RTT(ri,rj) = σΦΦΦΦ

2 Rd
-2∂2τ/∂λ  i∂φi dR(τ)/dτ     (2.84) 
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From these expressions we are also able to derive the geostrophically constrained 

autocovariances:  

Lim(τ → 0) Cov(Ti,Tj) = σT
2 =  Rd

-2 Lim(τ → 0) Cov(ΦΦΦΦi,ΦΦΦΦj) = Rd
-2 σΦΦΦΦ

2   (2.85) 

In analogous fashion, starting from (2.25-2.26) the cross correlations between the 

wind components u,v and the geopotential Φ can be derived. The results of the 

computations are: 

χuΦΦΦΦ(pi,pj) = χΦΦΦΦu (pi,pj) = χΦΦΦΦΦΦΦΦ(pi,pj) = χuu(pi,pj)    (2.86) 

χvΦΦΦΦ(pi,pj) = χΦΦΦΦv (pi,pj) = χΦΦΦΦΦΦΦΦ(pi,pj) = χuu(pi,pj)    (2.87) 

while for the isobaric cross correlations we find: 

 σuσΦΦΦΦ RuΦΦΦΦ(ri,rj) = -σΦΦΦΦ
2 k/sinφi dR(τ)/dτ ∂τ/∂ϕi     (2.88)  

σΦΦΦΦσu RΦΦΦΦu(ri,rj) = -σΦΦΦΦ
2  k/sinφj dR(τ)/dτ ∂τ/∂ϕj     (2.89) 

 σvσΦΦΦΦ RvΦΦΦΦ(ri,rj) = σΦΦΦΦ
2  k/(sinφi cosφi) dR(τ)/dτ ∂τ/∂λi     (2.90) 

σΦΦΦΦσv RΦΦΦΦv(ri,rj) =-σΦΦΦΦ
2  k/(sinφj cosφj) dR(τ)/dτ ∂τ/∂λj     (2.91)  

 

 

2. Surface Analysis Covariance Model 

The surface analysis covariances used in the objective analyses of the surface 

pressure (SP), mean sea level pressure (MSLP) and 10-meter wind fields are a simplified 

version of the models used in the upper air analysis. 

In this case only the geostrophic constraints (2.26-2.27) apply. The computations 

are similar to the ones described above and lead to analogous results, with the notable 

exception that, assuming that the pressure autocovariance is modeled as: 

Cov(pi,pj) = σp
2 R(τ)          (2.92)  

Then, the geostrophically constrained wind variances are given by: 
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Lim(τ → 0) Cov(ui,uj) = σu
2 =  Lim(τ → 0) Cov(vi,vj) = σv

2 = -(σp k/ρsinφi)2L         (2.93)  
 

where L is given by (2.47). For the SOAR model of (2.24) the wind component 

autocovariances reduce to: 

σu
2 =  σv

2 = (σp kc/ρsinφi)2                            (2.94)  

 

It is clear that this correlation model is really applicable only under the provision 

that the geostrophic components of the observed surface winds have been extracted. This 

requires the use of an appropriate boundary layer model. Work in this direction is under 

way, making use of the Planetary Boundary Layer model developed by R.A. Brown and 

coworkers (Brown and Levy, 1986). 

 

3. Anisotropy and Flow Dependency of Covariance Functions  

An implicit assumption of 3D-Var algorithms (and, in general, of intermittent 

assimilation schemes) is the stationary character of the background error covariances. 

This simplification, together with those of isotropy and homogeneity, is widely used in 

operational settings due to the reason that taking into account the temporal evolution of 

the background covariances would greatly increase the complexity of the objective 

analysis algorithm and the burden placed on the computing resources. However, it is very 

well known (Daley, 1991; Otte et al., 2001), that the observed-minus-background 

correlation patterns of weather systems show considerable anisotropy (the SW-NE tilt of 

upper level trough axis, for instance), which make the isotropy and stationarity 

approximations serious shortcomings of data assimilation systems which do not take the 

time evolution of the covariance matrices into account. 

