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ABSTRACT 
 
 
 
LPI radar is a class of radar systems that possess certain performance 

characteristics that make them nearly undetectable by today’s digital intercept receivers. 

This presents a significant tactical problem in the battle space. To detect these types of 

radar, new digital receivers that use sophisticated signal processing techniques are 

required. 

This thesis investigates the use of cyclostationary processing to extract the 

modulation parameters from a variety of continuous-wave (CW) low-probability-of-

intercept (LPI) radar waveforms. The cyclostationary detection techniques described 

exploit the fact that digital signals vary in time with single or multiple periodicities, 

because they have spectral correlation, namely, non-zero correlation between certain 

frequency components, at certain frequency shifts. The use of cyclostationary signal 

processing in a non-cooperative intercept receiver can help identify the particular emitter 

and can help develop electronic attacks. LPI CW waveforms examined include Frank 

codes, polyphase codes (P1 through P4), Frequency Modulated CW (FMCW), Costas 

frequencies as well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) 

waveforms. It is shown that for signal-to-noise ratios of 0dB and –6 dB, the 

cyclostationary signal processing can extract the modulation parameters necessary in 

order to distinguish among the various types of LPI modulations. 
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EXECUTIVE SUMMARY 
 
 
 

LPI radar is a class of radar systems possessing certain performance 

characteristics that make today’s digital intercept receivers virtually unable to detect 

them. This presents a significant tactical problem in the battle space. To detect these 

types of radar, the military requires new digital receivers that use sophisticated signal 

processing techniques. 

This thesis investigates the use of cyclostationary processing to extract the 

modulation parameters from a variety of continuous-wave (CW) low-probability-of-

intercept (LPI) radar waveforms. The cyclostationary detection techniques described 

exploit the fact that digital signals vary in time with single or multiple periodicity, owing 

to their spectral correlation, namely, non-zero correlation between certain frequency 

components, at certain frequency shifts. The use of cyclostationary signal processing in a 

non-cooperative intercept receiver can help identify the particular emitter and can help 

develop electronic attacks. LPI CW waveforms examined include Frank codes, polyphase 

codes (P1, P2, P3 and P4), Frequency Modulated CW (FMCW), Costas frequencies as 

well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) waveforms. This 

thesis shows that for signal-to-noise ratios of 0dB and –6 dB, the cyclostationary signal 

processing can extract modulation parameters such as carrier frequency, chip rate, code 

rate and bandwidth, necessary in order to distinguish between the various types of LPI 

radar modulations.  

Two computationally efficient methods of cyclostationary processing were 

implemented: Time Smoothing FFT Accumulation and Direct Frequency Smoothing. It is 

possible to verify that the time smoothing method is more computationally efficient than 

the frequency smoothing for signals with higher complexity (polyphase codes, Frank 

codes, Costas and FSK/PSK). The results from both methods were compared and 

discussed for various LPI modulation types. 

The results due to variations of modulation characteristics are compared and the 

efficiency of both cyclostationary methods for each modulation is measured with relation 



 xxii

to the original parameters. This thesis also includes comments on which LPI radar signals 

were more suitable for cyclostationary analysis and suggestions for future classification 

systems for these signals, using combined techniques. 
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I. INTRODUCTION  

 
 
 

A. LPI RADARS 
 

Standard surveillance radars always faced the problem of being detected by third-

party intercept receivers. To mitigate this problem, a low probability of interception has 

become a very common tactical requirement for new radars. The new task of these radars 

is essentially two fold: the radar must meet its specified detection performance with 

minimum radiated power and must measure target characteristics with a modulation that 

is difficult for an intercept receiver to identify. [1] 

Because of their low power, wide BW (BW) and frequency variability, LPI radars 

make detection by modern intercept receivers difficult. The resulting basic definition is 

that LPI radars can detect targets at longer ranges than the modern intercept receivers 

detect the radars. 

This main characteristic of LPI radars may be described by the sensitivity 

advantage (δ ), defined as the ratio between the signal power needed at the intercept 

receiver to that needed at the LPI radar, which can be expressed mathematically as [2]: 

224 t I RRIR T

RT T t r IR I

G G LP R
P G G L R

πδ
σ

 ′  
= =   

  
    (1.1.1) 

where PIR is the power required at the intercept receiver to detect a signal; PRT is the 

power required at the LPI radar receiver to detect a target; Tσ  is the target’s RCS (Radar 

Cross Section); Gt is the bore sight gain of the LPI radar’s directive transmit antenna; '
tG  

is the gain of the LPI radar’s transmit antenna side lobe in the direction of the intercept 

receiver; GI is the gain of the intercept receiver’s antenna; GR is the radar’s receive 

antenna; LIR is the loss in the intercept receiver; LRR is the loss between the radar’s 

antenna and receiver;  TR  is the radar to target range and RI is the radar to intercept 

receiver range. The sensitivity advantage (δ ) depends on the intercept receiver 
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characteristics and should be a high value, on the order of 50 dB, for a case where we 

have a simple receiver against an LPI radar. 

The success of LPI radars depends on how hard it is for a receiver to detect the 

radars’ emission parameters. The processing capabilities of modern ES (Electronic 

Support) equipment are increasing, leading to more specific LPI requirements. On the 

receiver side, better results in spectral analysis, for non-cooperative detection and 

classification, may be obtained if these radar signals are modeled as cyclostationary. 

All digitally modulated signals are cyclostationary, meaning that their 

probabilistic parameters vary in time with single or multiple periodicities. One property 

that extends from this is that digitally modulated signals have a certain amount of spectral 

correlation. In other words, the signal is correlated with frequency-shifted versions of 

itself (auto-correlation) at certain frequency shifts. Analyzing LPI radar waveforms using 

cyclostationary modeling is advantageous because non-zero correlation is exhibited 

between certain frequency components when their separation is related to the periodicity 

of interest (e.g., the symbol rate or carrier frequency). The value of that spectral 

separation is referred to as the cycle frequency. 

Two main algorithms stand out as computationally efficient tools for 

cyclostationary signal processing. The first is the time smoothing Fast Fourier Transform 

(FFT) Accumulation Method and the other is the Direct Frequency Smoothing Method 

[3]. Both tools are implemented in MATLAB® 6.1 for this thesis. [4] 

B. PRINCIPAL CONTRIBUTIONS 

The objective of the research described in this thesis was to implement in 

MATLAB® [4], two computationally efficient cyclostationary algorithms known as the 

Time Smoothing FFT Accumulation Method and the Direct Frequency Smoothing 

Method, defined in [3] and investigate them as an ES receiver for processing LPI radar 

signals. 

The first step was to generate the LPI signals in a standardized way. The code 

used was called the “LPI Signal Generator,” developed by Fernando Taboada [5], and 

also includes contributions by the author of this thesis. The generated modulations were 
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• BPSK (Binary Phase Shift Keying); 

• FMCW (Frequency Modulated Continuous Wave); 

• Polyphase Codes (P4, P3, P2 P1 and Frank Codes); 

• Costas Codes (Frequency Hopping - FH);  

• FSK/PSK (Combined Frequency Shift Keying and Phase Shift Keying) with a 

Costas frequency distribution; and 

• FSK/PSK with a target matched frequency distribution. 

Once the signal test matrix was completed, simulations to verify the implementation of 

each algorithm were performed in MATLAB® [4] and the results were compared with 

other receiver signal processing techniques, such as Higher Order Statistics [5], 

Quadrature Mirror Filter Banks [6] and the Wigner Distribution [7]. 

A Graphic User Interface (GUI) was developed in MATLAB® [4] to simplify the 

analysis of the simulation results.  The output obtained from the cyclostationary signal 

models were then used to determine the various characteristics of each modulation in 

question. 

Previous work has been done to analyze phase modulation techniques such as 

BPSK (Binary Phase-Shift Keying) and QPSK (Quaternary Phase-Shift Keying) using 

time-smoothing techniques [8, 9]. In this thesis, both frequency and time-smoothing 

techniques are used to analyze various LPI radar modulations and to evaluate the 

measurement of the modulation parameters. 

C. THESIS OUTLINES 

The purpose of this thesis is to document the software implementation of a non-

cooperative cyclostationary receiver for LPI radar waveforms.  The remainder of this 

thesis supports this purpose and is organized as follows. 

Chapter II presents a brief description of Low Probability of Intercept (LPI) 

waveforms and their spectral properties. Two FSK and PSK-combined modulations are 

discussed and analyzed. BPSK, P4, FMCW and Costas Codes are described in depth in 

[5]. 
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Chapter III presents the Cyclostationary signal processing algorithms, a brief 

description of the cyclostationary processor, the MATLAB® [4] tools and the extracted 

parameters description. 

Chapter IV shows the analysis of the different modulation types, their parameters, 

as well as the simulation results. 

Chapter V summarizes the results of this thesis and also makes recommendations 

for future research. 

Appendix A contains the MATLAB® [4] M-files used for implementation of both 

algorithms from [3]. 

Appendix B contains the MATLAB® [4] M-files for the LPI Generator blocks for 

FSK/PSK Costas and Target signals. 

Appendix C contains a table of all LPI radar signals analyzed. 
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II. LPI WAVEFORMS DESCRIPTION 

 

 

A. BACKGROUND 

LPI radars are especially designed to oppose external third-party receivers that 

attempt to identify the system characteristics and emitter location. Modern electronic 

support (ES) receivers can easily detect the high peak power transmitted by pulsed radars. 

The use of CW (Continuous Wave) modulations and the ability to manage the transmitted 

power limiting emission to the minimum power required to detect typical targets, at the 

required range, make LPI radar signals much less detectable. [5] Besides power 

management, LPI radars modulate their transmissions spreading the energy in frequency 

so that the frequency spectrum of the transmitted signal is wider than required to carry 

the signal’s information. Spreading the signal energy reduces the signal-strength-per-

information BW.  

LPI waveforms investigated in this thesis include BPSK, FMCW, P4, P3, P2, P1, 

Frank Codes, Costas Codes, FSK/PSK with a Costas frequency distribution, and 

FSK/PSK with a target matched frequency distribution. Refer to Fernando Taboada’s [5] 

thesis work for a detailed description of the other LPI modulations analyzed in this thesis. 

The complete matrix of analyzed signals is shown in Appendix C. This thesis presents the 

analysis of one signal example per modulation type. The analysis of the rest of the signals 

is included in a Technical Report to be published. [10] 

This chapter specifically discusses the two modulation types that combine 

frequency and phase-shift keying (FSK/PSK combined). One modulation type is a 

combination of a Costas frequency-hopping technique and binary phase modulation using 

Barker sequences of different lengths. The second is a frequency-hopping technique that 

uses the characteristic frequency distribution of a desired target, creating a matched FSK, 

which is then modulated with a random-phase keying.  
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B. FSK/PSK COMBINED USING A COSTAS-BASED FREQUENCY-
HOPPING (FH) TECHNIQUE 

This modulation technique is the result of a combination of frequency-shift 

keying based on a Costas frequency-hopping matrix and phase-shift keying using Barker 

sequences of different lengths. A thorough description of the implementation of a Costas 

frequency-hopping technique is in [5]. The purpose of this section is to describe briefly 

the phase encoding applied to a Costas signal, generating the FSK/PSK combined 

waveform. 

In a Costas frequency-hopped signal, the firing order defines what frequencies 

will appear and with what duration. Since we are discussing CW radars, the usual 

terminology does not apply to this case. Instead of a “burst” of pulses, we have 

frequencies being continuously emitted during a defined period of time. This period may 

be divided into sub-periods, labeled TF for each frequency. The length of each sub-period 

depends on the sampling interval. During each sub-period, the signal frequency (one of 

the FN  frequencies) is modulated by a binary phase sequence according to a Barker 

sequence of length five (+ + + - +), seven (+ + + - - + -), eleven (+ + + - - - + - - + -) or 

thirteen (+ + + + + - - + + - + - +). For example, the FSK/PSK signal defined by S = 1+, 

1+, 1+, 1-, 1+, 2+, 2+, 2+, 2-, 2+, 3+, 3+, 3+, 3-, 3+, 4+, 4+, 4+, 4-, 4+, 5+, 5+, 5+, 5-, 5+, 

represents a waveform comprised of 5FN =  different frequencies, that are each 

subdivided into five phase slots, labeled TP, according to the Barker sequence of length 

five (+ + + - +). The final waveform may be seen as a binary phase-shifting modulation 

within each frequency hop, resulting in 5 phase slots equally distributed in each 

frequency slot, giving a total of 25 phase slots. 

 As illustrated in Figure 1, if we consider FN  as the number of frequency hops and 

PN  as the number of phase slots of duration TP (Chip Period) in each frequency sub-

period TF, the total number of phase slots in the FSK/PSK waveform is given by: 

   *  F PN N N=       (2.1.1) 
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The block diagram in Figure 1 describes the MATLAB® [4] implementation. The 

user defines which sequence of Costas frequency hops to be used and also how long the 

Barker sequence is (5, 7, 11 or 13). The number of frequency hops is pre-defined to be 

“seven” and the user may select from two different frequency sequences, varying from 

1kHz to 8kHz. The Costas matrix used in the implementation is the following: 

 Costas Sequence 1  4   7   1   6   5   2   3
   

 Costas Sequence 2  2   6   3   8   7   5   1
                                              Frequencies (kHz)

• →  
 • →   . 

 
Figure 1 a) FSK/PSK Costas LPI Generator MATLAB® [4] code block 

diagram and, b) general FSK/PSK signal containing NF frequency 
hops with NP phase slots per frequency. 

 

The Barker sequence is generated and the frequency-hopping signal is then phase-

modulated accordingly. For example, if the first Costas sequence is selected, after a phase 

modulation using a Barker sequence of length 5, the final waveform becomes S = 4+, 4+, 
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4+, 4-, 4+, 7+, 7+, 7+, 7-, 7+, 1+, 1+, 1+, 1-, 1+, 6+, 6+, 6+, 6-, 6+, 5+, 5+, 5+, 5-, 5+, 2+, 2+, 2+, 2-, 

2+, 3+, 3+, 3+, 3-, 3+. Figure 2 shows the Power Spectral Density (PSD) plots that reveal 

the spread spectrum characteristic of these signals. The Costas sequence used in the 

following example is always the same and the seven frequency hops are 4, 7, 1, 6, 5, 2, 

and 3kHz . The sampling frequency was 15kHz , satisfying the minimum Nyquist rate 

(fs>>2*f) for the largest frequency value. All plots were generated in MATLAB® [4] 

using the routines “fsk_psk_costas.m” and “PAF_FSK_PSK.m”; both listed in Appendix 

B. 

 
Figure 2 PSD plot for a Costas FH waveform with no phase modulation. 

 

Figure 3 shows the Costas frequency-hopping waveform time domain, before the 

phase modulation. 
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Figure 3  Time domain plot for a Costas FH waveform with no phase 

modulation. 
 

Figures 4 to 11 show the PSD, Periodic Ambiguity Function (PAF) and Phase 

Plots for the same frequency sequence as in Figure 2 but now with a phase modulation 

using a Barker-11 sequence. Other signals that may be generated are Costas Frequency-

Hopping with Barker-5, Barker-7 and Barker-13 phase modulation. These signals are 

going to be analyzed later in Chapter IV. 

The firing orders generated using Costas arrays are designated as optimum in 

reference to the side-lobe behavior of the PAF. As we increase the length of the Barker 

sequence (e.g. from five to eleven), we notice a decrease in the side-lobe level as well.  

The waveforms generated are just examples and various combinations of 

frequency-shift keying and phase-shift keying may be applied to obtain similar results. 

Other examples of these kinds of waveforms are presented in [12]. 
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The PAF plots were performed both for a complete period for all Costas 

frequencies in the sequence and for only one period in one frequency hop. Therefore, the 

Costas PAF characteristics as well as the BPSK PAF characteristics may be compared. 

Figure 4 shows the PSD of the Costas sequence 1 but now with the phase 

modulation using a Barker-11 sequence and with one carrier cycle per phase (cpp). We 

may verify the “flat top” characteristic of the spectrum of LPI signals and also the seven 

“frequency hops.”  

 
Figure 4 PSD for FSK/PSK Costas FH phase modulated with a Barker-11 

sequence and 1 cpp. 

 

The phase plot in Figure 5 reveals the Barker-11 sequence phase change. Figure 

6, Figure 7 and Figure 8 show the PAF “thumbtack” [11] characteristic of these types of 

Costas signals. These PAF plots were generated for one period of the whole Costas 

sequence.  
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Figure 5 Phase plot for FSK/PSK Costas FH phase modulated with a Barker-

11 sequence. 

 
Figure 6 PAF contour plot for FSK/PSK Costas FH phase modulated with a 

Barker-11 sequence (plot of one period for all frequencies in one 
Costas sequence). 
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Figure 7 PAF delay axis cut for FSK/PSK Costas FH phase modulated with a 

Barker-11 sequence (plot of one period for all frequencies in one 
Costas sequence). 

 
Figure 8 PAF Doppler axis cut for FSK/PSK Costas FH phase modulated with 

a Barker-11 sequence (plot of one period for all frequencies in one 
Costas sequence). 
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Figure 9, Figure 10 and Figure 11 show the modulation for one period of one 

frequency hop of the Costas sequence used in Figure 2. Each frequency hop has similar 

PAF characteristics of a single carrier frequency BPSK signal. The plots of these Figures 

were done for the first carrier frequency of the first Costas sequence. Other modulation 

examples are analyzed later in Chapter IV. 

 
Figure 9 PAF contour plot for FSK/PSK Costas FH phase modulated with a 

Barker-11 sequence (plot of one period for one frequency in the 
Costas sequence). 
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Figure 10 PAF delay axis cut for FSK/PSK Costas FH phase modulated with a 

Barker-11 sequence (plot of one period for one frequency in the 
Costas sequence). 

 
Figure 11 PAF Doppler axis cut for FSK/PSK Costas FH phase modulated with 

a Barker-11 sequence (plot of one period for one frequency in the 
Costas sequence). 
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C. FSK/ PSK COMBINED USING A TARGET-MATCHED FREQUENCY 
HOPPING 

Instead of spreading the energy of the signal equally over a broad BW, this type 

of technique concentrates the signal energy in specific spectral locations of most 

importance for the radar and its typical targets. The signals have a pulse compression 

characteristic, and therefore they can achieve a low probability of intercept. 

The implementation starts with a simulated-target time-radar response. The block 

diagram in Figure 12 describes the signal generation in detail. The target signature data is 

Fourier transformed and the frequency components, their correspondent magnitudes, and 

their initial phases are collected. A random selection process chooses each frequency 

with a probability distribution function defined by the spectral characteristics of the target 

of interest obtained from the Fast Fourier Transform (FFT). That is, the frequencies at the 

spectral peaks of the target (highest magnitudes) are transmitted more often. Each 

“frequency hop,” transmitted during a specific period of time, is also modulated in phase, 

having its initial phase value (from FFT) modified by a pseudo-random spreading-phase 

sequence code of values equally likely to be zero or π  radians. [11] The matched 

FSK/PSK radar will then use a correlation receiver with a phase mismatched reference 

signal instead of a perfectly phase matched reference. This allows the radar to generate 

signals that can match a target’s spectral response in both magnitude and phase. [11] 

Only a single target test signal is generated and serves our purpose of testing the 

performance of a digital cyclostationary receiver against these kinds of signals.  
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Figure 12 Block diagram of the MATLAB® [4] implementation of FSK/PSK 

target matched waveform. 

 

Figure 13 shows the 64 complex points target range radar response plot. Figure 14 

reveals the 64 frequency components that will be selected randomly 256 times. Figure 15 

illustrates the frequency firing order, Figure 16 illustrates the PSD and Figures 17, 18 and 

19 illustrate the PAF properties of these signals. Figure 15 shows the histogram of the 64 

frequency components and shows the number of occurrences of each frequency. Note 

that this is similar to the FFT output or probability distribution shown in Figure 14. The 

following figures show one signal example with 5 carrier periods per phase and 256 

frequency hops. Figure 16 shows the PSD plots and reveals the highly spread-spectrum 

characteristics of this type of modulation. Note the noise-like behavior due to the random 

phase modulation. 
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Figure 13 FSK/PSK target 64 complex points radar range simulated response. 

 
Figure 14 FSK/PSK target frequency probability distribution of 64 frequency 

components. 
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Figure 15 FSK/PSK target 64 frequency components histogram with number of 

occurrences per frequency for 256 frequency hops. 

 
Figure 16 PSD for FSK/PSK target with 64 frequency components, 256 

frequency hops, random phase modulation and 5 cpp. 
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Figure 17 PAF contour plot for FSK/PSK target with 64 frequency components, 

256 frequency hops, random phase modulation and 5 cpp. 

 
Figure 18 PAF delay cut for FSK/PSK target with 64 frequency components, 

256 frequency hops, random phase modulation and 5 cpp. 
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Figure 19 PAF Doppler cut for FSK/PSK target with 64 frequency components, 

256 frequency hops, random phase modulation and 5 cpp. 

 

An extensive discussion regarding the PAF “thumbtack” characteristic of these types of 

waveforms, as shown in the last three Figures, are presented in Donohoe et al in [11]. 

In this chapter we discussed the implementation of two complex LPI Radar 

signals using FSK and PSK techniques combined. A brief theoretical and practical 

tutorial on cyclostationarity processing and its implementation using the FFT 

Accumulation Method and the Direct Frequency Smoothing Method is given in the next 

chapter. 
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III. CYCLOSTATIONARY SIGNAL PROCESSING 
ALGORITHMS AND TUTORIAL 

This chapter briefly explains the cyclostationary processes, the time-smoothing 

(FAM) and frequency-smoothing (DFSM) algorithms and how they were implemented. 

A thorough description on cyclostationarity and its properties may be found in [12], [13] 

and [14]. 

 

A. CYCLOSTATIONARY THEORY 

The cyclostationary theory for signal processing, as described by William A. 

Gardner [12], involves three main properties: 

• Generation of spectral lines by quadratically transforming a signal; 

• The statistical property called “second-order cyclostationarity,” namely the 

periodic fluctuation of the auto-correlation function with time; 

• The correlation property for signal components in distinct spectral bands. 

The cyclostationary attribute, as it is reflected in the periodicities of the second 

order moments of the signal, can be interpreted in terms of the generation of spectral lines 

from the signal by putting the signal through a quadratic non-linear transformation. This 

property explains the link between the spectral-line generation property and the statistical 

property called “spectral correlation”, corresponding to the correlation that exists 

between the random fluctuations of components of the signal residing in distinct spectral 

bands. The correlation integral is very important in theoretical and practical applications 

and may be defined as 

( ) ( ) ( )h x f u g x u du
∞

−∞

= +∫       (3.1.1) 

Applying an FFT, it forms a Fourier transform pair given by: 

{ }( ) ( ) *( )ℑ =h x F s G s        (3.1.2) 
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If f(x) and g(x) are the same function, the integral above is normally called the 

autocorrelation function and called cross-correlation if they differ. The autocorrelation 

function is a quadratic transformation of a signal and may be interpreted as a measure of 

the predictability of the signal at time t +τ based on knowledge of the signal at time t. 

[13] 

When considering a time series of length T, the autocorrelation function becomes 

the time-average autocorrelation function given by 

2
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2 2
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−
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The non-zero correlation (second-order periodicity) characteristic of a time series x(t) 

exists, in the time domain, if the equation, 
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     + − ≠        
 

∫�      (3.1.4) 

where α is the cycle frequency. ( )xRα τ  is the cyclic auto-correlation function, also known 

as the “time-frequency limit autocorrelation function”. The derivation of (3.1.4) from 

(3.1.3) using a non-probabilistic approach is developed in [10]. Since (3.1.4) is a 

generalization of (3.1.3), when α = 0 , the DC component of (3.1.4) yields the time-

average autocorrelation function of (3.1.3). Therefore, the process defined by (3.1.4) is 

able to extract more information from the signal than the process defined by (3.1.3). [13] 

It is well known that the PSD may be obtained from the Fourier Transform of the 

autocorrelation function (3.1.3). [14] 

2( ) ( ) π ττ τ
∞

−

−∞

= ∫ i f
x xS f R e d       (3.1.5) 

In the same manner, it is shown in [3] that the Spectral-Correlation Density (SCD), or 

Cyclic-Spectral Density, may also be obtained from the Fourier Transform of the cyclic 

autocorrelation function (3.1.4) 
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2 *1( ) ( ) lim
2 2

α α π τ α ατ τ
∞

−

→∞
−∞

   = + −   
   ∫� i f

x x T TT
S f R e d X f X f

T
 (3.1.6) 

where α is the cycle frequency and: 

2
2

2

( ) ( ) π−

−
∫�
T

j fu
T

T

X f x u e du       (3.1.7) 

which is the Fourier Transform of the time domain signal x(u). The additional variable 

α leads to a two-dimensional representation ( )α
xS f , in the bi-frequency plane or (f, α ) 

plane. [12] 

The spectral correlation exhibited by cyclostationary or almost cyclostationary 

processes is completely characterized by the cyclic spectra ( α
xS ) or characterized 

equivalently by the cyclic autocorrelations ( α
xR ). [12] In practice, the cyclic-spectral 

density must be estimated because the signals being considered are defined over a finite 

time interval ( ∆ t), and therefore the cyclic-spectral density cannot be measured exactly. 

Estimates of the cyclic-spectral density can be obtained via time or frequency-smoothing 

techniques. In this work we will be able to compare both methods when analyzing LPI 

radar signals. 

An estimate of the SCD can be obtained by the time-smoothed cyclic 

periodogram is given by [10]: 

zz

2

2

1( ) ( , ) ( , )α α

∆
+

∆
∆

−

≈ =
∆ ∫T TW W

tt

x x t x
tt

S f S t f S u f du
t        (3.1.8) 

where 

z
*1( , ) , ,

2 2
α α   = + −   

   T W WWx T T
W

S u f X u f X u f
T    (3.1.9) 

and ∆ t = total observation time of the signal, TW = short-time FFT window length, and: 
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W

W
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j fu
T

Tt

X u f x u e duπ

+

−

−

= ∫      (3.1.10) 

is the sliding short-time Fourier Transform, and is a viable solution for computing the 

SCD estimations. Using a graphical explanation, in Figure 20, for some signal x(t) the 

frequency components are evaluated over a small time window TW (sliding FFT time 

length), along the entire observation time interval ∆t. [12] The spectral components 

generated by each short-time Fourier Transform have a resolution, 1
W

f T∆ = . In Figure 

20, L is the overlapping factor between each short-time FFT. In order to avoid aliasing 

and cycle leakage on the estimates, the value of L is defined as 4
WTL ≤ . [12] 

 
Figure 20 Pictorial illustration of the estimation of the time-variant spectral 

periodogram (adapted from [12, 17]). 
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Figure 21 shows that the spectral components of each short-time FFT are 

multiplied, still providing the same resolution capability 1
W

f T∆ = , for the cyclic-

spectrum estimates. Note that the dummy variable u has been replaced by the time 

instances 1... pt t . At each window (TW), two components centered about some f0 and 

separated by some 0α  are multiplied together and the resulting sequence of products is 

then integrated over the total time ( t∆ ), as shown in (3.1.8). 

 
Figure 21 Sequence of frequency products for each short-time Fourier 

transforms (adapted from [12, 17]). 
 

The estimation ( ) ( , )α α
∆≈

TWx x tS f S t f  can be made as reliable and accurate as 

desired for any given t and ∆f, and for all f by making ∆t sufficiently large, provided that 

equation (3.1.4) exists within the interval ∆t and that a substantial amount of smoothing 

is carried out over ∆t, which leads to the Grenander’s Uncertainty Condition * 1t f∆ ∆ �  

[12]. This Uncertainty Condition means that the observation time ( t∆ ) must greatly 
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exceed the time window (TW), which is used to compute the spectral components. A data 

taper window is also used to minimize the effects of cycle and spectral leakage 

(estimation noise), introduced by frequency component side-lobes. [12] 

If we consider the fact that the cycle frequency estimate is 1
 tα∆ ≈ ∆ , it results 

that the estimation of some (f0, 0α ) represents a very small area on the bi-frequency plane 

as shown in Figure 22 and since one needs a significant number of estimates to represent 

the cyclic spectrum adequately, it follows that obtaining estimates may become very 

computationally demanding. [12] 

 
Figure 22 Bi-frequency plane, frequency and cycle frequency resolutions on 

detailed area (adapted from [12, 17]). 

 



27 

B. DISCRETE TIME CYCLOSTATIONARY ALGORITHMS 

The computationally efficient algorithms for implementation of time and 

frequency-smoothing techniques are discussed in [3]. These are the FFT Accumulation 

Method (FAM) and the Direct Frequency-Smoothing Method (DFSM) as described 

below. The temporal and spectral smoothing equivalence is also addressed in [12]. The 

computationally efficient algorithms for implementation of time and frequency-

smoothing techniques are extensively discussed in [3]. 

 

1. The Time-Smoothing FFT Accumulation Method (FAM): 

The time-smoothing FFT Accumulation Method was developed to reduce the 

number of computations required to estimate the cyclic spectrum. [3] This technique 

divides the bi-frequency plane into smaller areas called the channel-pair regions and 

computes the estimates a block at a time using the Fast Fourier Transform. Describing the 

estimated time-smoothed periodogram from Equations (3.1.8) and (3.1.9), in discrete 

terms, yields 

' '

1
*

'
0

1 1( , ) , ,
' 2 2

γ γ γ−

=

    = + −        
∑N N

N

x N N
n

S n k X n k X n k
N N   (3.2.1) 

where 

[ ] [ ]
2' 1

'
'

0

( , )
π−−

=
∑�

j knN
N

N
n

X n k w n x n e ,      (3.2.2) 

is the Discrete Fourier Transform of x[n], w[n] is the data taper window (e.g. Hamming 

window) and the discrete equivalents of f and α  are k and γ respectively. Figure 23 

represents a block diagram [13] used in the implementation of this method in 

MATLAB®. [4] 
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Figure 23 FAM block diagram (adapted from [3, 13]). 
 

The algorithm consists of three basic stages: computation of the complex 

demodulates (divided into data tapering, sliding 'N  point Fourier transforming and base 

band frequency-downshift translation sections), then computation of the product 

sequences and smoothing of the product sequences. Making a parallel between the 

variables in equations (3.1.8), (3.1.9) and (3.2.1), we have: 

NAME CONTINOUS TIME DISCRETE TIME 

SCD ( , )
TWx tS t fα

∆  
'
( , )

Nx NS n kγ  

Short FFT Size TW 'N  

Observation Time t∆  N 

Time t n 

Frequency f k 

Cycle Frequency α  γ  

Grenander’s Uncertainty 

Condition 
1fM α

∆= ∆ �  1'
NM N= �  

Table 1.   Comparison of the estimated time-smoothed Periodogram expressed in 
continuous and discrete time. 
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The parameter N represents the total number of discrete instances within the oservatio 

time and 'N represents the number of pints within the discrete short-time sliding FFT. In 

the FAM algorithm, spectral components of a sequence, x[n], are computed using (3.2.2). 

Two components are multiplied (3.2.1) to provide a sample of a cyclic spectrum estimate 

representing a finite area on the bi-frequency plane called a “channel pair region,” as 

shown in Figure 24. There are 2N  channel pair regions in the bi-frequency plane. Note 

the sixteen small channel pair regions corresponding to a value of N = 4 in Figure 24. 

 
Figure 24 Division of bi-frequency plane in channel pair regions (adapted from 

[3, 15]).  

 

A sequence of samples for any particular area may be obtained by multiplying the same 

two components of a series of consecutive short-time sliding FFT's along the entire 

length of the input sequence. After the channelization performed by an 'N -point FFT 

sliding over the data with an overlap of L samples, the outputs of the FFT’s were shifted 

in frequency in order to obtain the complex demodulate sequences (see Figure 23). [3] 
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Instead of computing an average of the product of sequences between the complex 

demodulates, as in (3.1.8), they are Fourier transformed with a P-point (second) FFT. The 

computational efficiency of the algorithm is improved by a factor of L since only N
L  

samples are processed for each point estimate. With Sf  the sampling frequency, the cycle 

frequency resolution of the decimated algorithm is defined as S
res

f
Nγ =  (compare to 

1
tα∆ = ∆ ), the frequency resolution is '

S
res

fk N=  (compare to 1
W

f T∆ = ) and the 

Grenander’s Uncertainty Condition is 1'
N

N �  (compare to 1t f∆ ⋅∆ � ). Figure 25, 

clearly reveals that the estimates toward the top and the bottom (yellow areas) of the 

channel pair region do not satisfy the Uncertainty Condition. 

 
Figure 25 Cycle frequency and frequency resolutions and the Grenander’s 

Uncertainty Condition (adapted from [3, 13]). 
 

In order to minimize the variability of these point estimates, we can retain only 

those cyclic spectrum components that are within of 2
reskγ = ±  from the center of the 
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channel pair region. [15] A solution to resolve the entire area of the channel pair region 

without leaving gaps is to apply a data taper window on the frequency axis to obtain 

better coverage. A Hamming window is applied in this implementation. 

 

2. Direct Frequency-Smoothing Method: 

Direct frequency-smoothing algorithms first compute the data frequency 

components and then execute spectral-correlation operations directly on the frequency 

components. Generally, the Direct Frequency-Smoothing Method (DFSM) is 

computationally superior to indirect algorithms that use related quantities, such as the 

Wigner-Ville Distribution. [12] But DFSM is normally less efficient than a time-

smoothing approach. 

Time and frequency-smoothing equivalence is discussed in details in [10] and 

derives from the fact that randomly fluctuating statistical spectra (in both time and 

frequency), such as ( )
1

,
f

x t
S t fα

∆
∆

 (compare to 3.1.8, where 1
WT f= ∆ ) and ( , )

x t fS t fα

∆
∆ , 

converge in the limit ( ),  0∆ → ∞ ∆ →t f  to the non-random limit spectrum ( )xS fα  if the 

limit autocorrelation ( )xRα τ  exists. Employing discrete frequency averaging and 

following the same analogy as in the time-smoothed cyclic periodogram, the basis for the 

DFSM is the discrete time frequency-smoothed cyclic periodogram represented by  

*( , ) , ,
2 2N Nx k N

m
S n k X n k X n kγ γ γ

∆
   = + −   
   

∑     (3.3.1) 

where 

[ ] [ ]
21

0

( , )
j knN
N

N
n

X n k w n x n e
π−−

=
∑� ,      (3.3.2) 

is the Discrete Fourier Transform of x[n], w[n] is a rectangular window of length N that is 

the total number of points of the FFT related to the total observation time ∆t , γ  is the 

cycle frequency discrete equivalent, the frequency-smoothing ranges over the interval 

2≤ Mm  and ⋅∆ ≈ SM fk N  is the frequency resolution discrete equivalent.[12] All 
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considerations made previously in Section A (Cyclostationary Theory) are still valid and, 

for 1M � , the frequency and time smoothing methods will yield very similar results. 

The block diagram on Figure 26 [13] illustrates the implementation of the “DFSM.m” 

MATLAB® [4] routine. 

 
Figure 26 DFSM algorithm block diagram (adapted from [3, 13]). 

 

In order to provide full coverage of the bi-frequency plane at a minimal 

computational expense, Equation (3.3.1) is computed along a line of constant cycle 

frequency spacing the point estimates by SM fk N
⋅∆ = . This method is easier to 

implement and generally is used to validate the time-smoothing “FAM.m” code, but this 

method may become more computationally demanding, mainly in the last block in which 

the complex-demodulates product sequences are summed. Considerations on the parallel 

processing of both time and frequency algorithms are discussed in [13]. Combinations of 

both methods are also advantageous for certain applications. 

Tthe FAM routine took considerably less time than the DFSM routine. The 

computing time for the DFSM was two or three times longer than the FAM for signals 

with a large number of samples. Therefore, for very long signals and large M t f= ∆ ∆ , 

FAM should be used to calculate the complete cyclic spectrum. 
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3. GUI Implementation: 

A Graphical User Interface (GUI), as shown in Figure 27, was developed using 

the MATLAB® GUIDE Version 6 [4] in order to facilitate the execution of the 

mathematical model processing. 

 
Figure 27 Cyclostationary processing GUI schematic tutorial. 

 

In this GUI, generated by the MATLAB® [4] routines “cyclo.m”, “FAM.m” and 

“DFSM.m”, the user defines 

• The directory where the data file is to be located; 

• The name of the file (without the extension); 

• The sampling frequency; 

• The desired frequency resolution ( resk ); and 

• The Grenander’s Uncertainty Condition '
NM N=  may be chosen to be 

equal to 2 or 4. 

These variables are then used to calculate 
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• Desired cycle frequency resolution:   res s
res

k f
M Nγ = = ; 

• ' s

res

fN k= - Number of input channels in the channelization matrix: 

(rounded to the nearest multiple of 2). For example if 
7000    8758

s

res

f
k = = , then '   1024N = ; 

• Overlap Parameter: the short time FFT’s will be performed and shifted by 

L number of samples for every computation (instead of at every sample): 

'
4

NL ≤ ; 

• Number of Columns in the Channelization Matrix:  s

res

fP Lγ= ; 

• Total number of points in the input data to be 

processed:  S

res

fN P L M k
 = × = ⋅ 
 

. 

The results of the simulations and a tutorial on how they should be interpreted 

will be discussed later in this chapter. We will also be able to compare the results of this 

algorithm and the Frequency-Smoothing approach. 

Since the number of points to be processed N is related to the sampling frequency, 

the frequency resolution and the value of M are limited by MATLAB® [4] functions 

memory constraints related to the size of the matrix being handled. The suggested 

optimum value of N, in order to avoid memory errors, may vary between 2,048 and 4,096 

points depending on the signal analyzed and may be given by using the suggested values 

on the table below when entering data in the GUI. 

On the Cyclostationary Processing GUI, for an optimum N value of 2048 points SfN M k
  = ⋅  ∆  

: 

Sampling Frequency 7000 Hz 15000 Hz 

M ( k
γ

∆
∆ ) 2 4 2 4 

Frequency resolution ( k∆ ) 8 16 16 32 

Table 2.   Recommended variables values for GUI users.  