The problem has been tackled in a variety of ways. In the context of variational 

assimilation there are two main approaches:  
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1. the 4D-Var scheme, where the background covariance matrix is evolved 

implicitly by the dynamics of the tangent linear model (and its adjoint; see 

Rabier and Courtier (1992) for details); 

2. the Kalman-Bucy filter, wich explicitly evolves the background covariance 

matrix, and the many approximations which have been proposed in order to 

make this method computationally tractable (�Ensemble Kalman filter�, 

Evensen,1994; �Reduced-Rank Kalman filter�, Fisher, 1998; �The Cycling 

Representer algorithm�, Xu and Daley,2000); 

 

Only the 4D-Var approach has been implemented in operational environments 

even though many approximations are used in practice (ECMWF: Rabier et al., 2000). 

The Kalman filter method is under active study, but it does not seem feasible to be 

implemented in an operational setting with the current generation of computers. This is 

due to the fact that the method requires an explicit computation of the analysis error 

covariance matrix and its evolution in time and this matrix, for current numerical weather 

prediction models, is of the order of 107x107. 

Due to the unavailability at CNMCA of the human and computer resources necessary 

for tackling the problem of the temporal extension of 3D-Var, possible ways to 

circumvent the main shortcomings of the algorithm were investigated. The approach we 

have chosen was pioneered by Benjamin (1989) and it has recently been actively 

investigated by many researchers (Miller and Benjamin, 1992; Dévényi and Schlatter, 

1994; Riishojgaard, 1998; Otte et al., 2000).  

In this method the isotropic, stationary covariance model described in the preceding 

paragraphs, is modified through multiplication by an anisotropic, flow-dependent term 

that is a function of the background field potential temperature. For example, the 

temperature autocovariance function (2.29) is modified as follows: 

 

Cov(Ti,Tj) = σT
2 R(τ) χTT(pi,pj) ν(��θb(ri,pi ) - θb(ri,pj)�� )   (2.95) 

 

In the present implementation the anisotropic component ν is modeled by a 

simple SOAR function of the absolute difference of the background potential 
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temperatures at locations i,j. This is a computationally cheap way of obtaining flow-

dependent covariances, and it relies heavily on the accuracy of the first guess potential 

temperature field in order to produce positive results. However, it might be argued that 

also in the Kalman filter approach the time evolution of the analysis error covariance 

matrix depends on the accuracy of the previous analysis step and of the model itself 

(actually, a linearized version of the model). We note in passing that the 3-D character of 

this formulation should also be helpful in the objective analysis of single level 

observations in the mass-wind analysis (SYNOP, SHIP, BUOY, AIREP, etc), where the 

use of the statistically derived vertical correlation functions (2.67-2.72) can be 

detrimental when it does not take into account the presence of sharp air-mass boundaries 

(i.e. boundary layers with sharp inversions, tropopause boundary). 

An example of how the flow-dependent term impacts the objective analysis is 

now discussed. The main feature of the synoptic state of the atmosphere over the model 

domain on the 19th of June 2002, 00UTC, is the elongated upper level trough whose 

cyclonic part extends over northwestern Spain, the British Isles and Scandinavia (Fig. 

2.11). In the lower troposphere this is mirrored by a sharp air mass boundary extending 

from Spain trough France, Germany and the southern portion of the Scandinavian 

Peninsula (Fig. 2.12). In this assimilation cycle a radiosonde near Paris reported a 500 

hPa temperature 1.5°C higher than the forecast temperature. The way in which this 

observation increment is spatially interpolated in the ensuing objective analysis can be 

seen in Fig. 2.13.  The air mass boundary present at 500 hPa (Fig. 2.14) clearly models 

the shape of the correlation function in an anisotropic and flow-dependent way.  

Although these results look promising and intuitively appealing, the merits of the 

method must be evaluated in an objective way, through comparisons of statistical skill 

scores of the forecast fields derived from objective analysis performed both with and 

without the flow-dependent term. This work is in progress. 
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Figure 2.11  CNMCA 500 hPa Geopotential height and Temperature Analysis: 

June 19th 2002, 00UTC. 
 

 
Figure 2.12 CNMCA 850 hPa Wet Bulb Potential Temperature Analysis: June 

19th 2002, 00UTC. 
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Figure 2.13 CNMCA 500 hPa Temperature Analysis Increment over First 

Guess: June 19th 2002, 00UTC. 
 