35 

The platform for all the simulations was a Pentium IV, 2 GHz CPU clock and 

1GB RAM. The most critical memory constraints appeared while using the “contour.m” 

MATLAB® [4] built-in function, but since this is the plot with the best visualization, we 

decided to keep an average maximum number of points of 2,048 whenever possible. 

Moreover, by increasing the value of N from 2048 to 4096 or more only improved 

the results a little. And since the data files were standardized for comparison with the 

results from the methods described in [5], [6] and [7], the input signals were generated to 

have characteristics that would facilitate measuring for all four processing types 

simultaneously. 

All the files in the Cyclostationary MATLAB® [4] package (“cyclo.m, FAM.m 

and dfsm.m”) can be edited very easily to include new capabilities. The function 

“cyclo.m” triggers the GUI and after entering the data, the user may choose between time 

or frequency-smoothing method by clicking the appropriate button. Additional features 

and options to the GUI (“Cyclo.fig”) may be added by using the MATLAB® GUIDE [4] 

and by editing “cyclo.m” accordingly. 

 

C. PROCESSING TUTORIAL 

In order to give a general idea of how the results of both processing methods 

should look, this section provides some examples of the signals analyzed. 

1. Test Signals: 

For this example, the input complex signals characteristics are as following: 

Carrier Frequency (fc) 1000 Hz 

Sampling Frequency (fs) 7000 Hz 
Table 3.   Test signal characteristics. 

 

This signal is composed of a single carrier sampled at fs=1000Hz; using the real 

part of the signal we expect that the plot on the bi-frequency plane will have the carrier 

frequency at twice its value, as shown in Figure 28 (DFSM SCD for a Test Signal with N 

= 1024, df = 16 and M = 2). 
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Figure 28 DFSM generated SCD bi-frequency for a test signal (1000Hz single 

carrier). 
 

We see that the frequency content is very simple, except for some estimation noise 

around the highest values of the correlation (red dots). This Spectral-Correlation Density 

was generated using the Frequency-Smoothing Method (DFSM). The test signal in Figure 

29 (FAM SCD for a Test Signal with N = 1024, df = 16 and M = 2) shows that the Time-

Smoothing Method generates similar results that are a little bit noisier because more 

estimation is involved. 

 
Figure 29 FAM generated SCD bi-frequency for a test signal (1000Hz single 

carrier). 
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2. BPSK: 

For the BPSK (Barker Code) example, the signals characteristics are as following: 

Carrier Frequency (fc) 1000Hz. 

Sampling Frequency (fs) 7000Hz. 

Barker Code Length (Np) 11 bits 

SNR Only signal 

Number of Carrier Cycles per Barker Bit (NPBB) 1 
Table 4.   BPSK signal characteristics. 

In Figure 30, “k” is the frequency, “γ ” is the cycle frequency, “fC” is the carrier, 

“fs” is the sampling frequency, “fb” is the code rate ( )
1

bf TpNp
 = 
 

, “Np” is the number 

of phase changes, related to the length of the Barker sequence used in the phase 

modulation, and “Tp” is the chip period. 

 
Figure 30 Pictorial generic illustration of a BPSK signal SCD result.  
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By zooming in on the plot, as shown in Figure 31 and in the examples on Figure 

32 and Figure 33, we can measure the code rate “fb”, in the cycle frequency axis. It is 

possible to see a pattern of equally spaced points that will eventually fade away as the 

magnitude decreases (from red to blue). By changing the background color of the contour 

plots in order to facilitate establishing a visual threshold (around 0.4 on the normalized 

values, or “light blue” on the color bar) to eliminate the estimation errors, we can 

approximately determine the BW of the signal being analyzed and this value will then 

divided by the code rate “fb”, giving the value of “Np” (   bbandwidth Np f= × ). 

 
Figure 31 Zoomed in pictorial generic illustration of a BPSK signal SCD result 

with estimation of BW, number of phases and code rate. 
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Figure 32 DFSM generated SCD plot for a BPSK signal (1000Hz single carrier 

and 11 bits Barker-code phase modulation) with estimated BW. 

 
Figure 33 Zoomed-in DFSM generated SCD plot for a BPSK signal (estimated 

code rate measurement). 
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The estimation of the BW using this method is somewhat subjective and may lead 

to still acceptable errors on the order of bf± . From the plots above we may consider the 

values: 

• Carrier frequency (fC) = 1000 Hz (directly from plot); 

• Code rate, from zoomed-in plots, ( )
1 90 bf HzTpNp

 = ≅ 
 

; 

• BW (directly from plot) 1000 90Hz Hz≈ ± ; 

• Number of Barker Bits ( Np ) ≈ 1000 11.11 11 bits90= = ≈
b

BW
f . 

This procedure of zooming-in the plots and measuring the distances between the 

highest magnitudes (red) points will be used for all the signals analyzed in the next 

chapter. 

 

3. FMCW: 

For the FMCW case, the signal characteristics are as following: 

Carrier Frequency (fC) 1000 Hz. 

Sampling Frequency (fS) 7000 Hz. 

Modulation Band Width ( ∆ F) 250 Hz 

SNR Only signal 

Modulation Period (tm) 20 ms 
Table 5.   FMCW signal characteristics. 

The same behavior showed by BPSK appears here. Figure 34 and Figure 35 show 

that the carrier frequency appears at twice its value on the cycle-frequency axis and that 

the Modulation BW and the modulation period may also be estimated by measuring the 

distance from the center of the SCD result to the edge, on the k = 0 axis and by measuring 

the distance (“delta”) between two consecutive high correlation points in the cycle 

frequency axis. 
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Figure 34 Pictorial generic illustration of a FMCW signal SCD result. 

 
Figure 35 Pictorial generic illustration of a zoomed-in plot for a FCMW signal 

SCD. 
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This secondary variable called “delta” is related to the modulation period as 

shown in Figure 35 and in the examples of Figure 36 and Figure 37. From Figure 36 

(FAM SCD with   2048,   4 and   16N M k= = ∆ = ) and Figure 37 (Zoomed in plot of 

Figure 36), we get the values: 

• Carrier frequency (fC) = 1000 Hz (directly from plot); 

• BW ( F delta∆ ± ) 250 25Hz Hz≈ ± ; 

• 1 1 0.02 202 2 25= = = =⋅ ⋅mt s msdelta , where delta=25Hz; 

 
Figure 36 FAM generated SCD plot for a FMCW signal (1000Hz carrier and 

estimated modulation BW of 230 Hz). 
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Figure 37 Zoomed-in FAM generated SCD plot for a FMCW signal (“delta” 

value of 25Hz). 
 
4. P4: 

The example signal characteristics are as following: 

Carrier Frequency (fC) 1000 Hz 

Sampling Frequency (fS) 7000 Hz 

Number of Phases (Np) 16  

SNR Only Signal 

Number of Carrier Cycles per Phase (cpp) 1 
Table 6.   P4 signals characteristics. 

Figure 38 and Figure 39 show FAM-generated SCD plots. We may see that the 

carrier still appears at twice its value on the cycle frequency axis, where the pattern of 

equally spaced points begins to become visible. Note the white box drawn around the 

data showing the general shape of the SCD plot divided in channel pair regions. In Figure 

39 we can see in detail the estimation of the code rate value (fb). Figure 40 shows the 

estimation of the number of phases, as shown in a pictorial representation on Figure 31. 
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Figure 38 FAM-generated SCD plot for a P4 signal (1125Hz carrier and 

estimated BW of 1000Hz). 

 
Figure 39 Zoomed-in FAM-generated SCD plot for a P4 signal (with estimated 

code rate (fb) of 66Hz). 
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Figure 40 Zoomed-in FAM-generated SCD plot for a P4 signal (with estimation 

of BW and number of phases). 
 

Therefore 

• Carrier frequency (fC) = 1125Hz (directly from plot); 

• Measured BW CfBW cpp
 = 
 

 1000 66Hz Hz≈ ±  (therefore cpp=1); 

• Number of Phases Used in the P4 Modulation (Np): 

1000 15.15 16 phases66b

BW HzNp f Hz= = = ∼ ; 

• Code Period (Tp): 1 16 0.0161000C

cpp NpTp sf
⋅ ⋅= = = ; and 

• Code Rate ( ) ( )1 1 62.50.016bf HzTp= = = . 
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C. CHAPTER SUMMARY 

This chapter briefly discussed the theory related to the cyclostationarity concept. 

Two computationally efficient cyclostationary processing algorithms (FAM and DFSM) 

were discussed and their implementation in MATLAB® [4] was described. 

The visual feature extraction was explained for some of the modulation types that 

will be analyzed in the next chapter. The contour bi-frequency plots were chosen due to 

their greatest contrast with the figure background and the convenient zooming capability 

of MATLAB® [4] was explored to extract parameters such as: carrier frequency, code 

rate and code period, BW, number of phases or number of Barker bits present on the 

modulation and modulation period for the FMCW case. In the next section, the signal 

matrix shown in Table 1 is analyzed and the theoretical values are compared with the 

measurements from the SCD plots, according to the tutorial discussed in this chapter. 
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IV. DESCRIPTION OF LPI SPECTRAL PROPERTIES AND 
CYCLOSTATIONARY PROCESSING RESULTS 

 
 

In this chapter we will analyze a set of LPI signals, with and without the addition 

of White Gaussian Noise, and extract their main characteristics. All signals were 

generated using the “LPI Generator” code from [5]. A detailed description of all 

waveforms may be found in [5]. Table 8 shows the signal examples analyzed in this 

chapter. 
SIGNAL NAME 

 
 
 
 
 
 

CARRIER OR 
HOPPING 

SEQUENCE 
(kHz) 

 
 
 

BW 
(Hz) 

 
 
 
 
 

NPBB/
CPP 

 
 
 
 
 

NUMBER 
OF BITS / 
PHASES 

AND 
MOD. 

PERIOD 
 

MOD. TYPE 
 
 
 
 
 
 

B_1_7_7_1_s.mat 1 1000 1 7 BPSK 
F_1_7_250_20_s.mat 1 250 X 20 FMCW 

P1_1_7_4_1_s.mat 1 1000 1 16 P1 
P2_1_7_16_1_s.mat 1 1000 1 16 P2 
P3_1_7_16_1_s.mat 1 1000 1 16 P3 
P4_1_7_16_1_s.mat 1 1000 1 16 P4 
FR_1_7_16_1_s.mat 1 1000 1 16 FRANK 

C_1_15_10_s.mat 4, 7, 1, 6, 5, 2, 3 - 10 1 COSTAS 
FSK_PSK_C_1_15_5_1_s.mat 4, 7, 1, 6, 5, 2, 3 1000 1 5 FSK/PSK COSTAS 
FSK_PSK_T_15_128_5_s.mat - 4200 5 128 Hops FSK/PSK TARGET 

Table 7.   List of signal examples analyzed in this thesis. 

The signal analysis will consist of a brief theoretical description of the signals, an 

illustration of the spectral properties using plots of the PSD, and the resulting plots from 

the Cyclostationary processing algorithms discussed previously. Both time-smoothing 

and frequency-smoothing methods will be used and the method that presents the best 

visualization will be chosen for parameter extraction. The features extracted from the 

signals will be presented in tables comparing the measured results with the given 

parameters. 
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A. TEST SIGNALS 

1. Description 

The Test Signals were chosen to be single carrier signals with no modulation  

• 1000Hz Single Carrier with 7000Hz Sampling Frequency; 

• 1000Hz and 2000Hz Double Carrier with 7000Hz Sampling Frequency. 

These signals give an insight on how the carrier frequency information may be extracted 

from each plot. 

 

2. Spectral Properties and Results (T_1_7_1_s and T_12_7_2_s) 

Figure 41 shows the PSD of both Test Signals. 

 
Figure 41 PSD plots for both Test signals: a) 1000Hz single sarrier and b) 1 and 

2000Hz double carrier, no modulation. 
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The single carrier case is discussed on Chapter III. From Figure 42 and Figure 43 

we can see that the SCD plots for the real part of the double carrier signal show the inter-

modulation product at the average of both carrier frequencies (1500Hz) and at 500Hz.  

 
Figure 42 DFSM generated estimated SCD for a Test signal (1000Hz and 

2000Hz double carrier). 

 
Figure 43 Zoomed in DFSM generated estimated SCD for a Test signal (1000 

and 2000Hz double carrier). 
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Table 9 compares the measured and original characteristics. 

Feature Extraction 

Characteristic Original Measured 

Carrier Frequency (fC) 1000Hz 

2000Hz 

1000Hz 

2000Hz 

1500Hz and 500Hz 

(intermodulation 
products) 

Sampling Frequency (fs) 7000Hz. given 
Table 8.   Comparison between measured and original characteristics for the Test 

signals. 

The Frequency-Smoothing technique generated easier to visualize results, and for such 

simple signals the performance is equivalent to the Time-Smoothing algorithm. A Time-

Smoothing generated plot is shown in Chapter III for the first Test Signal (1000Hz). The 

time-smoothing results for the second test signal, with double carriers, are not shown 

since they are very similar to the DFSM plots of Figure 42 and Figure 43. 

 
B. BPSK 

1. Description: 

Binary Phase Shift Keying codes are not considered LPI radar waveforms in the 

strict sense of the word, but they are here included as a guide or academic tool to 

facilitate the visualization of the resulting outputs from each algorithm. 

This type of signal consists basically of using Barker Sequences of various 

lengths to perform a binary phase modulation of the carrier (0 and π ). The signal is then 

sampled and the output of the generator is saved as two vectors (I and Q) representing the 

in phase and quadrature components of the signal. The modulation is performed 

following the block diagram on Figure 44 [5]. 
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Ideal
sampler ∑~

13-bit Barker Code Sequence
[ 1 1 1 1 1 –1 –1 1 1 –1 1 –1 1 ]

X

White Gaussian Noise
SNR set by user

x(t) x(nT) I w/ noiseI
Save data to file

Ideal
sampler ∑∑~

13-bit Barker Code Sequence
[ 1 1 1 1 1 –1 –1 1 1 –1 1 –1 1 ]

X

White Gaussian Noise
SNR set by user

x(t) x(nT) I w/ noiseI
Save data to file

 
Figure 44 Block diagram for BPSK modulation (from [5]). 
 

In this work, we are going to analyze a waveform modulated with a Barker 

Sequence of length 7 bits, at various signal-to-noise ratios. All MATLAB® [4] plots were 

generated with the “cyclo.m” generated GUI and using a frequency resolution of 16 Hz 

that influence directly on how precise the measurements of the code rate ( bf ) are made. 

The FAM SCD plots were estimated using N=2048 and M=4, the DFSM SCD plots were 

estimated using N=1024 and M=2. 

 

2. Spectral Properties and Results (B_1_7_7_1_s) 

The first signal to be analyzed is a 7-Bit Barker Code phase modulated signal, 

with carrier frequency at 1000Hz and with 1NPBB = . No noise is added at this moment 

and the carrier presents a lower magnitude in the PSD plot meaning that this may be 

called a “Suppressed Carrier Dual Side Band” (SC-DSB) Modulation. The first signal 

analyzed has its characteristics defined on Table 10. 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency 

(fS) 

Number of 

Barker Bits 

(Np) 

Number of Carrier 

Periods per Barker Bit 

(NPBB) 

B_1_7_7_1_s 1000 Hz 7000 Hz 7 1 

Table 9.   B_1_7_7_1_s signal characteristics. 

The following sequence of Figures give an overview of the frequency content (Figure 45) 

and the Estimated SCD (Figure 46, Figure 47, Figure 48, Figure 49 and Figure 50) of the 
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signal analyzed. The blue background of the SCD estimation contour plots helps in 

visually filtering out the noise. 

 
Figure 45 PSD for a Barker signal (1000Hz carrier, 7-bits Barker sequence and 

1 NPBB). 

 
Figure 46 Estimated FAM SCD contour plot for a BPSK real signal with 

1000Hz carrier, Barker-7 code and 1 NPBB. 
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Figure 47 Estimated FAM SCD contour plot for a BPSK real signal with 

1000Hz carrier, Barker-7 code and 1 NPBB, with estimated carrier of 
1000Hz and estimated BW of 1000Hz. 

 
Figure 48 Zoomed-in FAM SCD contour plot for a BPSK signal with 1000Hz 

carrier, Barker-7 code and 1 NPBB, with estimated bf  of 141 Hz. 



54 

 
Figure 49 Estimated DFSM SCD contour plot for a BPSK signal with 1000Hz 

carrier, Barker-7 code and 1 NPBB, with estimated BW of 1000Hz. 

 
Figure 50 Zoomed-in estimated DFSM SCD contour plot for a BPSK signal 

with 1000Hz carrier, Barker-7 code and NPBB = 1, with estimated bf  
of 142Hz. 
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Figures 51 to 55 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal.  

 
Figure 51 PSD for a Barker signal (1000Hz carrier, 7-bits Barker sequence, 1 

NPBB and 0 dB SNR). 

 
Figure 52 Estimated FAM SCD contour plot for a BPSK signal with 1000Hz 

carrier, 7-bits Barker code, 1 NPBB and 0 dB SNR, with estimated 
BW of 1000Hz. 
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Figure 53 Zoomed-in estimated FAM SCD for BPSK with 1000Hz carrier, 

Barker-7 code, 1 NPBB, 0 dB SNR, with estimated bf  of 143Hz. 

 
Figure 54 Estimated DFSM SCD for BPSK with 1000Hz carrier, Barker-7 code, 

1 NPBB, 0 dB SNR, with estimated BW of 1000Hz. 
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Figure 55 Zoomed-in estimated FAM SCD for BPSK with 1000Hz carrier, 

Barker-7 code, 1 NPBB, 0 dB SNR, with estimated bf  of 144Hz. 
 

The following table shows a comparison between the given and the measured 

parameters.  

Feature Extraction 

Characteristic Original Measured 

Carrier Frequency (fC) 1000 Hz 1000 Hz 

Band Width (BW) 1000 Hz 997.5 Hz 

Carrier Periods Per Barker Bit 
(NPBB) 1CfNPBB BW= =  1000 1.0025997.5NPBB = =

Code Rate ( b
BWf k= ) 1000 142.87bf = =  142.75 Hz (average) 

Number of Barker Bits (Np) 7
b

BWk f= =  1000 7.005142.75k = =  

Table 10.   Comparison between measured and original characteristics for This BPSK 
signal. 

The BPSK signals analyzed helped as an example in determining how to make 

measurements in more complex signals such as FMCW, Polyphase and frequency 
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hopping signals. Table 11 shows a summary of all measurements for the BPSK 

modulation. Table 12 and Figure 56 show the detection effectiveness of the 

cyclostationary processing for all BPSK cases, comparing with the original values. 

Carrier (Hz) Bandwidth (Hz) Bits Code period (ms) SNR 
1000 990.5 7 7.06 Only signal 
1000 1004.5 7 6.968 0 
1000 0 0 0 -6 
1000 995.5 11 11.049 Only signal 
1000 1045 11 10.526 0 
1000 968 11 11.363 -6 
1000 196 7 35.714 Only signal 
1000 192.5 7 36.363 0 
1000 196 7 35.714 -6 
1000 187 11 58.82 Only signal 
1000 187 11 58.82 0 
1000 0 0 0 -6 

Table 11.   Summary of all measurements for the BPSK modulation. 
BPSK Detection Effectiveness 

 Carrier Bandwidth Code period Bits/code 
Only signal 100% 98% 103% 100% 

0 dB 100% 99% 102% 100% 
(-) 6 dB 75% 49% 51% 50% 

Table 12.   Detection effectiveness for the BPSK modulation. 

BPSK effectiveness on detection
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110%
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ge Only signal
0 dB
(-) 6 dB

 

Figure 56 Graphic demonstration of detection effectiveness for the BPSK 
modulation. 
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C. FMCW 

1. Description 

The triangular modulation of a Frequency Modulated Continuous Wave (FMCW) 

is very popular as a LPI application for a Continuous Wave signal. The emitter uses a 

continuous 100% duty-cycle waveform and therefore, target range and Doppler 

information can be measured unambiguously while retaining the LPI characteristics. The 

FMCW signal is usually easier to implement than phase code modulation signals as long 

as there is not strict demand on linearity over the modulation BW. [5] The triangular 

modulation consists of two linear frequency modulation sections with positive and 

negative slopes. With this configuration, the range and Doppler frequency of the detected 

target can be extracted unambiguously by taking the sum and the difference of the two 

beat frequencies. These characteristics are showed in Figure 57. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57 Linear Frequency Modulated Triangular Waveform and Doppler 
Shifted Signal [5] 
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The frequency of the transmitted signal may calculated by 

1 0( )
2 m

F Ff t f t
t

∆ ∆
= − +      (4.3.1) 

for 0 < t < tm and zero elsewhere. Here f0 stands for RF carrier, ∆F stands for transmitted 

modulation BW, and tm stands for modulation period. The rate of the frequency change or 

chirp rate F is [5] 

m

FF
t
∆

=        (4.3.2) 

The following section shows that we can measure these characteristics of an FMCW 

signal in the bi-frequency plane generated by the cyclostationary algorithms 

implemented. 

 

2. Spectral Properties and Results (F_1_7_250_20_s) 

This FMCW signal to be analyzed has a modulation period of 20 ms, with carrier 

frequency at 1000Hz and modulation BW of 250 Hz. The signal has its characteristics 

defined on Table 14: 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency

(fS) 

Modulation 

BW 

(∆F) 

Modulation Period 

(tm) 

F_1_7_250_20_s 1000 Hz 7000 Hz 250 Hz 20 ms 

Table 13.   F_1_7_250_20_s signal characteristics. 

The PSD is shown in Figure 58 and shows the frequency content of the first FMCW 

signal. The following sequence of Figures gives an overview of the frequency content 

(Figure 58), time X frequency plot (Figure 59), and the Estimated SCD (Figure 60, 

Figure 61, Figure 62 and Figure 63, all with N = 2048, frequency resolution of 16 Hz and 

M = 4) of the signal analyzed. 
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Figure 58 PSD for an FMCW signal (1000Hz carrier, 250Hz modulation BW 

and 20ms modulation period, only signal). 

 
Figure 59 Time X Frequency plot for an FMCW signal (20ms triangular 

modulation up-ramp period). 
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Figure 60 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz 

carrier and estimated modulation BW of 230Hz. 

 
Figure 61 Zoomed-in estimated FAM SCD contour plot for an FMCW signal 

with an estimated “delta” value of 25Hz. 
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Figure 62 Estimated DFSM SCD contour plot for an FMCW signal with 

1000Hz carrier and estimated modulation BW of 235Hz. 

 
Figure 63 Zoomed-in estimated DFSM SCD contour plot for an FMCW signal 

with an estimated “delta” value of 21Hz. 
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Figures 64 to 69 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 64 PSD for an FMCW signal (1000Hz carrier, 250 Hz modulation BW 

and 20ms modulation period, 0dB SNR). 

 
Figure 65 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz 

carrier, 0 dB SNR and estimated modulation BW of 200 Hz. 
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Figure 66 Estimated FAM SCD contour plot for an FMCW signal with an 

estimated “delta” value of 26Hz. 

 
Figure 67 PSD for an FMCW signal (1000Hz carrier, 250 Hz modulation BW 

and 20ms modulation period, -6dB SNR). 
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Figure 68 Estimated FAM SCD contour plot for an FMCW signal with 1000Hz 

carrier, -6 dB SNR and estimated modulation BW of 200 Hz. 

 
Figure 69 Estimated FAM SCD contour plot for an FMCW signal with an 

estimated “delta” value of 27Hz. 
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Table 15 shows that the main parameters of the FMCW modulation may be easily 

measured in the bi-frequency plane, using both time and frequency-smoothing methods. 

Feature Extraction 

Characteristic Original Measured 

Carrier Frequency 
(fC) 

1000 Hz 992.83 Hz (average) 

Modulation BW (∆F) 250 Hz 218.83 Hz 

“Delta” 25 Hz 24.75 Hz (average) 

Triangular 
Modulation Up-Ramp 

Period (tm) 

1 202*mt msdelta= = 1 0.02020 20.202*24.75mt s ms= = =

Table 14.   Comparison between measured and original characteristics for an FMCW 
signal. 

Table 16 shows a summary of all measurements for the FMCW modulation. Table 17 and 

graphics on Figure 70 show the detection effectiveness of the cyclostationary processing 

for the FMCW case, comparing with the original values. 

Carrier  (Hz) Modulation BW (Hz) Modulation Period (ms) SNR 
992.5 232.5 21.74 Only signal 
993 208 19.23 0 
993 216 18.52 -6 

987.5 221 29.42 Only signal 
987.5 234 27.77 0 
985 218.72 0 -6 
970 470 20.83 Only signal 
970 460 17.85 0 
970 480 17.86 -6 
978 470 33.33 Only signal 
978 450 35.71 0 
970 480 0 -6 

Table 15.   Summary of all measurements for the FMCW modulation. 
FMCW Detection Effectiveness 

 Carrier Modulation Bandwidth Modulation Period 
Only signal 98% 92% 106% 

0 dB 98% 90% 99% 
(-) 6 dB 98% 91% 45% 

Table 16.   Detection effectiveness for the FMCW modulation. 
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Figure 70 Graphic demonstration of detection effectiveness for the FMCW 
modulation. 

 
D. P1 

1. Description 

The first polyphase code to be analyzed is called “P1” and its phase modulation is 

defined by the equation: 

, [ (2 1)][( 1) ( 1)]i j Np j j Np i
Np
πφ −

= − − − + −    (4.4.1) 

Where i is the number of the samples in a given frequency and j is the index of the 

frequency, the phase of the ith sample of the jth frequency is given by equation (4.4.1), 

and i = 1,2,…,Np and j = 1,2,…,Np. Therefore, there’s a total of Np2 phases in this 

modulation. Figure 71 reveals the quadratic nature of the phase modulation in P1, given 

by (4.4.1). 
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Figure 71 P1 code phase shift. 

 

2. Spectral Properties and Results (P1_1_7_16_1_s) 

This P1 signal has the following given characteristics: 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency

(fS) 

Number of 

Phases 

(Np2) 

Number of Cycles per 

Phase (cpp) 

P1_1_7_16_1_s 1000 Hz 7000 Hz 16 1 

Table 17.   P1_1_7_16_1_s signal characteristics. 

Based on these properties, we expect a BW of 1000Hz, and yields from (4.4.1) that the 

total number of phases is equal to Np2 and in this case, the 16 equally spaced regions 

inside the BW are going to be separated by 
( )2

1000 62.516b
BWf Hz

Np
= = =  in the 

cycle frequency axis. The PSD is shown in Figure 72 and shows the frequency content of 

This P1 signal. The following sequence of Figures give an overview of the frequency 

content (Figure 72) and the Estimated SCD (Figure 73 and Figure 74, with N = 1024, 

frequency resolution of 16 Hz and M = 2) of the signal analyzed. 
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Figure 72 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, only 

signal). 

 
Figure 73 Estimated DFSM SCD contour plot for a P1 signal with 900Hz carrier 

and estimated BW of 1000Hz. 
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Figure 74 Zoomed-in estimated DFSM SCD contour plot for a P1 signal with an 

estimated code rate (fb) of 62Hz. 

Figures 75 to 79 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 75 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, 0dB SNR). 
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Figure 76 Estimated FAM SCD contour plot for a P1 signal with 900Hz carrier 

and estimated BW of 1000Hz, with 0dB SNR. 
 

 
Figure 77 Zoomed-in estimated FAM SCD contour plot for a P1 signal with an 

estimated code rate (fb) of 65Hz, with 0dB SNR. 
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Figure 78 PSD for a P1 signal (1000Hz carrier, 16 phases and 1 cpp, -6dB 

SNR). 

 
Figure 79 Estimated FAM SCD contour plot for a P1 signal with 850Hz carrier 

and estimated BW of 1000Hz, with -6dB SNR. 
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The FAM measurements could be performed until an SNR of –6dB, except for the 

bf  value. All results from the DFSM processing were similar. 

Feature Extraction 

Characteristic Original Measured 

Carrier 
Frequency (fC) 

1000 Hz 876.67 Hz (average) 

Bandwidth 
(BW) 

1000 Hz 1000 Hz 

Code Rate (fb)  62.5 Hz 63.5 Hz (average) 

Number of 
Phases (Np2) 

( )2 1000 1662.5b

BWNp f= = = ( )2 1000 15.7563.5b

BWNp f= = =

Code Period 
(tp) 

1 0.016p
b

t sf= =  1 1 0.0157563.5p
b

t sf= = =  

Table 18.   Comparison between measured and original characteristics for a P1 signal. 

Both time and frequency-smoothing processing techniques are very well suited for 

analyzing high BW and short code period signals. Table 20 shows a summary of all 

measurements for the P1 modulation. 

Carrier (Hz) Bandwidth (Hz) Number of Phases Code period (ms) SNR 
890 1000 4 16.13 Only signal
870 1000 4 15.38 0 
870 1000 0 0 -6 
986 224 4 71.43 Only signal
986 210 4 71.43 0 
986 200 0 0 -6 
986 1088 8 58.82 Only signal
975 990 8 66.67 0 
990 0 0 0 -6 
1000 200 8 312.5 Only signal
1000 200 8 250 0 

0 0 0 0 -6 
Table 19.   Summary of all measurements for the P1 modulation. 

 

Table 21 and graphics on Figure 80 show the detection effectiveness of the 

cyclostationary processing for the P1 case, comparing with the original values for all the 

P1 signals analyzed. 
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P1 Detection Effectiveness 
 Carrier Bandwidth Code period Phases 

Only signal 97% 105% 95% 100% 
0 dB 96% 101% 92% 100% 

(-) 6 dB 71% 50% 0% 0% 
Table 20.   Detection effectiveness for the P1 modulation. 
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Figure 80 Graphic demonstration of detection effectiveness for the P1 

modulation. 

 

E. P2 

1. Description 

The P2 code has almost the same phase increments as the P1 code, except that the 

starting phase is different.  The P2 code is valid for Np even, and each group of the code 

is symmetric about phase of index 0. These phases may be calculated by the equation 

, [( 1) / ] ( )( 1)] [ 1 2 ]
2i j Np Np i Np j

Np
π πφ

 
= − − − + − 

 
    (4.5.1) 

Figure 81 reveals the symmetric nature of the P2 code, for an Np2 of 64 phases. 
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Figure 81 P2 symmetric phase relationship between the index in the matrix and 

its phase shift. 
 
2. Spectral Properties and Results (P2_1_7_16_1_s) 

This P2 signal has the following given properties: 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency

(fS) 

Number of 

Phases 

(Np2) 

Number of Cycles per 

Phase (cpp) 

P2_1_7_16_1_s 1000 Hz 7000 Hz 16 1 

Table 21.   P2_1_7_16_1_s signal characteristics. 

From these properties yields a BW of 1000Hz, and from (4.5.1) yields that the total 

number of phases is equal to Np2, therefore 16 equally spaced regions inside the BW are 

going to be separated by 
( )2

1000 62.516b
BWf Hz

Np
= = =  in the cycle frequency axis, 

which is related to the code period. The PSD is shown in Figure 82 and shows the 

frequency content of This P2 signal. The following sequence of Figures give an overview 

of the frequency content (Figure 82) and the Estimated SCD (Figure 83 and Figure 84, 

with N = 1024, frequency resolution of 16 Hz and M = 2) of the signal analyzed. 
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Figure 82 PSD for a P2 signal (1000Hz carrier, 16 phases and 1 cpp, only 

signal). 

 
Figure 83 Estimated FAM SCD contour plot for a P2 signal with 1000Hz carrier 

and estimated BW of 950 Hz. 
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Figure 84 Zoomed-in estimated FAM SCD contour plot for a P2 signal with an 

estimated code rate (fb) of 65 Hz. 

Figures 85 to 87 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal.  

 
Figure 85 PSD for a P2 signal (1000Hz carrier, 16 phases and 1 cpp, 0dB SNR). 
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Figure 86 Estimated DSFM SCD contour plot for a P2 signal with 1000Hz 

carrier and estimated BW of 850Hz, with 0dB SNR. 

 
Figure 87 Zoomed-in estimated DFSM SCD contour plot for a P2 signal with an 

estimated code rate (fb) of 65Hz, with 0dB SNR. 
 



80 

The results are summarized in Table 23.  

Feature Extraction 

Characteristic Original Measured 

Carrier 
Frequency (fC) 

1000 Hz 1015 Hz (average) 

Bandwidth 
(BW) 

1000 Hz 900 Hz (average) 

Code Rate (fb)  62.5 Hz 65 Hz (average) 

Number of 
Phases (Np2) 

( )2 1000 1662.5b

BWNp f= = =  ( )2 900 13.8465b

BWNp f= = =  

Code Period (tp) 1 0.016p
b

t sf= =  1 1 0.0153865p
b

t sf= = =  

Table 22.   Comparison between measured and original characteristics for a P2 signal. 

Table 24 shows a summary of all measurements for the P2 modulation. 

Carrier (Hz) Bandwidth (Hz) Number of Phases Code period (ms) SNR 
1000 975 3.873 15.38 Only signal
1030 870 3.66 15.38 0 

0 0 0 0 -6 
1000 167.5 3.52 74.07 Only signal
1007 180 3.59 71.43 0 
1000 150 0 0 -6 
1000 962 8.28 71.43 Only signal
1100 1100 4.5 18.2 0 
1050 1200 0 0 -6 
975 195 0 0 Only signal
1000 175 0 0 0 
970 240 0 0 -6 

Table 23.   Summary of all measurements for the P2 modulation. 

Table 25 and graphics on Figure 88 show the detection effectiveness of the 

cyclostationary processing for the P2 case, comparing with the original values. 

P2 Detection Effectiveness 
 Carrier Bandwidth Code period Phases 

Only signal 99% 94% 75% 72% 
0 dB 103% 94% 53% 59% 

(-) 6 dB 76% 79% 0% 0% 
Table 24.   Detection effectiveness for the P2 modulation. 
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Figure 88 Graphic demonstration of detection effectiveness for the P2 

modulation. 
 

F. P3 

1. Description 

The phase changes in P3 (Figure 89) occur according to the following equation: 

( 1)
( 3) 2 2

0 0
0

2 [( ) ] ( 1)
ci t

P
i cf kt f dt k i tφ π π

−

= + − = −∫     (4.6.1) 

where i = 1, 2, …, Np.  Substituting k=B/T and tc=1/B, the equation can be written as 

2 2
( 3) ( 1) ( 1)P
i

i i
BT Np

π πφ − −
= =      (4.6.2) 

where T stands for pulse length, f stands for frequency ( of f kt= + ),k is a constant, the 

BW is approximately B=kT, tc stands for compressed pulse length ( 1/ct B= ) and the 

provided pulse compression ratio of / cpc T t BT= = is provided by the waveform. 
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Figure 89 P3 code phase shift. 

 

2. Spectral Properties and Results (P3_1_7_16_1_s) 

This P3 signal has the following properties: 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency

(fS) 

Number of 

Phases 

(Np) 

Number of Cycles per 

Phase (cpp) 

P3_1_7_16_1_s 1000 Hz 7000 Hz 16 1 

Table 25.   P3_1_7_16_1_s Signal characteristics. 

The expected BW is 1000 Hz, and the total number of phases is equal to 16, therefore 16 

equally spaced regions inside the BW are going to be separated by 

1000 62.516b
BWf HzNp= = =  in the cycle frequency axis. The PSD is shown in Figure 

90 and shows the frequency content of This P3 signal. The following sequence of Figures 

give an overview of the frequency content (Figure 90) and the Estimated SCD (Figure 91, 
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Figure 92, Figure 93 and Figure 94, with N = 1024, frequency resolution of 16 Hz and M 

= 2) of the signal analyzed. 

 
Figure 90 PSD for a P3 signal (1000Hz carrier, 16 phases and 1 cpp, only 

signal). 

 
Figure 91 Estimated FAM SCD contour plot for a P3 signal with 1100Hz carrier 

and estimated BW of 1000Hz. 
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Figure 92 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an 

estimated fb of 62 Hz. 

 
Figure 93 Estimated DFSM SCD contour plot for a P3 signal with 1150Hz 

carrier and estimated BW of 1000Hz. 
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Figure 94 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an 

estimated fb of 63 Hz. 
 

Figures 95 to 99 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 95 PSD for a P3 signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB 

SNR). 
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Figure 96 Estimated FAM SCD contour plot for a P3 signal with 1050Hz carrier 

and estimated BW of 1000Hz, with 0dB SNR. 
 

 
Figure 97 Zoomed-in estimated FAM SCD contour plot for a P3 signal with an 

estimated fb of 56 Hz and 0dB SNR. 
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Figure 98 Estimated DFSM SCD contour plot for a P3 signal with 1050Hz 

carrier and estimated BW of 1000Hz, with 0dB SNR. 
 

 
Figure 99 Zoomed-in estimated DFSM SCD contour plot for a P3 signal with an 

estimated fb of 68 Hz and 0dB SNR. 
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The given and measured features are summarized in Table 27.  

Feature Extraction 

Characteristic Original Measured 

Carrier 
Frequency (fC) 

1000 Hz 1075 Hz 

Bandwidth 
(BW) 

1000 Hz 1000 Hz 

Code Rate (fb)  62.5 Hz 62 Hz (average) 

Number of 
Phases (Np) 

1000 1662.5b

BWNp f= = =  1000 16.1362b

BWNp f= = =  

Code Period 
(tp) 

1 0.016p
b

t sf= =  1 0.01612962pt s= =  

Table 26.   Comparison between measured and original characteristics for a P3 signal. 

Table 28 shows a summary of all measurements for the P3 modulation. 

Carrier (Hz) Bandwidth (Hz) Number of Phases Code period (ms) SNR 
1100 1000 16.01 16 Only signal
1050 1000 16.03 16 0 

0 0 0 0 -6 
1000 200 14.71 71.43 Only signal
1000 200 14.71 71.43 0 
1000 220 0 0 -6 
1100 1000 71.43 71.43 Only signal
1000 1000 71.43 71.43 0 

0 0 0 0 -6 
1000 200 7.143 35.71 Only signal
1000 200 7.143 35.71 0 

0 0 0 0 -6 
Table 27.   Summary of all measurements for the P3 modulation. 