 
Figure 2.14  CNMCA 500 hPa Potential Temperature Analysis: June 19th 2002, 

00UTC. 
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III. BACKGROUND AND OBSERVATION ERRORS 
STATISTICS   

 

In order to maximize the amount of information extracted from the observations 

and, at the same time, reject spurious noise (i.e., information related to spatial scales 

which the numerical model and, consequently, the objective analysis algorithm, cannot 

resolve), it is vital that the background (Pb ) and the observation (R) error covariance 

matrices be specified as accurately as possible. 

Recalling their definitions: 

 

Pb= < eb eb
T>         (3.1) 

R= < eo eo
T>         (3.2) 

 

and the fact that both errors eb and eo refer to unknown, unbiased, �true� values, it is clear 

that we cannot compute these quantities from first principles. What is done in practice is 

to estimate these covariances by a statistical procedure: we are assuming that these errors 

are stationary in time and uniform over our spatial domain in order to derive their 

�climatology�. From this and the underlying assumptions that the errors are normally 

distributed and unbiased, we are then able to compute the second moments (variances and 

covariances) of their probability density functions (pdf). 

In practice this calculation can be done in at least three different ways: 

 

1. The �Observation method� (Rutherford, 1972; Hollingsworth and Lönnberg, 

1986). In this procedure observation-minus-first guess differences are collected 

for a period of time over a network of homogeneous and uncorrelated observing 

stations. From this data, which can be further stratified by pressure level and time 

of the year, the spatial statistics of the covariances can be computed, together with 

the perceived background and observation error variances; 
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2. The �NMC method� (Parrish and Derber, 1992). The main assumption of the 

method is that the statistical structure of the background correlations does not 

change significantly over the first 48h of model integration. Then it is possible to 

derive the background covariances from a statistical analysis of the differences of 

the 48h and 24h forecast fields verifying at the same time. The method is suitable 

for global numerical prediction systems and also very practical and 

straightforward to set up. On the other hand the main hypothesis it rests upon is 

rather difficult to justify; 

 

3. The �Analysis-Ensemble method�  (Fisher, 2001). This method is the one 

currently used at ECMWF. An ensemble of different analyses is realized by 

randomly perturbing the initial observations within the assumed observation error. 

These different analyses are then integrated in time till the next objective analysis, 

where the process is repeated. After a few days the differences in the first guess 

fields should be representative of the underlying background error statistics. 

 

The method chosen to specify the parameters involved in the modeling of the 

background and observation error matrices is the Observation method. The reason for 

this is that it is a direct and theoretically sound way of deriving the background spatial 

correlations and, as a bonus, it is also capable of providing an estimate of the background 

and observation variances, whose relative magnitude is perhaps the most fundamental 

quantity to be specified in every objective analysis algorithm. 

The main steps in the computations and the more relevant results will be 

described in the following paragraphs. For more details, see Vocino (2002). Also an 

account of the observations currently used and their assumed error statistics will be given. 

 

 

A. BACKGROUND ERROR STATISTICS 

In order to derive the necessary statistics on the background error, the 

�Observation method� has been used. The entire network of land radiosonde stations 
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present in the analysis domain (165) has been exploited in the computations: the data 

refer to the 00Z and 12Z synoptic times over a three month period starting from the 13th 

of March 2002. The temperature 6-h observation increments (denoted as Ok-Bk) were 

collected for the standard pressure levels (1000 hPa, 925 hPa, 850 hPa, 700 hPa, 500 hPa, 

400 hPa, 300 hPa, 200 hPa, 100 hPa, 50 hPa).  

After removing the bias for each station, the following estimate of observation 

increments correlations was computed for each pair of stations k,l: 

 

Rkl = <(Ok-Bk) (Ol-Bl)> /(<(Ok-Bk)2>1/2< (Ol-Bl)2>1/2      ( 3.1) 

 

Due to the separability assumption, we can study the quasi-horizontal (isobaric) 

correlations independently from the vertical correlations.  

In order to study the isotropic component of the isobaric correlations Rkl, they 

have been partitioned into intervals of 0.01 rad (≈200 Km) of their mutual great circle 

distance. In each of these intervals the Fisher z-transform of the empirical correlation 

coefficients has been performed: 

 

Z = 1/2log((1+R)/(1-R))       (3.2) 

 

This has been done in order to preserve the assumed normal distribution of the 

correlation coefficients around their mean value, and it has proved beneficial in the 

successive fit of the correlation models to the empirical data (Fig 3.1).   
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Figure 3.1  Example of correlation fit with arithmetical and Fisher z-transform 

mean. 
 

 

The model functions fitted to the empirical correlation coefficients have been the 

Negative Squared Exponential (NSE) function: 

 

ρB= exp(-0.5(r/Lc
2)            (3.3) 

 

 and the Second Order Autoregressive (SOAR) function: 

 

ρB= (1+r/Lc)exp-(r/Lc)            (3.4) 

 

What we are trying to determine is the correlation length Lc, which can be defined 

for any correlation model as (Daley, 1991): 

 

Lc ≡ (-2ρ/∇ 2ρ)1/2
r=0            (3.5) 
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where the Laplacian operator ∇ 2, due to the isotropy assumption, reduces to: 

 

∇ 2=1/r d/dr(rd/dr)            (3.6) 

 

Sample results of the fits are given below (distances are in radians units of Earth�s 

radius). 
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Figure 3.2 Correlation fit for isobaric (300 hPa) Temperature Observation 

increments. 
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Fig. 3.3: Correlation fit for isobaric (500 hPa) Temperature Observation increments. 
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Fig. 3.4: Correlation fit for isobaric (850 hPa) Temperature Observation increments. 
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The main quantitative results are summarized in the following two tables: 

 

 

 

 

Pressure Level (hPa) Lc (Km) Fit rmse 

1000 713 0.0618 

925 339 0.0321 

850 426 0.0362 

700 378 0.0244 

500 409 0.0304 

400 368 0.0250 

300 517 0.0441 

200 539 0.0214 

100 893 0.0488 

50 809 0.0421 

 

Table 3.1 Correlation lengths and rmse of fit for Temperature Observation 

increments: NSE correlation model. 
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Pressure Level (hPa) Lc (Km) Fit rmse 

1000 417 0.0560 

925 201 0.0259 

850 261 0.0291 

700 221 0.0186 

500 242 0.0251 

400 220 0.0195 

300 296 0.0443 

200 318 0.0251 

100 544 0.0329 

50 482 0.0281 

 

Table 3.2 Correlation lengths and rmse of fit for Temperature Observation 

increments: SOAR correlation model. 

 

 

From inspection it is clear that the SOAR function gives a better fit to the empirical 

correlations at almost all levels: this is mainly due to the better agreement of the SOAR 

model function with the data at intermediate distances (0.04-0.08 radians), where the 

NSE function is seen to fall off too steeply. The correlation lengths have been plotted for 

ease of reference in Fig. 3.5. 
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Figure 3.5 Vertical profiles of Correlation Lengths for Temperature Observation 

increments. 

 

 

Apart from the anomalously high value at 1000 hPa (whose cause is under 

investigation), the correlation lengths appear to have a plausible height profile. They are 

approximately constant over much of the troposphere and increase considerably in the 

stratosphere. The lower correlation length values shown by the SOAR model agree with 

the more gradual incline of the function at large distances, where the linear term becomes 

dominant. 

For the experimental runs of the objective analysis procedure, the SOAR model 

has been selected, with a constant tropospheric correlation length of Lc = 250 Km and a 

constant stratospheric (i.e. plev≥250 hPa) correlation length of  Lc = 400 Km. 

 

Another appealing feature of the �Observation method� is the possibility of deriving 

objective estimates of the background and observation errors� variances, which arguably 
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are the most important parameters to be specified in an objective assimilation algorithm. 

How this is done follows from the definition of the correlation coefficient  Rkl (3.1): 

assuming homogeneity of the errors and uncorrelated observation errors (as is the case 

for independent radiosonde measurements), it can be shown (Daley, 1991) that: 

 

Rz ≡ limr→0Rkl(r) = EB
2/(EB

2+EO
2)          (3.7) 

 

where EB
2,EO

2 are the background field and observation variances respectively. This is 

what can intuitively be expected, since the observations are mutually uncorrelated: for 

distances r close, but not equal to 0, the correlation can only be explained by the 

background term contribution, so that extrapolating to zero distance gives the relative 

weight of the background term with respective to the total (background + observation) 

variance. 