Table 29 and graphics on Figure 100 show the detection effectiveness of the 

cyclostationary processing for the P3 case, comparing with the original values. 

P3 Detection Effectiveness 
 Carrier Bandwidth Code period Phases 

Only signal 105% 100% 78% 79% 
0 dB 101% 100% 78% 79% 

(-) 6 dB 25% 28% 0% 0% 
Table 28.   Detection effectiveness for the P3 modulation. 
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Figure 100 Graphic demonstration of detection effectiveness for the P3 

modulation. 
 

G. P4 

1. Description 

The P4 code is derived from the same waveform as the P3 code. However, in this 

case, the LO frequency is set equal to / 2of kT+  in the I-Q detectors. With this 

frequency, the phases of successive samples are defined by the equations: [5] 

( 1) ( 1)
( 4)

0 0
0 0

2 [( ) / 2] 2 ( / 2)
c ci t i t

P
i f kt f kT dt k t T dtφ π π

− −

= + − + = −∫ ∫  (4.7.1)

2
( 4) 2 2 ( 1)( 1) ( 1) ( 1)P
i c c

n ink i t nkT i t i
Np

φ π
 −

= − − − = − − 
 

  (4.7.2) 

Figure 101 shows the relationship between the index in the matrix and its subsequent 

phase for a P4-coded signal with Np= 64 (phases).   
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Figure 101 Phase shift for a P4-coded signal with Np=64 phases 

 

2. Spectral Properties and Results (P4_1_7_16_1_s) 

The P4 signal has the following characteristics: 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency

(fS) 

Number of 

Phases 

(Np) 

Number of Cycles per 

Phase (cpp) 

P4_1_7_16_1_s 1000 Hz 7000 Hz 16 1 

Table 29.   P4_1_7_16_1_s signal characteristics. 

The expected BW is 1000 Hz, and the total number of phases is equal to 16. There will be 

16 equally spaced regions inside the BW separated by 1000 62.516b
BWf HzNp= = =  in 

the cycle frequency axis. The PSD is shown in Figure 102 and shows the frequency 

content of This P4 signal. The following sequence of Figures give an overview of the 

frequency content (Figure 102) and the Estimated SCD (Figure 103, Figure 104, Figure 
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105, and Figure 106 with N = 1024, frequency resolution of 16 Hz and M = 2) of the 

signal analyzed. 

 
Figure 102 PSD for a P4 signal (1000Hz carrier, 16 phases and 1 cpp, only 

signal). 

 
Figure 103 Estimated FAM SCD contour plot for a P4 signal with 1100Hz carrier 

and estimated BW of 1000 Hz. 
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Figure 104 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an 

estimated bf  of 66 Hz. 

 
Figure 105 Estimated DFSM SCD contour plot for a P4 signal with 1100Hz 

carrier and estimated BW of 1000 Hz. 
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Figure 106 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an 

estimated bf  of 62 Hz. 
 

Figures 107 to 109 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 107 PSD for a P4 signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB 

SNR). 
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Figure 108 Estimated FAM SCD contour plot for a P4 signal with 1100Hz carrier 

and estimated BW of 1000 Hz, with 0dB SNR. 

 
Figure 109 Zoomed-in estimated FAM SCD contour plot for a P4 signal with an 

estimated bf  of 67 Hz, with 0dB SNR. 
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The given and measured features are summarized in the table below. 

Feature Extraction 

Characteristic Original Measured 

Carrier 
Frequency (fC) 

1000 Hz 1030 Hz (average) 

Bandwidth 
(BW) 

1000 Hz 1000 Hz 

Code Rate (fb)  62.5 Hz 65.5 Hz (average) 

Number of 
Phases (Np) 

1000 1662.5b

BWNp f= = =  1000 15.2765.5b

BWNp f= = =  

Code Period 
(tp) 

1 0.016p
b

t sf= =  1 0.0152765.5pt s= =  

Table 30.   Comparison between measured and original characteristics for a P4 signal. 

Table 32 shows a summary of all measurements for the P4 modulation. 

Carrier (Hz) Bandwidth (Hz) Number of Phases Code period (ms) SNR 
1100 1000 15.625 16 Only signal
1100 1000 14.93 16 0 
1000 700 0 0 -6 
1000 200 14.29 71.43 Only signal
1000 200 14.29 71.43 0 
960 120 0 0 -6 
1000 1000 71.43 71.43 Only signal
1000 1000 71.43 71.43 0 
1000 1100 0 0 -6 
1000 160 22.86 142.86 Only signal
1000 170 12.59 74.1 0 

0 0 0 0 -6 
Table 31.   Summary of all measurements for the P4 modulation. 

Table 33 and graphics on Figure 110 show the detection effectiveness of the 

cyclostationary processing for the P4 case, comparing with the original values. 

P4 Detection Effectiveness 
 Carrier Bandwidth Code period Phases 

Only signal 103% 95% 86% 84% 
0 dB 103% 96% 81% 78% 

(-) 6 dB 74% 60% 0% 0% 
Table 32.   Detection effectiveness for the P4 modulation. 
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Figure 110 Graphic demonstration of detection effectiveness for the P4 
modulation. 

 
H. FRANK 

1. Description 

Frank codes belong to the family of polyphase codes, Chirp codes and Barker 

codes, and have been successfully used in implementing Low probability of Intercept 

(LPI) radar signals. [5] 

A Frank-coded waveform has a length of Np2 and basically consists of a constant 

amplitude signal whose carrier frequency is modulated by the phases of the Frank code 

given by the following equation: 

,
2 ( 1)( 1)i j i j
Np
πφ = − −       (4.8.1) 

where i = number of samples (i = 1,2… Np) and j = number of frequencies (j = 1,2,… 

Np). Figure 111 clearly displays how the phases change in the Frank modulation. 
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Figure 111 Frank modulation phase changes Np2=16. 

 

2. Spectral Properties and Results (FR_1_7_16_1_s) 

This Frank signal has the following characteristics: 

Name Carrier 

Frequency 

(fC) 

Sampling 

Frequency 

(fS) 

Number of 

Phases 

(Np2) 

Number of Cycles per 

Phase (cpp) 

FR_1_7_16_1_s 1000 Hz 7000 Hz 16 1 

Table 33.   FR_1_7_16_1_s signal characteristics. 

The expected BW is 1000 Hz, and the total number of phases is equal to 16. There will be 

sixteen equally spaced regions inside the BW range separated by the distance 

( )2
1000 62.516b

BWf Hz
Np

= = =  in the cycle frequency axis. The PSD is shown in 

Figure 112 and shows the frequency content of This Frank signal. The following 

sequence of Figures give an overview of the frequency content (Figure 112) and the 

Estimated SCD (Figure 113 and Figure 114, with N = 1024, frequency resolution of 16 

Hz and M = 2) of the signal analyzed. 
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Figure 112 PSD for a Frank signal (1000Hz carrier, 16 phases and 1 cpp, only 

signal). 

 
Figure 113 Estimated DFSM SCD contour plot for a Frank signal with 1150Hz 

carrier and estimated BW of 1000 Hz. 
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Figure 114 Zoomed-in estimated DFSM SCD contour plot for a Frank signal with 

an estimated fb of 61 Hz. 
 

Figures 115 to 120 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 115 PSD for a Frank signal (1000Hz carrier, 16 phases, 1 cpp, and 0dB 

SNR). 
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Figure 116 Estimated FAM SCD contour plot for a Frank signal with 1000Hz 

carrier and estimated BW of 1000 Hz, with 0dB SNR. 

 
Figure 117 Zoomed-in estimated FAM SCD contour plot for a Frank signal with 

an estimated fb of 63 Hz and 0dB SNR. 
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Figure 118 PSD for a Frank signal (1000Hz carrier, 16 phases, 1 cpp, and -6dB 

SNR). 

 
Figure 119 Estimated FAM SCD contour plot for a Frank signal with 1100Hz 

carrier and estimated BW of 1000 Hz, with -6dB SNR. 
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Figure 120 Zoomed-in estimated FAM SCD contour plot for a Frank signal with 

an estimated fb of 65 Hz, and –6dB SNR. 
 

The given and measured features are summarized in Table 35. 

Feature Extraction 

Characteristic Original Measured 

Carrier 
Frequency (fC) 

1000 Hz 1083.3 Hz (average) 

Bandwidth (BW) 1000 Hz 1000 Hz 

Code Rate (fb)  62.5 Hz 63 Hz (average) 

Number of 
Phases (Np2) 

2 1000 1662.5b

BWNp f= = =  2 1000 15.8763b

BWNp f= = =  

Code Period (tp) 1 0.016p
b

t sf= =  1 0.0158763pt s= =  

Table 34.   Comparison between measured and original characteristics for a Frank 
signal. 

 
 
 
 
 



103 

Table 36 shows a summary of all measurements for the Frank modulation. 

Carrier (Hz) Bandwidth (Hz) Number of Phases Code period (ms) SNR 
1150 1000 4.05 16.4 Only signal
1000 1000 3.98 15.87 0 
1100 1000 3.92 15.38 -6 
1000 200 3.65 66.67 Only signal
1000 200 3.65 66.67 0 
1000 210 0 0 -6 
1100 1000 7.45 55.55 Only signal
1100 1000 8.45 71.43 0 
1100 1000 0 0 -6 
1000 200 4.71 111.11 Only signal
1000 200 3.92 76.92 0 

0 0 0 0 -6 
Table 35.   Summary of all measurements for the Frank modulation. 

The following table and graphics on Figure 121 show the detection effectiveness of the 

cyclostationary processing for the Frank case, comparing with the original values. 

Frank Detection Effectiveness 
 Carrier Bandwidth Code period Phases 

Only signal 106% 100% 77% 86% 
0 dB 103% 100% 80% 86% 

(-) 6 dB 80% 76% 24% 25% 
Table 36.   Detection effectiveness for the Frank modulation. 
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Figure 121 Graphic demonstration of detection effectiveness for the Frank 

modulation. 
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I. COSTAS CODES 

 

1. Description 

We briefly discussed the Costas modulation on Chapter II. If we don’t phase 

modulate the signals discussed, we get a pure Costas FH signal. The FH signal consists of 

one or more frequencies being chosen from a set {f1, f2, … fm} of available frequencies, 

for transmission at each of a set  {t1, t2, … tn} of consecutives time intervals. For 

modeling purposes, it is reasonable to consider the situation in which m=n, and a 

different one of n equally spaced frequencies {f1, f2, … fn} is transmitted during each of 

the n equal duration time intervals {t1, t2, … tn}. Such a signal is represented by a n x n 

permutation matrix A, where the n rows correspond to the n frequencies, the n columns 

correspond to the n intervals, and the entry aij = 1 means transmission and 0 otherwise. 

[5] Any frequency sequence chosen from a Costas matrix will generate a Costas 

Frequency Hopping sequence with the spectral characteristics discussed in [5]. In order to 

facilitate the analysis of these signals, the complex waveform was analyzed and this will 

result in a less cluttered plot, for this type of signal. 

 

2. Spectral Properties and Results (C_1_15_10_s) 

The signal characteristics are defined on Table 38. 

Name Frequency 

Sequence (kHz) 

Sampling 

Frequency 

(fS) 

Number of Cycles per 

Frequency (cpf) 

C_1_15_10_s 4 7 1 6 5 2 3 15000 Hz 10 

Table 37.   C_1_15_10_s signal characteristics. 

The expected BW is 6000Hz (from 1000Hz to 7000Hz), and the total number of 

frequencies is equal to 7. The following Figures give an overview of the frequency 

content of the signal (Figure 122) and the Estimated SCD (Figure 123, Figure 124, Figure 

125, Figure 126 and Figure 127, with N = 1024, frequency resolution of 16 Hz and M = 

2) of the signal analyzed. Note on Figure 123 that the frequency components are all along 
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the 0γ =  axis (vertical or frequency axis) while the intermodulation products are located 

symmetrically over the bi-frequency plane, outside the vertical axis. 

 
Figure 122 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7 kHz carriers, 10 cpf, 

only signal). 

 
Figure 123 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 

3, 4, 5, 6 and 7000Hz carriers over 0γ =  axis, cpf=10, only signal), 
with intermodulation products. 
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Figures 124 to 127 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 124 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 10 cpf and 

0dB SNR). 

 
Figure 125 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 

3, 4, 5, 6 and 7kHz carriers over 0γ =  axis, 10 cpf, 0dB SNR), with 
intermodulation products. 
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Figure 126 PSD for a Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 10 cpf and 

SNR of -6dB). 

 
Figure 127 Estimated FAM SCD contour plot for a complex Costas signal (1, 2, 

3, 4, 5, 6 and 7kHz carriers over 0γ =  axis, 10 cpf, -6dB SNR), with 
intermodulation products. 
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The order of the frequencies can’t be measured in this kind of plot since we don’t 

have a “time x frequency” type of output, but the frequency content is easily determined. 

Feature Extraction 

Characteristic Original Measured 

Frequency 
Components 

1, 2, 3, 4, 5, 6 and 7kHz  1, 2, 3, 4, 5, 6 and 7kHz  

BW (BW) 6000Hz 6000Hz 
Table 38.   Comparison between measured and original characteristics for a Costas 

signal. 

 

The following table shows a summary of all measurements for the Costas modulation. 

Sequence Time in each freq Code Period SNR 
4 7 1 6 5 2 3 0 0 Only signal 
4 7 1 6 5 2 3 0 0 0 
4 7 1 6 5 2 3 0 0 -6 
4 7 1 6 5 2 3 0 0 Only signal 
4 7 1 6 5 2 3 0 0 0 
4 7 1 6 5 2 3 0 0 -6 
4 1 6 7 5 3 2 0 0 Only signal 
4 1 6 7 5 3 2 0 0 0 
4 1 6 7 5 3 2 0 0 -6 
4 1 6 7 5 3 2 0 0 Only signal 
4 1 6 7 5 3 2 0 0 0 
4 1 6 7 5 3 2 0 0 -6 

Table 39.   Summary of all measurements for the Costas modulation. 

The following table and graphics on Figure 128 show the detection effectiveness of the 

cyclostationary processing for the Costas case, comparing with the original values. 

Costas Detection Effectiveness 
 Sequence Time in each Frequency Code period (ms) 

Only signal 100% 0% 0% 
0 dB 100% 0% 0% 

(-) 6 dB 100% 0% 0% 
Table 40.   Detection effectiveness for the Costas modulation. 
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Figure 128 Graphic demonstration of detection effectiveness for the Costas 

modulation. 

 

J. FSK/ PSK COSTAS 

 

1. Description 

A detailed description of this type of signal is given in Chapter II. 

 

2. Spectral Properties and Results (FSK_PSK_C_1_15_5_1_s) 

This FSK/PSK Costas signal has the following characteristics: 

Name Frequency 

Sequence 

(kHz) 

Sampling 

Frequency 

(fS) 

Number of 

Barker 

Bits (Np) 

Number of 

Cycles per 

Phase 

(NPBB) 

FSK_PSK_C_1_15_5_1_s 4 7 1 6 5 2 3 15000 Hz 5 1 

Table 41.   FSK_PSK_C_1_15_5_1_s signal characteristics. 

The expected BW is 7000 Hz (from 500 Hz to 7.5kHz), each frequency will be 

modulated with as BPSK Barker-5 and since the smallest frequency is 1000Hz, the BW 

for each frequency hop will be 1000Hz. Inside each hop, we expect to see a 
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1000 2005b
BWf HzNp= = = . The following Figures give an overview of the frequency 

content of the signal (Figure 129), the Barker phase sequence (Figure 130) and the 

Estimated SCD (Figure 131, Figure 132 and Figure 133, with N = 1024, frequency 

resolution of 16 Hz and M = 2) of the signal analyzed. 

 
Figure 129 PSD for a FSK/PSK Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 

Barker-5 and 1 NPBB, only signal). 

 
Figure 130 Barker-5 phase sequence used inside each hop. 
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Figure 131 Estimated FAM SCD contour plot for a complex FSK/PSK Costas 

signal (1, 2, 4, 5, 6 and 7kHz measured carriers). 

 
Figure 132 Zoomed-in estimated FAM SCD contour plot for a complex 

FSK/PSK Costas signal (4, 5 and 6kHz measured carriers and 
estimated BW of 1000 Hz for each frequency hop). 
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Figure 133 Estimated fb value of 200 Hz for the embedded Barker-5 BPSK 

modulation. 

Figures 134 to 137 include the analysis of the same signal with added White Gaussian 

Noise. At the end of this analysis, a table is included comparing the original and the 

measured characteristics of each signal. 

 
Figure 134 PSD for a FSK/PSK Costas signal (1, 2, 3, 4, 5, 6 and 7kHz carriers, 

Barker-5 and 1 NPBB, 0dB SNR). 
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Figure 135 Estimated FAM SCD contour plot for a complex FSK/PSK Costas 

signal (1, 2, 4, 5, 6 and 7kHz measured carriers, 0dB SNR). 

 
Figure 136 Zoomed-in estimated FAM SCD contour plot for a complex 

FSK/PSK Costas signal (5, 6 and 7kHz measured carriers and 
estimated BW of 1000 Hz for each frequency hop, 0dB SNR). 
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Figure 137 Estimated fb value of 200 Hz for the embedded Barker-5 BPSK 

modulation. 
 

The given and measured features are summarized in the table below. 

Feature Extraction 

Characteristic Original Measured 

Carrier 
Frequency (fc) 

1, 2, 3, 4, 5, 6 and 7kHz  1, 4, 5, 6 and 7kHz  

BW for Each 
Frequency Hop 

(BW) 

1000 Hz 1000 Hz 

Code Rate (fb)  200 Hz 200 Hz 

Number of Bits in 
Barker Code (Np) 

1000 5200b

BWNp f= = =  1000 5200b

BWNp f= = =  

Code Period 
Inside Each Hop 

1 0.005p
b

t sf= =  1 0.005200pt s= =  

Table 42.   Comparison between measured and original characteristics for a FSK/PSK 
Costas signal. 
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The large BW within each frequency hop may increase the error in the estimation of the 

carrier frequencies. For the example above, it was possible to measure practically all 

characteristics of the signals, with SNR until 0 dB. These signals present a modulation 

complexity level much higher than any modern receiver would be able to analyze. The 

cyclostationary processing algorithms implemented reveal their real processing power 

when facing these types of signals: frequency hopping with large intra-hop BWs and 

small code periods. Both cyclostationary algorithms are very powerful tools to perform 

analysis of LPI signals like the FSK/PSK Costas. Still the biggest constraints reside in 

processing power of the analyzer (computer speed and memory). Table 44 shows a 

summary of all measurements for the Costas modulation. 

Sequence Bandwidth Np Code Period SNR 
4 7 1 6 5 2 7000 5 5 Only signal 
4 7 1 6 5 2 7000 5 5 0 

4 7 1 6200 5 25 Only signal 
4 7 1 6200 5 25 0 
4 7 1 7000 11 11 Only signal 
4 7 1 7000 11 11 0 

4 200 11 55 Only signal 
4 200 11 55 0 

Table 43.   Summary of all measurements for the FSK/PSK Costas modulation. 