On the other hand the total variance of the observation increments can be easily 

computed from: 

 

EB
2+EO

2 = 1/K Σk<(Ok-Bk)2>           (3.8)  

 

so that, using (3.7-3.8) each variance can be calculated. The results of these computations 

have been summarized in Tables 3.3 and 3.4. 
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Pressure Level 
(hPa) 

Eb(°°°°C) Eo(°°°°C) Et(°°°°C) 

1000 1.52 2.19 2.67 

925 1.74 1.19 2.36 

850 1.26 1.31 1.82 

700 1.24 1.10 1.66 

500 1.46 1.58 2.16 

400 1.56 1.64 2.26 

300 2.24 1.37 2.63 

200 2.72 0.94 2.88 

100 1.15 1.16 1.63 

50 1.25 1.32 1.82 

 
Table 3.3 Background error, Observation error and Total perceived error for 

Temperature Observation increments: NSE correlation model. 
 
 

Pressure Level 
(hPa) 

Eb(°°°°C) Eo(°°°°C) Et(°°°°C) 

1000 1.62 2.12 2.67 

925 1.86 1.45 2.36 

850 1.33 1.24 1.82 

700 1.32 1.00 1.66 

500 1.56 1.49 2.16 

400 1.66 1.54 2.26 

300 2.39 1.08 2.63 

200 2.87 0.21 2.88 

100 1.20 1.10 1.63 

50 1.32 1.25 1.82 

 
Table 3.4 Background error, Observation error and Total perceived error for 

Temperature Observation increments: SOAR correlation model. 
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Also these values have been plotted for ease of reference in Fig.3.6 and 3.7. 
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Figure 3.6 Vertical profile of Background error, Observation error and Total 

perceived error for Temperature Observation increments: NSE 

correlation model. 
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Figure 3.7 Vertical profile of Background error, Observation error and Total 

perceived error for Temperature Observation increments: SOAR 

correlation model. 

 

From the plots it is clear that, with the exception of the 200 hPa level, the 

background and observed root mean square errors are fairly constant with height and of 

comparable magnitude, in the range of 1.2-1.5°C: these values are compatible with the 

expected accuracy of radiosonde observations and 6-h forecast fields. 

 

The statistical calculation of the parameters in the vertical component has been 

performed in analogous fashion. Since, from inspection of 2.67-70, 2.78-80 and 2.85-86, 

it is clear that all vertical correlations can be expressed in term of  χΦΦΦΦΦΦΦΦ(pi,pj) = χuu(pi,pj), 

the observed vertical correlations of the geopotential background increments have been 

fitted to the model function (1+kplog2(pi/pj))-1 (Fig.3.8). 
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Fig. 3.8: Fit of vertical profile of geopotential height background minus 

observation increments: equation (2.68) correlation model. 

 

 

The fit is satisfactory (RMSE = 0.101), giving for the fitting parameter kp= 1.77, 

which is the value used in the experimental trials of the objective analysis scheme. 

 

 

B. OBSERVATION ERROR STATISTICS 

Since the new objective analysis scheme is still in an experimental stage and it 

was felt it was important to validate the merits of the new algorithm and the revised 

background statistics and correlation functions, the observations used are the same 

ones used in the current operational Optimum Interpolation analysis. A brief account 

of their error statistics will be given below. 
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1. Radiosondes and Pibals 
Even today, radiosonde reports (TEMP) are the main component of the global 

weather observing system in the Northern Hemisphere. On the main synoptic hours (00 

and 12 UTC) about 165 reports are routinely analyzed (around 80 reports at 06 and 18 

UTC synoptic hours). Mandatory and significant level observations of temperature, 

relative humidity and wind are assimilated. Observations at levels not coincident with 

isobaric analysis levels are vertically (linearly in log(p)) interpolated. From the results 

shown in the previous section, the assumed accuracy (RMSE) of the temperature 

observations have been set to 1.2ºC; no radiative corrections are employed. For relative 

humidity the assumed accuracy has been set to 5%. Perceived winds accuracy varies from 

2.1ms-1  in the lower levels to 3.5 ms-1 in the stratosphere.  

A major advantage of the new objective analysis is that it employs temperatures 

instead of geopotential heights, as the previous one did. This brings about two positive 

features: the temperature observation errors are much less vertically correlated than the 

geopotential errors and the background error correlations for temperature are sharper than 

the corresponding geopotential correlations. The end result of these two factors is that 

higher vertical resolution analysis is possible. Also, on a more technical level, making the 

assumption of vertically uncorrelated temperature observation errors drastically improves 

the condition number of the analysis equations, thus greatly reducing the computation 

time required for the minimization of the cost function. Pilot weather balloons (Pibals) 

wind reports are also routinely analyzed, with expected observation errors somewhat 

greater than those assigned to radiosonde reports. 

 

2. Aircraft Based Observations 
Aircraft based temperature and wind observations are routinely assimilated, after 

they have undergone the preprocessing step of the analysis cycle, where consistency 

checks on the moving platform reported position and climatological gross limit checks 

are performed.  

Automatic observations (AMDAR, Aircraft Meteorological Data Relay) are given 

greater weight (i.e., smaller observation RMSEs) over manual observations (AIREP, 

Aircraft Reports). Both are treated as uncorrelated, single level reports. 
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3. Atmospheric Motion Winds 
Atmospheric motion winds are derived from tracking the movement of identified 

cloud structures from a sequence (i.e. three) of geostationary satellite images. These 

observations are not routinely analyzed in the current operational objective analysis, but 

their use is envisaged in the new data assimilation system. It is felt, however, that, due to 

the current uncertainties in the height assignment of the winds, research is still needed in 

order to design an observation operator H able to extract all the relevant information. 

 

4. Conventional Surface Observations 
Conventional surface observations, both over land (SYNOP) and over the sea 

(SHIP, BUOYS) are routinely analyzed. After preprocessing and superobbing the reports 

closer than the average grid spacing (≈55 Km), around 1200 observations are fed into 

objective analysis algorithm. For the upper air analysis surface pressure innovations are 

transformed into geopotential innovations of the closest analysis level and their impact on 

the analyzed variables (T,u,v) is evaluated through the use of the correlations 2.78-2.90. 

Surface fields (Surface pressure, Mean Sea Level pressure, 10-m wind) are 

analyzed through a two-dimensional, multivariate version of the algorithm (see Section 

II.C.2). Winds are only assimilated over sea. At the moment geostrophy is not strictly 

enforced, using a geostrophic coupling parameter µ=0.7. However it is felt that a more 

accurate estimate of the geostrophic, balanced component of the observed winds is 

needed in order to make good use of the wind observations. Ways to accomplish this by 

taking into account the structure of the forecast marine boundary layer are currently being 

investigated. 

The Mean Sea Level pressure (MSLP) is well defined over the sea but, over land, 

is more of a visual aid for forecasters than a real meteorological field. However it is felt 

to be important that the analyzed MSLP field closely draws to the accepted MSLP and 

surface wind observations. To accomplish this, it has been found necessary to objectively 

analyze the MSLP and surface wind departures. Reduction of surface pressure (SP) 

analysis to mean sea level did not give satisfactory results, mainly because of the 

differences between model temperatures and observing station temperatures.    
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5. Scatterometer Winds 
Scatterometers are satellite-borne radars, which provide measurement of surface 

wind speed and direction over sea. There is ambiguity, however, in the wind directions, 

and four different wind directions are compatible with each measurement. This ambiguity 

can be resolved either by choosing the direction closer to the first guess or by more 

advanced methods that take into account the spatial coherence properties of the retrieved 

wind field. 