Table 45 and graphics on Figure 138 show the detection effectiveness of the 

cyclostationary processing for the FSK/PSK Costas case, comparing with the original 

values. 

FSK/PSK Costas Detection Effectiveness 
 Sequence Bandwidth (Hz) Code period (ms) 

Only signal 47% 76% 100% 
0 dB 47% 76% 100% 

Table 44.   Detection effectiveness for the FSK/PSK Costas modulation. 
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Figure 138 Graphic demonstration of detection effectiveness for the FSK/PSK 
Costas modulation. 

 

K. FSK/ PSK TARGET 

 

1. Description 

Vide Chapter II for a detailed description of these types of signals. 

 

2. Spectral Properties and Results (FSK_PSK_T_15_128_5_s) 

This FSK/PSK Target signal has the following characteristics: 

Name Sampling 

Frequency 

(fS) 

Number of 

Frequency Hops 

(Nf) 

Number of Cycles 

per Phase (cpp) 

FSK_PSK_T_15_128_5_s 15000 Hz 128 5 

Table 45.   FSK_PSK_T_15_128_5_s Signal characteristics. 

The expected BW is around 4200Hz (from 2400Hz to 6600Hz), each frequency will be 

modulated with a random phase sequence of length equal to the number of cycles per 
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phase. The following Figures reveal the frequency content of the signal (Figure 139), the 

phase plots (Figure 140), the histogram of the frequency hops (Figure 141) and the 

Estimated SCD (Figure 142, with N = 1024, frequency resolution of 16 Hz and M = 2) of 

the signal analyzed. 

 
Figure 139 PSD for a FSK/PSK Target signal (4200Hz BW, random phase with 

length 5 and 5 cpp, only signal). 

 
Figure 140 Random phase sequence of length 5 used inside each hop. 
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Figure 141 Frequency hops histogram after random firing order generator. 

 
Figure 142 Estimated FAM SCD contour plot for a complex FSK/PSK Target 

signal with an estimated BW of 4800Hz. 
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The given and measured features are summarized in the table below. 

Feature Extraction 

Characteristic Original Measured 

Total BW for Entire Frequency Hopping Sequence 4200Hz 4800Hz 
Table 46.   Comparison between measured and original characteristics for a FSK/PSK 

Target signal. 

The highest peaks of the spectrum of this signal (as seen in the PSD plot) may also be 

detected in the bi-frequency plane. The firing order of the frequency hopping sequence 

cannot be measured because we don’t have the time information in the output of the 

cyclostationary processing. 

This signal presented the highest degree of complexity of the whole set of signals 

analyzed. The cause of this high complexity may be linked to the presence of two 

pseudo-random factors: 

• The frequency firing order; and 

• The phase modulation for each frequency hop. 

Since the emitter knows the pseudo-random sequence used, it can coherently demodulate 

the signal with little effort but for a non-cooperative receiver this task becomes less 

feasible. Table 48 shows a summary of all measurements for the FSK/PSK Target 

modulation. 

Sequence Bandwidth Code Period SNR 
0 4800 0 Only signal 
0 3000 0 Only signal 
0 4200 0 Only signal 
0 3000 0 Only signal 

Table 47.   Summary of all measurements for the FSK/PSK Target modulation. 

 

Table 49 and graphics on Figure 143 show the detection effectiveness of the 

cyclostationary processing for the FSK/PSK Target case, comparing with the original 

values. The analysis was performed for the only signal case, since the results from the 

added White Gaussian Noise cases were all inconclusive. 
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FSK/PSK Target Detection Effectiveness 

 Sequence
Bandwidth 
(Hz) 

Code period 
(ms) 

Only signal 0% 95% 0% 
Table 48.   Detection effectiveness for the FSK/PSK Target modulation. 

FSK/PSK Target effectiveness on detection

10%

30%

50%

70%

90%

110%

130%

150%

Sequence Bandw idth (Hz) Code period (ms)

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

 

Figure 143 Graphic demonstration of detection effectiveness for the FSK/PSK 
Target modulation. 

 

L. COMPARISON BETWEEN POLYPHASE CODES 

The following figures show a comparison between Frank (Figure 144), P1 (Figure 

145), P2 (Figure 146), P3 (Figure 147) and P4 (Figure 148), with the same number of 

phases (Np2 or Np = 16), same carrier frequency (1kHz) and same number of carrier 

cycles per phase (cpp=1), It is possible to see that there’s some difference between the 

SCD estimated results for the various modulations. The general shape of Frank, P3 and 

P4 are very similar but P1 and P2 stand out very easily from the group. The absence of 

time in the plots prevents us to see the phase changes along the code. The number of 

phases may be calculated, as seen on the previous sections, by measuring the carrier 

frequency, the bandwidth and the code period. Both cyclostationary algorithms were very 

effective on determining all parameters for the LPI Radar signals with larger bandwidth 

(cpp=1) and shorter code periods.  
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Figure 144 Estimated DFSM SCD contour plot for a Frank signal with 1150Hz 

carrier, BW of 1000 Hz, Np2=16 and cpp=1. 

 
Figure 145 Estimated DFSM SCD contour plot for a P1 signal with 900Hz 

carrier, BW of 1000 Hz, Np2=16 and cpp=1. 
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Figure 146 Estimated DFSM SCD contour plot for a P2 signal with 1050Hz 

carrier, BW of 950 Hz, Np2=16 and cpp=1. 

 
Figure 147 Estimated DFSM SCD contour plot for a P3 signal with 1150Hz 

carrier, BW of 1000 Hz, Np=16 and cpp=1. 
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Figure 148 Estimated DFSM SCD contour plot for a P4 signal with 1150Hz 

carrier, BW of 1000 Hz, Np=16 and cpp=1. 

 

The DFSM plots were chosen just to establish a standard observation but the FAM 

generated plots, as seen on the previous sections, show the same results and take less 

computing time to process. 

 

M. CHAPTER SUMMARY 

In this last Chapter we analyzed and extracted parameters from a set of LPI Radar 

Signals. The extracted parameters were compared to the original ones in tables at the end 

of every processing. 

The analyzed modulations were 

• BPSK (Binary Phase Shift Keying); 

• FMCW (Frequency Modulated Continuous Wave); 

• Polyphase Codes (P4, P3, P2 P1 and Frank Codes); 
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• Costas Codes (Frequency Hopping); 

• FSK/PSK (Combined Frequency Shift Keying and Phase Shift Keying) with a 

Costas frequency distribution; and 

• FSK/PSK (Combined Frequency Shift Keying and Phase Shift Keying) with a 

target matched frequency distribution 

It was possible to see that both time and frequency-smoothing methods of 

cyclostationary processing may be applied to analyze these types of signals yielding 

fairly appropriate results for the majority of the signals. A comparison between the 

polyphase codes is also presented. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This thesis effort was developed in order to implement two cyclostationary 

processing techniques (Time and Frequency-Smoothing algorithms). The Time 

Smoothing FFT Accumulation Method and the Direct Frequency Smoothing Method 

were implemented in MATLAB® Version 6.1 [4] and tested in simulations using a 

standardized data set. During this work it was possible to verify that the cyclostationary 

processing approach is very suitable for analyzing radar signals with LPI characteristics. 

Depending on the type of modulation, the processing and feature extraction can be more 

or less difficult. The analysis of LPI signals can be improved for any type of signals with 

the combination of the algorithms implemented here and other techniques such as: 

• Parallel Filter Arrays and Higher Order Statistics [5]; 

• Quadrature Mirror Filtering [6]; and 

• Wigner-Ville Distribution [7]. 

The similarities between the DFSM results and the FAM results go until a certain 

level; in the zoomed plots we see that the channel pair regions are a little different in 

shape and size, although they occur in the same values for frequency and cycle 

frequency. This may be the result of the different windows applied in each method 

(Hamming window for FAM and square window for DFSM). The computing time is also 

noticeable larger, two or three times more, for the DFSM routine in comparison to the 

FAM routine. The FAM implementation is recommended for long signals with a large 

number of samples. 

Both methods were very effective for phase modulated signals (BPSK, Frank, P1, 

P2, P3, P4 and FSK/PSK Costas) and for FH signals (Costas) until signal-to-noise ratios 

of 0dB and –6dB. The FMCW results showed more variation and errors in the results, 

comparing to the original characteristics of the signals, even on the signal-only cases. The 

FSK/PSK Target signal was also very difficult to analyze but mainly due to its pseudo-

random characteristic and complexity. In the technical report [10], signals with different 

bandwidths and different code rates were included. It is possible to see that the 
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cyclostationary methods are very effective for signals with larger bandwidth and larger 

code rates. In order to improve the computation time, a parallel processing 

implementation is recommended for future work, using clusters or PC-based parallel 

processors for academic purposes. 

Starting from the extracted features, we recommend a future research on the 

automatic classification of these types of signals as a form of maintaining the continuity 

of this work. Neural networks have being exhaustively pointed as a viable solution for 

accomplishing this task. The use of MATLAB® Version 6.1 and GUIDE Version 2.0 [4] 

was very important to the success of this research and helped the development of a very 

useful tool for future academic applications in Electronic Warfare and Signal Processing 

oriented courses of the Naval Post Graduate School. 
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APPENDIX A. CYCLOSTATIONARY IMPLEMENTATION 
CODES (CYCLO.M, FAM.M AND DFSM.M) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% CYCLO.M 
% 
% Use: GUI implementation for inputing parameters in Cyclostationary Signal Processing Methods: 
DFSM.m and FAM.m 
% 
% Inputs: Path of the file to be analyzed; Name of the file; Sampling Frequency used in the generation of 
the file to be analyzed, 
% desired frequency resolution and desired method to be used (DFSM or FAM) 
% 
% Output: Various different plots exploring the bi-frequency plane representation typical of cyclostationary 
processing 
% 
% Created by Antonio F. Lima, Jr.-1o Ten. Av. Brazilian Air Force - March/2002  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% These are default commands and comments from the MATLAB® GUI guide tool 
% DO NOT EDIT !! 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function varargout = cyclo(varargin) 
% CYCLO Application M-file for cyclo.fig 
%    FIG = CYCLO launch cyclo GUI. 
%    CYCLO('callback_name', ...) invoke the named callback. 
 
% Last Modified by GUIDE v2.0 01-May-2002 12:56:05 
 
if nargin == 0  % LAUNCH GUI 
 
 fig = openfig(mfilename,'reuse'); 
 
 % Use system color scheme for figure: 
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); 
 
 % Generate a structure of handles to pass to callbacks, and store it.  
 handles = guihandles(fig); 
 guidata(fig, handles); 
 
 if nargout > 0 
  varargout{1} = fig; 
 end 
 
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK 
 
 try 
  if (nargout) 
   [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard 
  else 
   feval(varargin{:}); % FEVAL switchyard 
  end 
 catch 
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  disp(lasterr); 
 end 
 
end 
 
%% %%%%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%% 
% These are the GUI functions definitions and global variables 
% -------------------------------------------------------------------- 
 
function varargout = edit3_Callback(h, eventdata, handles, varargin) 
d = get(h,'String'); 
handles.edit3 = d; % Save file path in global variable handles.edit3 (path = handles.edit3) 
  
guidata(h,handles); 
 
% -------------------------------------------------------------------- 
function varargout = edit1_Callback(h, eventdata, handles, varargin) 
name = get(h,'String'); 
handles.edit1 = name; % Save file name in global variable handles.edit1 (filename = handles.edit1) 
     
if isstr(name) 
else 
    errordlg('Filename: Please enter a valid file name (B_1_7_7_s is default)', 'Bad input', 'modal') 
end 
     
guidata(h,handles); 
 
% -------------------------------------------------------------------- 
function varargout = edit2_Callback(h, eventdata, handles, varargin) 
fs = str2double(get(h,'String')); 
handles.edit2 = fs;% Save sampling frequency in global variable handles.edit2 (fs = handles.edit2) 
  
if isnan(fs) 
    errordlg('Sampling Frequency: Please enter a numeric value (Hz)', 'Bad input', 'modal') 
end 
    
guidata(h,handles); 
 
% -------------------------------------------------------------------- 
function varargout = popupmenu1_Callback(h, eventdata, handles, varargin) 
val = get(h,'Value'); 
 
switch val % Switches between the values chosen by user on popupmenu  
 
 
case 1 
    handles.popupmenu1 = 128;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
     
case 2 
    handles.popupmenu1 = 64;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
     
case 3 
    handles.popupmenu1 = 32;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
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case 4 
    handles.popupmenu1 = 16;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
 
case 5 
    handles.popupmenu1 = 8;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
%  
case 6 
    handles.popupmenu1 = 4;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
     
case 7 
    handles.popupmenu1 = 2;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
 
end 
 
% More options may be added following the same pattern. 
     
guidata(h,handles); 
 
 
% -------------------------------------------------------------------- 
function varargout = popupmenu2_Callback(h, eventdata, handles, varargin) 
Mval = get(h,'Value'); 
 
switch Mval % Switches between the values chosen by user on popupmenu  
 
case 1 
    handles.popupmenu2 = 2;% Save reliability condition M in global variable handles.popupmenu2 (M = 
handles.popupmenu2) 
     
case 2 
    handles.popupmenu2 = 4;% Save reliability condition M in global variable handles.popupmenu2 (M = 
handles.popupmenu2) 
     
case 3 
    handles.popupmenu2 = 8;% Save reliability condition M in global variable handles.popupmenu2 (M = 
handles.popupmenu2) 
 
end 
    
guidata(h,handles); 
 
% % -------------------------------------------------------------------- 
function varargout = togglebutton1_Callback(h, eventdata, handles, varargin) 
dfsm;% Runs frequency smoothing method (DFSM.m), using the values entered - Direct Frequency 
Smoothing Method 
 
% -------------------------------------------------------------------- 
function varargout = togglebutton2_Callback(h, eventdata, handles, varargin) 
fam;% Runs time smoothing method (FFTAM.m), using the values entered - FFT Accumulation Method 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% FAM.M 
% Cyclostationary Estimator using the time smoothing FFT Accumulation Algorithm. 
 
% Part of the LPI oriented thesis work with Prof. P.E. PACE and Prof. H. LOOMIS 
 
% Student: Antonio F. LIMA Jr. - 1st. Lt. Brazilian Air Force 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Getting input data from the global variables generated by GUI cyclo_s.m and calculating constants 
% present_directory = cd; % Save present directory to a variable to make the GUI go back to it in the end 
path = handles.edit3; % Saving the path information in a variable 
cd (path);% Loading the file from the specified path 
filename = handles.edit1; % File to be analyzed from GUI generated global variable handles.edit1 
fs = handles.edit2; % Sampling frequency from GUI generated global variable handles.edit2 
df = handles.popupmenu1; % Frequency Resolution from GUI generated global variable 
handles.popupmenu3 
 
M = 2; % df/dalpha = M >> 1 (reliability condition) 
dalpha = df/M; 
 
load (filename); %loading file to be analyzed in workspace 
x = I+ j.*Q;% using complex signal (for Real part only, use only I – input data file needs to be formatted as 

     % described in (4) 
 
% Defining parameters 
 
Np = pow2(nextpow2(fs/df));         % Initially, it is the number of rows in the channelization matrix (X) or 
                                    % the number of input channels defined by fs/df  
                                     
L = Np/4;                           % Overlap factor in order to reduce the number of short time fft's 
                                    % L is the offset between points in the same column at consecutive rows 
                                    % should be less than or equal to Np/4 (Prof. Loomis paper) 
                                     
P = pow2(nextpow2(fs/dalpha/L));    % Number of columns formed in the channelization matrix (X) 
 
N = P*L;                            % Total number of points in the input data to be processed 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%   Input channelization - this part limits the input total number of points to be analyzed. It also generates a 
Np X P matrix 
% (X) with shifted versions of the input vector in each column. 
 
if length(x)<N 
    x(N) = 0; 
elseif length (x)>N 
    x = x(1:N); 
end 
 
NN = (P-1)*L+Np; 
xx = x; 
xx(NN) = 0; 
xx = xx(:); 
X = zeros(Np,P); 
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for k = 0:P-1 
    X(:,k+1) = xx(k*L+1:k*L+Np);    % X = (Np X P) Channelization input matrix 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Windowing (Hamming window) - a vector of length Np is created with the MATLAB® 'hamming' 
function, then this vector is 
% inserted in a Np X Np matrix diagonal and this result is multiplied by the channelized input matrix (X).  
 
a = hamming (Np); 
XW = diag(a)*X; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   First FFT - this is the first short time fft (Np points long) applied to each column of matrix X. 
 