 At the moment work is under way to assimilate the wind field product generated 

by the Dutch Meteorological Institute (KNMI) from the QuikSCAT satellite observations 

(SeaWinds). This is ��a near real-time 100-km resolution QuikSCAT product, which 

includes inversion, Quality Control, and a 2D-Var ambiguity removal algorithm�� 

making it suitable for data assimilation purposes (for more information, see 

www.knmi.nl/onderzk/applied/scattmtr/quikscat/index.html). 
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IV. VALIDATION AND PRELIMINARY RESULTS   

 

There are many possible ways through which the quality of the objectively 

analyzed fields can be gauged:  

 
1. A subjective, �synoptic� evaluation of the charts produced by the data 

assimilation cycle from a forecaster�s perspective, assessing the adherence to the 

observations (especially those not used in the analysis scheme, such as satellite 

imagery) and the degree of enforcement of �physical� balance properties; 

 
2. Use of internal diagnostics, such as the analysis error covariance matrix, which 

can be computed as 

 
Pa = (Pb

-1+ HTR-1H)-1           (4.1) 
 

 It is common to compute only the diagonal elements of the matrix, which give an 

estimate of the variances of the analyzed variables. Unfortunately eq. (4.1) strictly 

holds on condition that the background and observation error covariance matrices 

(Pb,R) have been correctly specified, which is not usually the case. If this is not 

true, then eq.(4.1) underestimates the real analysis error covariances 

 
3. A statistical, �objective� verification through comparison of forecasts produced 

from the analyzed fields with other forecasts started from independent data 

assimilation cycles. 

 

This later approach has been taken in this study. Details of its implementation will 

be given below, together with a discussion of the results so far obtained. 
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A. METHOD OF VERIFICATION 

In order to assess the quality of the analysis fields in an objective manner, two 

parallel runs of the HRM model (see Section I.A.3) have been set up, running at 00UTC 

every day up to T+48h: one starting from the analysis fields of the new data assimilation 

cycle, the other from the analyzed ECMWF fields interpolated to the HRM model grid. 

Apart from the initial conditions, all the other features of the two model integrations are 

equal (boundary conditions, resolution, etc.). This should guarantee that any difference in 

the subsequent forecast fields should be traced back to differences in the initial 

conditions. The accuracy of the forecast fields is estimated through the use of two 

common scalar measures of gridded fields: the root mean square error (RMSE) and the 

anomaly correlation (AC). 

Denoting by fij the grid values of the forecast field and aij the grid values of the 

verifying analysis, then the RMSE is given by (Wilkes, 1995): 

RMSE = (1/(MN)Σ i=1,MΣj=1,N(fij - aij))1/2       (4.1) 

This skill score is what we might define as an absolute measure of the forecast�s 

quality. However it is not able to distinguish if the errors are related to biases in the 

forecast fields or to the misplacement of significant weather patterns. In order to do this 

the anomaly correlation score is useful (Wilkes, 1995). If we define Cij the climatological 

averages of the analyzed fields at each grid point, then: 

AC = (Σi=1,MΣj=1,N(fij - Cij) (aij - Cij))/(( Σ i=1,MΣj=1,N(fij - Cij)2 (Σi=1,MΣj=1,N(aij - Cij)2))       

(4.2) 

From this expression it is clear that we are investigating the correlations between the 

anomalies with respect to climatology of the forecast and the analyzed fields. In this way 

we are highlighting the pattern similarities between the two fields, while giving less 

weight to their absolute values. 

A final point to be made is that the verifying analyses are the ECMWF analyses 

interpolated on to the HRM grid. This choice has been made in order to test the quality of 

the forecast fields derived from the data assimilation cycle under their most unfavorable 
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conditions. The statistical errors so derived should then represent an upper limit to the 

expected forecast errors. 

 

B. PRELIMINARY RESULTS 

Some results from a statistical comparison of the model runs over 30 cases (15th 

June 2002 � 15th July 2002) are shown in Fig.4.1 through 4.8 for the mean sea level 

pressure, geopotential height and wind speed fields. From inspection of the charts, it is 

evident that: 

 

1. Degradation in quality with respect to the ECMWF based model run is within 

acceptable limits (� 0.7 hPa for MSLP, from 5 to 10 gpm for geopotential height, 

from 0.9 m/s at 850 hPa to 2.3 m/s at the jet level height for wind speed); 

 

2. The anomaly correlation scores for both the MSLP and 500 hPa geopotential 

height field are very close: this is an indication that the location of weather system 

is correctly placed in the CNMCA analysis� derived forecast fields and that the 

main source of error is to be found in the diagnosed intensities; 

 

3. The error evolution is smooth in time, indicating that the analysis fields are 

perturbing the first guess fields in a �balanced� and physically reasonable manner. 