XF1 = fft(XW);  
XF1 = fftshift(XF1); 
XF1 = [XF1(:,P/2+1:P) XF1(:,1:P/2)]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Downconversion - the short sliding fft's results are shifted to base band to obtain decimated complex 
demodulate sequences [2]  
 
E = zeros(Np,P); 
for k = -Np/2:Np/2-1 
    for m = 0:P-1 
        E(k+Np/2+1, m+1) = exp(-i*2*pi*k*m*L/Np); 
    end 
end 
XD = XF1.*E; 
XD = conj(XD'); % Transposing the matrix and taking the complex conjugate of the signal  
 
clear ('XF1', 'E', 'XW', 'X', 'x','I', 'Q'); % cleaning up memory space 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Multiplication - the product sequences between each one of the complex demodulates and the complex 
conjugate of the others 
% are formed. This forms the area in the bi-frequency plane as explained in [2] figures 4 , 7 and 10 
 
XM = zeros(P,Np^2); 
for k = 1:Np 
    for c = 1:Np 
        XM(:,(k-1)*Np+c) = (XD(:,k).*conj(XD(:,c))); 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   Second FFT -  a P point FFT is applied to XM (in each of its columns) 
 
XF2 = fft(XM); 
XF2 = fftshift(XF2); 
XF2 = [XF2(:,Np^2/2+1:Np^2) XF2(:,1:Np^2/2)]; 
XF2 = XF2 (P/4:3*P/4,:); 
MM = abs(XF2); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Output matrices range 
 
alpha0 = -fs:fs/N:fs; 
f0 = -fs/2:fs/Np:fs/2; 
Sx = zeros(Np+1, 2*N+1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Display only the data inside the range of interest - centralizes the bi-frequency plane according to alpha0 
and f0 vectors 
 
for k1 = 1:P/2+1 
    for k2 = 1:Np^2 
        if rem(k2,Np) == 0 
            c = Np/2 - 1; 
        else 
            c = rem(k2,Np) - Np/2 - 1; 
        end 
        k = ceil(k2/Np)-Np/2-1; 
        p = k1-P/4-1; 
        alpha = (k-c)/Np+(p-1)/N; 
        f = (k+c)/2/Np; 
        if alpha<-1 | alpha>1 
            k2 = k2+1; 
        elseif f<-.5 | f>.5 
            k2 = k2+1; 
        else 
            kk = 1+Np*(f + .5); 
            ll = 1+N*(alpha + 1); 
            Sx(round(kk), round(ll)) = MM(k1,k2); 
        end 
    end 
end 
clear ('alpha', 'XM', 'XF2', 'MM', 'f'); % cleaning up memory space 
 
Sx = Sx./max(max(Sx)); % Normalizes the magnitudes of the values in output matrix (maximum = 1) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% Plotting Routines 
% saves file containing results 
% savefile = 'FFTAM_result_s';  
% save(savefile,'filename','N','alpha0', 'f0', 'Sx', 'M', 'df') 
% clear all; 
% clc; 
%  
% load ('FFTAM_result_s.mat'); 
 
% figure (df + M);  
% mesh  
% view (-55,70); 
% xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude'); 
% title (['Time Smoothing (FFTAM) generated SCD for ', filename, ', df = ', int2str(df), '  and  N = ', 
int2str(N)]); 
%  
% % figure  
% % mesh (alpha0,f0, Sx, 'EdgeColor', 'interp'); 
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% % view (0,90); 
% % xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude'); 
% % title (['SCD for ', filename, ' N=', int2str(N)]); 
% % %  
% figure 
% subplot(2,2,1:2); 
% plot (f0, Sx); grid; 
% title (['Time Smoothing Processing for ', filename, ', df = ', int2str(df), '  and  N = ', int2str(N)]); 
% xlabel ('frequency (Hz)'); ylabel('SCD magnitude'); 
% subplot(2,2,3:4); 
% plot (alpha0, Sx); grid; 
% xlabel ('cycle frequency (Hz)'); ylabel ('SCD magnitude'); 
 
% % figure  
% % subplot(2,2,1:2); 
% % contour (alpha0, f0, Sx); grid; 
% % xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)'); 
% % title (['Time Smoothing (FFTAM) generated SCD for ', filename, ', df = ', int2str(df), '  and  N = ', 
int2str(N)]); 
% % zoom(2);colorbar; 
% % subplot(2,2,3:4);    
% % contour (alpha0, f0, Sx); grid; 
% % xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)'); 
% % zoom(2);colorbar; 
%  
figure  
contour (alpha0, f0, Sx); grid; 
xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)'); 
title (['Time Smoothing (FFTAM) generated SCD for ', filename, ', df = ', int2str(df), '  and  N = ', 
int2str(N)]); 
colorbar; 
delete ('FFTAM_result_s.mat'); 
 
% newname = ['FFTAM_' filename]; 
% cd('C:\Documents and Settings\aflima\Tese\Result Figures'); 
% saveas (gcf, newname, 'jpg'); 
 
cd('C:\Documents and Settings\aflima\Tese\cyclo'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% *** Cyclostationary Estimator using the Direct Frequency Smoothing Method algorithm.*** 
 
% Part of the LPI oriented thesis work with Prof. P.E. PACE and Prof. H. LOOMIS 
 
% Student: Antonio F. LIMA Jr. - 1st. Lt. Brazilian Air Force 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Getting input data from the global variables generated by GUI cyclo_s.m  
% function f = dfsm_s (x); 
% present_directory = cd; % Save present directory to a variable to make the GUI go back to it in the end 
path = handles.edit3; % Saving the path information in a variable 
cd (path);% Loading the file from the specified path 
filename = handles.edit1; % File to be analyzed 
Fs = handles.edit2; % Sampling frequency 
df = handles.popupmenu1; % Frequency Resolution 
M = 2; % Smoothing window range 
 
load (filename); 
x = I;% Using real part of signal 
 
N = (M*Fs)/df; 
N = pow2 (nextpow2(N)); % windowing record for FFT 
 
X = fft(x,N);   % fft of the truncated (or zero padded) time series 
X = fftshift(X);% shift components of fft 
Xc = conj(X);                 % precompute the complex conjugate vector 
 
S = zeros (N,N);              % size of the Spectral Correlation Density matrix 
f = zeros (N,N);              % size of the frequency matrix; 
alfa = zeros (N,N);           % size of the cycle frequency matrix 
F = Fs/(2*N);                 % precompute constants -  F = Fs/(2*N);      
G = Fs/N;                     % precompute constants -  G = Fs/N;   
m = -M/2+1:M/2;               % set frequency smoothing window index 
 
for k = 1:N                                % fix k 
    % computes vectors of f and alfa, 
    % store frequency and cycle frequency data for given k. 
     
    k1 = 1:N; 
    f(k,k1) = F*(k+k1-1) - Fs/2;          % Computes f values and shift them to center in zero (f = (K+L)/2N) 
[1] 
    alfa(k,k1) = G*(k-k1 + N-1) - Fs;       % Computes alfa values and shift them to center in zero (alfa = (K-
L)/N) [1] 
     
    for k1 = 1:N %fix k1 = J 
        %calculate X(K+m) & conj (X(J+m)) for arguments of X(1:N) only 
        B = max(1-k, 1-k1);          % Largest min of 1 <= (K+m)| (J+m) <= N 
        A = min (N-k, N-k1);         % Smallest max of 1 <= (K+m)| (J+m) <= N 
        n = m((m<=A) & (m>=B));   %fix the index out of range problem by 
                                                   % truncating the window 
        if isempty(n) 
            S(k,k1) = 0; 
        else 
            p = k+n; q = k1+n; 
            Y = X(p).*Xc(q); 
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            S(k,k1) = sum(Y); 
        end 
    end 
end 
 
S = abs(S./max(max(S)));% normalize output matrix 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Saving variables, cleaning up memory and running plots 
 
savefile = 'DFSM_result_s'; 
%save(savefile,'I', 'Q', 'alfa', 'f', 'S', 'N', 'Fs', 'filename', 'M', 'df') 
save(savefile,'alfa', 'f', 'S', 'N','filename', 'M', 'df') 
clear all; 
load ('DFSM_result_s.mat'); 
 
% figure (2*(df+M));  
% mesh (alfa,f, S, 'EdgeColor', 'interp'); 
% view (-55,70); 
% xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude'); 
% title (['Frequency Smoothing (DFSM) generated SCD for ', filename, ' df = ', int2str(df), ' N = ', 
int2str(N)]); 
% %  
% figure (2*(df+M) + 1);  
% mesh (alfa,f, S, 'EdgeColor', 'interp'); 
% view (0,90); 
% xlabel ('cycle frequency'); ylabel('frequency'); zlabel ('SCD magnitude'); 
% title (['SCD for', filename, ' df =', int2str(df), ' N=', int2str(N)]); 
%  
% figure(2*(df+M) + 2) 
% % subplot (2,2,1:2) 
% psd(I, N, Fs); 
% title(['I - real part for nfft = ', int2str(N), ' and for default nfft = 256']); 
% subplot (2,2,3:4) 
% psd(I, [], Fs); 
% subplot (2,2,3) 
% psd(I+j.*Q, N/2, Fs); 
% title('I+j.Q - complex'); 
% subplot (2,2,4) 
% psd(I-j.*Q, N/2, Fs); 
% title('I-j.Q - complex'); 
% %  
% figure 
% subplot(2,2,1:2); 
% plot (f, S); grid; 
% title (['Frequency Smoothing Processing for ', filename, ', df = ', int2str(df), '  and  N = ', int2str(N)]); 
% xlabel ('frequency (Hz)'); ylabel('SCD magnitude'); 
% subplot(2,2,3:4); 
% plot (alfa, S); grid; 
% xlabel ('cycle frequency (Hz)'); ylabel ('SCD magnitude'); 
% % %  
% figure (2*(df+M) + 5) 
% subplot(2,2,1:2); 
% contour (alfa, f, S); grid; 
% xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)'); 
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% title (['Frequency Smoothing (DFSM) generated SCD for ', filename, ', df = ', int2str(df), '  and  N = ', 
int2str(N)]); 
% zoom(2);colorbar; 
% subplot(2,2,3:4);    
% contour (alfa, f, S); grid; 
% xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)'); 
% zoom(2);colorbar; 
figure  
contour (alfa, f, S); grid; 
xlabel('cycle frequency (Hz)'); ylabel('frequency (Hz)'); 
title (['Frequency Smoothing (DFSM) generated SCD for ', filename, ', df = ', int2str(df), '  and  N = ', 
int2str(N)]); 
colorbar; 
delete ('DFSM_result_s.mat'); 
 
 
newname = ['DFSM_' filename]; 
cd('C:\Documents and Settings\aflima\Tese\Result Figures'); 
saveas (gcf, newname, 'jpg'); 
 
cd('C:\Documents and Settings\aflima\Tese\cyclo'); 
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APPENDIX B. FSK/PSK GENERATION CODES 

% FREQUENCY AND PHASE SHIFT COMBINED CODE using Costas Frequency modulation  
% Developed by Antonio Lima and Harsha Tummala 
% July, 2002 
% Phase code for FSK/PSK from IEEE International Radar Conference Paper - 1990 
% “The ambiguity properties of FSK/PSK signals” 
% by J. Patrick Donohoe, and Franklin M. Ingels   
 
clear all; 
clc; 
disp('********************************************************************************'); 
disp('FREQUENCY AND PHASE SHIFT CODE (FSK/PSK) USING COSTAS FREQUENCIES******'); 
disp('********************************************************************************'); 
 
% DEFAULT VARIABLES 
A=1;                            % Amplitude of CW 
fs =15e3;                       % Sample Rate  
SNR_dB = 0;                     %Signal to Noise Ratio 
cpf=1;                         %Cycles per frequency (> 10) 
scale=5;                       % Scaling for plotting time domain graphs 
barker = 5;                    % Number of Barker Bots for phase modulation 
j=sqrt(-1);                     % j 
 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of frequencies - A= %g.\n', A) 
    fprintf('2. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('3. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('4. Cycles per frequency  = %g.\n', cpf) 
    fprintf('5. Number of bits per Barker code for phase modulation - barker (13/11/7/5)= %g.\n', barker) 
    fprintf('6. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
     switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 
        fs=input('New sampling frequency (Hz)= '); 
    case 3 
        SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 4 
        cpf=input('New number of cycles per frequency = '); 
    case 5 
        barker=input('New number of bits for Barker Code = ');   
    case 6 
        newvar = 0;            
    end 
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    clc; 
end 
 
% FREQUENCY CHOICES 
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH COSTAS FREQUENCY SEQUENCE WOULD YOU LIKE TO USE ?  ') 
    disp(' ') 
    disp('1.       4, 7, 1, 6, 5, 2, 3 '); 
    disp('2.       2, 6, 3, 8, 7, 5, 1 '); 
    disp('3.       4, 1, 6, 7, 5, 3, 2 '); 
    disp('4.       5, 6, 8, 2, 4, 3, 1 '); 
    disp('5.       4, 9, 2, 5, 1, 9, 8 '); 
    disp('6.       2, 4, 1, 1, 7, 11, 9'); 
    disp('7.       2, 2, 5, 1, 3, 7, 4 '); 
    disp(' ') 
    option2= input('Select an option: '); 
 
freq=[4 7 1 6 5 2 3;  
    2 6 3 8 7 5 1;  
    4 1 6 7 5 3 2;  
    5 6 8 2 4 3 1; 
    4 9 2 5 1 9 8; 
    2 4 1 1 7 11 9; 
    2 2 5 1 3 7 4]*1000 
 
switch option2 
    case 1 
        seq=freq(1,:);  
       
    case 2 
        seq=freq(2,:); 
         
    case 3 
        seq=freq(3,:); 
         
    case 4 
       seq=freq(4,:); 
        
    case 5 
        seq=freq(5,:); 
         
    case 6 
        seq=freq(6,:); 
         
    case 7 
        seq=freq(7,:); 
         
                
    end 
    newvar=0; 
    clc; 
end 
 
% Create spanning Barker frequency 
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minimum=min(seq); 
SAR=ceil(fs/minimum);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
 
 
% This section generates I & Q without COSTAS phase shift and I & Q with Phase shift.  The signals are 

generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
pw = 1; 
 
if barker==13 
    phase = [ones(1,pw*5),-(ones(1,pw*2)),ones(1,pw*2),-ones(1,pw),ones(1,pw),-

ones(1,pw),ones(1,pw)];% 13 bits 
elseif barker==11 
    phase = [ones(1,pw*3),-(ones(1,pw*3)),ones(1,pw),-ones(1,pw),-ones(1,pw),ones(1,pw),-ones(1,pw)];% 

11 bits 
elseif barker==7 
    phase = [ones(1,pw*3),-(ones(1,pw*2)),ones(1,pw),-ones(1,pw)];% 7 bits 
elseif barker==5 
    phase = [ones(1,pw*3),-(ones(1,pw)),ones(1,pw)];% 5 bits 
end 
 
index=0; 
for pp = 1:5 
     
    for xx=1:7 
         
        for nn = 1:barker 
             
            for n=1:SAR*cpf 
                 
                IWO(index+1)=A*cos(2*pi*seq(xx)*(n-1)*tb);  
                                     
                QWO(index+1)=A*sin(2*pi*seq(xx)*(n-1)*tb);  
                                     
                I(index+1)=A*cos(2*pi*seq(xx)*(n-1)*tb)*phase(nn);  
                                     
                Q(index+1)=A*sin(2*pi*seq(xx)*(n-1)*tb)*phase(nn);  
                                     
                time(index+1)=index*tb; %time vector cumulation 
                                     
                index = index +1; 
                 
            end 
             
        end 
         
   end 
    
end         
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-

5,5,10,-10,-20] 
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%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with FSK/PSK phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with FSK/PSK phase shift 
QPWON=Q;             %Q with phase shift without noise 
ffs = fs/1000;       
 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
            
    %Plot Power Spectral Density for I without phase shift 
%     figure ; % open new figure for plot 
%     psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
%     title(['PSD of I without Phase Shift or Noise']); 
         
          
    %Plot PSD of I+ FSK/PSK Phase + WGN and Time Domain of I + FSK/PSK Phase 
    figure ;% open new figure for plot 
    signal = I+j*Q; 
    psd(signal,[],fs);%plot PSD for specified noise SNR 
    title(['PSD of FSK-PSK-C-'  num2str(option2) '-' num2str(ffs) '-' num2str(barker) '-' num2str(cpf) '-s 

I+j*Q']); 
     
    figure ;% open new figure for plot 
    signal = IN+j*QN; 
    psd(signal,[],fs);%plot PSD for specified noise SNR 
    title(['PSD of FSK-PSK-C-'  num2str(option2) '-' num2str(ffs) '-' num2str(barker) '-' num2str(cpf) '-' 

num2str(SNR_dB) ' I+j*Q']); 
%     %plot time domain signal I with FSK/PSK phase shift and WGN at specified SNR 
%     figure ;%open new figure for plot 
%     plot(time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
%     title(['FSK-PSK-C-' num2str(option2) '-' num2str(ffs) '-' num2str(barker) '-s Time Domain']); 
%     xlabel('{\itTime - Seconds} ');  
%     ylabel('Amplitude'); 
%     grid on; 
%             
    % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift 

from I+jQ. 
    % To determine phase shift, look at the phase angle of I+jQ at every 7th time interval.  Expect to see the 

FSK/PSK phase 
    % function plot repeated 5 times after unwrapping and detrending the phase angle. 
     
    figure;%open new figure for plot 
    plot(phase); 
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    title(['FSK-PSK-C-' num2str(option2) '-' num2str(ffs) '-' num2str(barker) '-' num2str(cpf) '-s Phase Shift 
for each Costas frequency hop']); 

    xlabel('i - index for phase change'); 
    ylabel('FSK/PSK Phase Shift - Theta'); 
    grid on; 
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and FSK/PSK phase shift for text file 
QNP=QN';%transpose Q with noise and FSK/PSK phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ffs=floor(fs/1e3); 
    save(['FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' num2str(cpf) '_' 

num2str(SNR_dB)],'I','Q'); 
    I=II; 
    Q=QQ; 
    save(['FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' num2str(cpf) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' 

num2str(cpf) '_' num2str(SNR_dB)]); 
    disp(['Signal only save as :       FSK_PSK_C_' num2str(option2) '_' num2str(ffs) '_' num2str(barker) '_' 

num2str(cpf) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
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% FREQUENCY AND PHASE SHIFT CODE (FSK/PSK) for a target frequency distribution 
% Developed by Antonio Lima and Harsha Tummala  
% July, 2002 
% Phase code for FSK/PSK from IEEE International Radar Conference Paper 
% MATCHED FSK/PSK RADAR 
% by B. Jeffrey Skinner, J. Patrick Donohoe, and Franklin M. Ingels   
 
clear all; 
clc; 
disp('***********************************************************************'); 
disp('*************FREQUENCY AND PHASE SHIFT CODE (FSK/PSK)*************'); 
disp('***********************************************************************'); 
 
%DEFAULT VARIABLES 
A=1;                          % Amplitude of CW 
fs =15000;                    % Sampling Frequency  
SNR_dB = 0;                   % Signal to Noise Ratio 
scale=20;                    % Scaling for plotting time domain graphs 
j=sqrt(-1);                    % j 
global N; 
N=128;                        % Number of fsk/psk sections (frequency hops and phase changes) 
cpp = 5;                      % Number of cycles per phase 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - A= %g.\n', A) 
    fprintf('2. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('3. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('4. Number of phase/frequency hops - N = %g.\n', N) 
    fprintf('5. Number of cycles per phase - cpp = %g.\n', cpp) 
    fprintf('6. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 
        fs=input('New sampling frequency (Hz)= '); 
    case 3 
        SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 4 
        N=input('New number of phase/frequency hops ='); 
    case 5 
        cpp=input('New number of cycles per phase='); 
    case 6 
        newvar = 0;            
    end 
    clc; 
end 
 
airplane; % Compute frequency hops values according to an airplane's frequency response 
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syn_test; % Generates frequency distribution according to previous probability distribution 
     
global target;    % Compute Frequency, first call up airplane variable 
global detection;   %  
 
tb=1/(fs);          % Sampling period 
SAR=ceil(fs/min(detection));     % Sampling ratio (for smaller frequency) 
 
phase = rand(1,cpp);    %Compute the phase encoding random sequence for each frequency burst 
greater = find(phase>=0.5); 
phase(greater) = pi; 
lesser = find(phase<0.5);         
phase(lesser) = 0;   
 
 
% This section generates I & Q without phase shift and I & Q with Phase shift.  The signals are generated 
% five times the number of frequency hops by the outer loop.  The variable 'index' is used to generate a 

time vector for time domain plots.  
% The signal is generated at seven samples per phase change.  
index=0; % Time vector for time domain plots. 
 
for  p=1:2% Generate the signal two times and store sequentially in corresponding vectors 
    for ii = (1:N) %Loop for each frequency hop 
        f = detection(ii,:);  
        for kk = (1:size(target,1)) 
            if f == target(kk,1) 
                init_phase = target(kk,3); %defines initial phase of FSK sequence 
            end 
        end 
                          
        for n=1:SAR*cpp %Loop to increment time for single frequency value. 
            I(index+1)=A*cos(2*pi*f*(n-1)*tb+phase(ceil(n/SAR))+init_phase); %Calculate in phase 

component of signal with phase shift 
            IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase 

shift 
            Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phase(ceil(n/SAR))+init_phase); % Calculate quadrature 

component of signal with phase shift 
            QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); %Calculate quadrature component of signal without 

phase shift 
            time(index+1)=index*tb; %time vector cumulation 
            index = index +1; 
        end 
    end 
end 
 
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-

5,5,10,-10,-20] 
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with FSK/PSK phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with FSK/PSK phase shift 
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QPWON=Q;             %Q with phase shift without noise 
ffs = fs/1000;      
 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    global range; 
    global airplane; 
     