The gradual decrease in the RMSE differences between the two model runs is to 

due to the steady increase of influence of the common ECMWF derived boundary 

conditions.   

 

It should also be borne in mind the different spatial and vertical resolution of the 

ECMWF analyses (which are the results of 4D-Var minimizations at half the operational 

model resolution) with respect to the CNMCA analyses. The RMSE scores thus 

incorporate an intrinsic error of representativeness whose magnitude has not yet been 

determined.   
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Figure 4.1 RMSE of Mean Sea level pressure forecast fields vs. ECMWF 
analysis. 
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Figure 4.2 RMSE of 850 hPa geopotential height forecast fields vs. ECMWF 

analysis. 
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Figure 4.3 RMSE of 500 hPa geopotential height forecast fields vs. ECMWF 
analysis. 

 

 

Z 300 hPa RMSE

0
5

10
15
20
25
30
35
40

6 12 18 24 30 36 42 48

Forecast time

m

CNMCA_ANA ECMWF_ANA

 

Figure 4.4 RMSE of 300 hPa geopotential height forecast fields vs. ECMWF 
analysis. 
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Figure 4.5 RMSE of 850 hPa wind speed forecast fields vs. ECMWF analysis. 
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Figure 4.6 RMSE of 500 hPa wind speed forecast fields vs. ECMWF analysis. 
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Figure 4.7 RMSE of 300 hPa wind speed forecast fields vs. ECMWF analysis. 
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Figure 4.8 Anomaly Correlation of MSLP forecast fields vs. ECMWF analysis. 



64 

Z 500 hPa Anom. Corr.

0.994

0.995

0.996

0.997

0.998

0.999

1

6 12 18 24 30 36 42 48

Forecast time

CNMCA_ANA ECMWF_ANA

 

 

Figure 4.9 Anomaly Correlation of 500 hPa Geopotential height forecast fields vs. 

ECMWF analysis. 
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V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER 
DEVELOPMENT   

 

In this work the main ideas behind the new data assimilation cycle being 

implemented at Italian Air Force Weather Service have been presented. The system is in 

a relatively early stage of development and many important components are still missing 

in order to make it truly effective and operationally viable. However it is felt that the 

basic building blocks of the system have been set up: 

1. The pre-processing and quality control of the observations; 

2. The new 3-D covariance model in spherical coordinates; 

3. The descent algorithm for the minimization of the cost function; 

4. The statistical evaluation of the background error covariances. 

At this point, the development effort will concentrate mainly on the following 

areas, which are deemed to be the most urgent requirements for an operational use of the 

new system: 

1. The implementation of an effective buddy check algorithm for the screening of 

marginal observations. Given the global nature of the analysis scheme, a local 

method such as that first proposed by Lorenc (1981) would not be appropriate. 

Approximations to modern methods following Daley and Barker (2000, Section 

9.3) are being investigated. 

2. The implementation of an effective and easy to compute preconditioner for the 

minimization of the cost function is also being pursued. Currently the time 

required for the minimization algorithm is within acceptable limits, but it is 

expected that the inclusion of a larger number of satellite observations will change 

this. 
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3. The extension of the algorithm to observations that are not linearly related to the 

state variables. This work is well under way for scatterometer winds and will be 

started for column precipitable water observations and satellite radiances. The 

direct assimilation of satellite radiances is a long term goal whose main value is 

not expected to be so much in improving the current analyses over the present 

analysis domain as in the experience to be gained in view of the future availability 

of much improved observations from satellite hyperspectral sounders.   

 
The results shown in the previous section indicate that the skill of the forecast 

fields derived from the new assimilation cycle still lags the skill of ECMWF derived 

forecasts by 18-24 h when verified with respect to ECMWF analyses. As mentioned in an 

earlier section, part of this is due to representativeness error. It is felt that this error can be 

reduced within 6-12h when more observations will have been added and some parameter 

optimizations will have been performed.    
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