    %Plot Target Frequency Distribution and Range/Magnitude plot 
    figure;% open new figure for plot 
    plot(target(:,1), target(:,2)); title('Ship FFT ABS'); grid on 
    title(['Original Target Frequency Probability Distribution']); 
    xlabel('Frequency'); 
    ylabel('Normalized Magnitude = Probability'); 
     
    figure;% open new figure for plot 
    plot(range, real(airplane(1:64))); title('Ship'); grid on 
    title(['Original Target Range / Magnitude Plot']); 
    xlabel('Range (ft)'); 
    ylabel('Magnitude'); 
     
    % Plot original frequency distribution histogram and frequency random firing distribution 
    figure;% open new figure for plot 
    orient tall; 
    subplot(2,1,1), 
    hist(detection(:,1),N); 
    xlabel('Detection Index'); 
    ylabel('Number of Occurences'); 
    fid1=['Target SYNTHETIC']; 
    title(fid1); 
 
    subplot(2,1,2), 
    bar(target(:,1), target(:,2)); 
    xlabel('Detection Index') 
    ylabel('Probability') 
    fid2=['Target ORIGINAL']; 
    title(fid2); 
     
    %Plot Power Spectral Density for I without phase shift 
%     figure ; % open new figure for plot 
%     psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
%     title(['PSD of I without Phase Shift or Noise']); 
         
     %time domain plot of in phase signal I with phase shift 
%     figure ; %open new figure for plot 
%     % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
%     %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
%     plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
%     title(['Time Domain of I with Phase Shift & no Noise']); 
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%     xlabel('{\itTime - Seconds} ');  
%     ylabel('Amplitude'); 
%     grid on; 
%          
    %Plot PSD of I+ FSK/PSK Phase + WGN and Time Domain of I + FSK/PSK Phase 
    figure ;% open new figure for plot 
    signal = I+j*Q; 
    psd(signal,[],fs);%plot PSD for specified noise SNR 
    title(['PSD of FSK-PSK-T-' num2str(ffs) '-' num2str(N) '-' num2str(cpp) '-s I+j*Q']); 
     
    %plot time domain signal I with FSK/PSK phase shift and WGN at specified SNR 
    figure ;%open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
    title(['FSK-PSK-T-' num2str(ffs) '-' num2str(N) '-' num2str(cpp) '-s Time Domain']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
            
    % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift 

from I+jQ. 
    % To determine phase shift, look at the phase angle of I+jQ at every 7th time interval.  Expect to see the 

FSK/PSK phase 
    % function plot repeated 5 times after unwrapping and detrending the phase angle. 
     
    figure;%open new figure for plot 
    plot(phase); 
    title(['FSK-PSK-T-' num2str(ffs) '-' num2str(N) '-' num2str(cpp) '-s Phase Shift ']); 
    xlabel('i - index for phase change'); 
    ylabel('FSK/PSK Phase Shift - Theta'); 
    grid on; 
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and FSK/PSK phase shift for text file 
QNP=QN';%transpose Q with noise and FSK/PSK phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I = INP(:,1); 
Q = QNP(:,1); 
  
II = IPWONT(:,1); 
QQ = QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ffs=floor(fs/1e3); 
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    save(['FSK_PSK_T_' num2str(ffs) '_' num2str(N) '_' num2str(cpp) '_' num2str(SNR_dB)],'I','Q', 
'detection'); 

    I=II; 
    Q=QQ; 
    save(['FSK_PSK_T_' num2str(ffs) '_' num2str(N) '_' num2str(cpp) '_s'],'I','Q','detection'); 
    disp(' '); 
    disp(['Signal and noise save as :  FSK_PSK_T_' num2str(ffs) '_' num2str(N) '_' num2str(cpp) '_' 

num2str(SNR_dB)]); 
    disp(['Signal only save as :       FSK_PSK_T_' num2str(ffs) '_' num2str(N) '_' num2str(cpp) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This part may be implemented on a different file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function airplane = airplane; 
 
global target; 
global airplane; 
global range; 
 
% Target range Profile 
airplane = [complex(0,-0.00000032:0.00000001:-0.00000016), complex(-0.001,-0.00000015), complex(-

0.002,-0.00000014), complex(-0.003,-0.00000013), complex(-0.0027,-0.00000012), complex(-
0.0025,-0.00000011), ... 

            complex(-0.0022,-0.00000010), complex(-0.0020, -0.00000009), complex(-0.0017, -0.00000008), 
complex(-0.0015,-0.00000007), complex(-0.0023, -0.00000006), complex(-0.003, -0.00000005), 
complex(-0.0015, -0.00000004), ... 

            complex(0,-0.00000003), complex(0,-0.00000002), complex(-0.0015, -0.00000001), complex(-
0.003,0),complex(0.028, 0.00000001), complex(-0.0075, 0.00000002), complex(0.014, 
0.00000003), complex(0.013,0.00000004), complex(-0.038,0.00000005), ... 

            complex(-0.003, 0.00000006), complex(-0.004, 0.00000007), complex(-0.005, 0.00000008), 
complex(-0.015, 0.00000009), complex(0.003, 0.0000001), complex(-0.0015, 
0.00000011:0.00000001:0.00000016), complex(0, 0.00000017:0.00000001:0.00000031), 
complex(0,-0.00000032:0.00000001:0.00000031)]; 

 
% Target Time profile 
airplane_t = flipdim(airplane, 2); 
airplane_t = real(airplane_t).*(-1) + j.*(imag(airplane_t)); 
 
% FFT of the time record fo the target response 
airplane_1 = fft(airplane_t); 
airplane_2 = abs(fftshift(airplane_1)); 
ph_airplane = phase(airplane_1); 
 
freq_step = 64; % Number of frequency steps to be used 
 
fss = 12e6; 
fs = fss/2000; %Downsized sampling frequency (from 12MHz to 6000Hz) 
frequency = fs/2:fs/2/freq_step:fs - 1; 
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airplane_3 = airplane_2(64:127); 
total = sum(airplane_3); 
airplane_4 = airplane_3/total; 
target = [(frequency)', (airplane_4)', (ph_airplane(1:freq_step))']; 
 
range_bin = (fss*2e-9)^(-1); 
range = 1:range_bin:freq_step*range_bin-1; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This part may be implemented on a different file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%% FREQUENCY SYNTHESIS ALGORITHM FOR FSK/PSK TARGET 
%% Frequencies are in the vector "detection" 
function syn_test = syn_test;  
 
fid=['Ship']; 
global N; 
global target; 
new_rec= target(:,1:2); 
 
%********************************************** 
%NO EDITS BELOW 
%********************************************** 
 
% PULL OFF THE DECIMAL DIGITS 
 
[nn,jo]=size(new_rec);  % Determine number 
   % of detections or rows 
     
   % Pull off the density 
   % decimal digits as strings 
“delta”=sprintf('%6.4f',new_rec(:,2));  
ss=reshape(“delta”, 6, nn); 
ss=ss'; 
   % Turn back into a number 
   % with each digit a column 
“delta”s(:,[1])=str2num(ss(:,3)); 
“delta”s(:,[2])=str2num(ss(:,4)); 
“delta”s(:,[3])=str2num(ss(:,5)); 
“delta”s(:,[4])=str2num(ss(:,6)); 
 
%% kk =4;    % NUMBER OF DECIMAL DIGITS 
 
   % Define probabilities 
   % p1 through p4 
p0=0; 
p1=10^(-1) * sum(“delta”s(:,1)); 
p2=10^(-2) * sum(“delta”s(:,2)); 
p3=10^(-3) * sum(“delta”s(:,3)); 
p4=10^(-4) * sum(“delta”s(:,4)); 
 
   % Determine pi values 
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pi0= 0; 
pi1= 10*p1; 
pi2= (10*p1)+(10^2 * p2); 
pi3= (10*p1)+(10^2 * p2)+(10^3 * p3); 
pi4= (10*p1)+(10^2 * p2)+(10^3 * p3) + (10^4 * p4); 
 
   % Determine test values for 
   % the uniform random variable 
ptest0=0; 
ptest1=p1; 
ptest2=ptest1+p2; 
ptest3=ptest2+p3; 
ptest4=ptest3+p4; 
 
   % FILL MEMORY LOCATION 
   % SET 1 
 
ok=0;  
for j=1:nn    % RANDOM VARIABLE INDEX 
 if “delta”s(j,1)~=0 
  for i=1:”delta”s(j,1)  
   mem(i+ok,1)=j; 
  end 
  ok=i+ok; 
 end 
end 
if “delta”s(j,1)~=0 
    [mem_size xx]=size(mem); 
else 
     mem_size = 0; 
     xx = 0; 
end 
 
   % FILL MEMORY LOCATIONS 
   % SET 2 
ok=0;  
for j=1:nn   % RANDOM VARIABLE INDEX 
 if “delta”s(j,2)~=0 
  for i=1:”delta”s(j,2)  
   mem(i+ok+mem_size,1)=j; 
  end 
  ok=i+ok; 
       end 
end 
 
[mem_size xx]=size(mem); 
 
   % FILL MEMORY LOCATIONS 
   % SET 3 
ok=0;  
for j=1:nn   % RANDOM VARIABLE INDEX 
 if “delta”s(j,3)~=0 
  for i=1:”delta”s(j,3)  
   mem(i+ok+mem_size,1)=j; 
  end 
  ok=i+ok; 
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       end 
end 
 
[mem_size xx]=size(mem); 
 
   % FILL MEMORY LOCATIONS 
   % SET 4 
ok=0;  
for j=1:nn   % RANDOM VARIABLE INDEX 
 if “delta”s(j,4)~=0 
  for i=1:”delta”s(j,4)  
   mem(i+ok+mem_size,1)=j; 
  end 
  ok=i+ok; 
       end 
end 
%____________________________________________________ 
   % Now that mem is filled 
   % generate the detections 
 
   % nn number of detections 
 
for gi=1:N 
   % uni is the uniform RV 
   % pull the decimal digits off 
uni=rand; 
uni_str=sprintf('%6.4f',uni) ; 
sss=reshape(uni_str, 6, 1); 
sss=sss'; 
 
d1=str2num(sss(:,3)); 
d2=str2num(sss(:,4)); 
d3=str2num(sss(:,5)); 
d4=str2num(sss(:,6)); 
 
   % Test the RV to find correct  
   % index.  Then generate detection 
% DETECTION 
 
global detection; 
if uni >= 0 & uni < ptest1 
 rv_index=mem(round(d1+1),1); 
 detection(gi,[1])=new_rec(rv_index,(1:1)); 
elseif uni >= ptest1 & uni < ptest2 
 const=pi1-(100*(p1)); 
 rv_index=mem(round(d1*10 + d2 + const +1),1); 
 detection(gi,[1])=new_rec(rv_index,(1:1)); 
elseif uni >= ptest2 & uni < ptest3 
 const=pi2-(1000*(p1+p2)); 
 rv_index=mem(round(d1*100 + d2*10 + d3 + const +1),1); 
 detection(gi,[1])=new_rec(rv_index,(1:1)); 
elseif uni >= ptest3 & uni < ptest4 
 const=pi3-(10000*(p1+p2+p3)); 
 rv_index=mem(round(d1*1000 + d2*100 + d3*10 +d4 + const +1),1); 
 detection(gi,[1])=new_rec(rv_index,(1:1)); 
end 
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end 
 
 
 
% % ____________________PLOTS____________________ 
% %  
% figure 
%  
% orient tall; 
% subplot(2,1,1), 
% hist(detection(:,1),N); 
% xlabel('Detection Index'); 
% ylabel('Number of Occurences'); 
% fid1=[fid,'  SYNTHETIC']; 
% title(fid1); 
%  
% subplot(2,1,2), 
% bar(new_rec(:,1), new_rec(:,2)); 
% xlabel('Detection Index') 
% ylabel('Probability') 
% fid2=[fid,'  ORIGINAL']; 
% title(fid2); 
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%************************************************************************************ 
%PAF for FREQUENCY AND PHASE SHIFT CODE (FSK/PSK)  
% Developed by Antonio Lima  
% July, 2002 
% Phase code for FSK/PSK from IEEE International Radar Conference Paper 
% “MATCHED FSK/PSK RADAR” 
% by B. Jeffrey Skinner, J. Patrick Donohoe, and Franklin M. Ingels   
 
%************************************************* 
clear all;  
clc; close all; 
 
load FSK_PSK_T_15_256_10_s;     % Loads the I and Q for the P4 signal, 1 cycle N^2 = 128 
cpp = 10; 
NN = 256; 
 
% load FSK_PSK_C_1_15_5_1_s;     % Loads the I and Q for the P4 signal, 1 cycle N^2 = 128 
% seq = 1; 
% barker = 5; 
% cpf = 1; 
 
SignalI=I(1:size(I,1)/2)';           % Signal repeates after 896 intervals, 128 phase codes*1 samples/phase*3 

SAR*5 
SignalQ=Q(1:size(Q,1)/2)'; 
 
SignalQ_j=SignalQ.*j;     % Make Q the complex part 
u1=SignalI+SignalQ_j;      % Create signal and reference signal 
u2=SignalI-SignalQ_j; 
 
tau = 1; 
T = 1; 
N = 1;                     % Adjust number of pulses in the train 
tx = length(u2);           % Number of sambles in the time domain 
tb = T/tx;                 % Code(chip) period 
vstep = 500;               % Steps in the freq shift dimension - (600 FOR COSTAS) 
t=[0:tx-1]*tau/tx;         % Steps in the time dimension, positive 
dt = t(2)-t(1); 
z=[];                       % Empty result matrix 
v=linspace(-50/tau,50/tau,vstep);     % Width in the freq shift dimension - (TARGET, 50 FOR COSTAS) 
for m= 1:vstep 
    mult=[]; 
    mult = exp(j*2*pi*v(m)*t); 
    u2ex= u2.*mult; 
    u3 = conj(u2ex);                             % Transfer in order to use built in function 
    c = xcorr(u3,u1).*dt;                       % Using the built in correlation function 
    universal=[];                               % Multiplying with the universal function 
    dummy = (pi*v(m)*T); 
    dummy = dummy + (dummy==0)*eps; 
    universal = abs(sin(dummy*N)/(N*sin(dummy))); 
    e= (c.* universal); 
    z=[z;abs(e)]; 
    v(m) = v(m)*tb;                             % Normalizing the freq shift axis  
end 
t=[fliplr(-t),t(2:tx)];                         % Creating a negative time axis 
t=(t/(tb*tx));                                   % Normalizing the time axis 
z = z/max(max(z)); 
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% FOR FSK_PSK_TARGET, USE THE FOLLOWING 
PLOTS%%%%%%%%%%%%%%%%%%%%%% 

figure 
contour(t,v,z),grid on 
colorbar 
title(['FSK/PSK Target Code, Cpp = ', num2str(cpp) ', N hops = ' num2str(NN)]) 
xlabel('Normalized \tau') 
ylabel('Normalized \nu') 
% axis tight 
 
figure 
plot(t,z((vstep+1)/2,:)), grid on 
title('PSK/FSK Target code, Cut along the 0 doppler axis') 
xlabel('Normalized \tau') 
ylabel('Magnitude') 
axis tight 
 
figure 
plot(v,z(:,tx)), grid on 
title('PSK/FSK Target code, Cut along the 0 delay axis') 
xlabel('Normalized \nu') 
ylabel('Magnitude') 
axis tight 
 
 
 
% FOR FSK_PSK_COSTAS, USE THE FOLLOWING 

PLOTS%%%%%%%%%%%%%%%%%%%%%%% 
% figure 
% contour(t,v,z),grid on 
% colorbar 
% title(['PAF for a FSK/PSK Costas Code, Costas sequence = ', num2str(seq) ', Barker Bits = ' 

num2str(barker) ', Cycles per Phase = ' num2str(cpf)]) 
% xlabel('Normalized \tau') 
% ylabel('Normalized \nu') 
% axis tight 
%  
% figure 
% plot(t,z((vstep+1)/2,:)), grid on 
% title('PSK/FSK Costas code, Cut along the 0 doppler axis') 
% xlabel('Normalized \tau') 
% ylabel('Magnitude') 
% axis tight 
%  
% figure 
% plot(v,z(:,tx)), grid on 
% title('PSK/FSK Costas code, Cut along the 0 delay axis') 
% xlabel('Normalized \nu') 
% ylabel('Magnitude') 
% axis tight 
%  
%  
% %Doing it again 
% index = 0; 
% for ii = 1:(cpf*375):((size(I,1))/2) 
%     for pp = 0:74 
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%         SignalI(index+1) = I(ii+pp)'; 
%         SignalQ(index+1) = Q(ii+pp)'; 
%         index = index + 1; 
%     end 
% end 
%  
% SignalQ_j=SignalQ.*j;     % Make Q the complex part 
% u1=SignalI+SignalQ_j;      % Create signal and reference signal 
% u2=SignalI-SignalQ_j; 
%  
% tau = 1; 
% T = 1; 
% N = 1;                     % Adjust number of pulses in the train 
% tx = length(u2);           % Number of sambles in the time domain 
% tb = T/tx;                 % Code(chip) period 
% vstep = 500;               % Steps in the freq shift dimension - (600 FOR COSTAS) 
% t=[0:tx-1]*tau/tx;         % Steps in the time dimension, positive 
% dt = t(2)-t(1); 
% z=[];                       % Empty result matrix 
% v=linspace(-20/tau,20/tau,vstep);     % Width in the freq shift dimension - (TARGET, 50 FOR COSTAS) 
% for m= 1:vstep 
%     mult=[]; 
%     mult = exp(j*2*pi*v(m)*t); 
%     u2ex= u2.*mult; 
%     u3 = conj(u2ex);                             % Transfer in order to use built in function 
%     c = xcorr(u3,u1).*dt;                       % Using the built in correlation function 
%     universal=[];                               % Multiplying with the universal function 
%     dummy = (pi*v(m)*T); 
%     dummy = dummy + (dummy==0)*eps; 
%     universal = abs(sin(dummy*N)/(N*sin(dummy))); 
%     e= (c.* universal); 
%     z=[z;abs(e)]; 
%     v(m) = v(m)*tb;                             % Normalizing the freq shift axis  
% end 
% t=[fliplr(-t),t(2:tx)];                         % Creating a negative time axis 
% t=(t/(tb*tx));                                   % Normalizing the time axis 
% z = z/max(max(z)); 
%  
% %%%%%%%%%%%%%% FOR FSK_PSK_COSTAS, USE THE FOLLOWING 

PLOTS%%%%%%%%%%%%%%%%%%%%%%% 
% figure 
% contour(t,v,z),grid on 
% colorbar 
% title(['PAF for a FSK/PSK Costas Code, Costas sequence = ', num2str(seq) ', Barker Bits = ' 

num2str(barker) ', Cycles per Phase = ' num2str(cpf)]) 
% xlabel('Normalized \tau') 
% ylabel('Normalized \nu') 
% axis tight 
%  
% figure 
% plot(t,z((vstep+1)/2,:)), grid on 
% title('PSK/FSK Costas code, Cut along the 0 doppler axis') 
% xlabel('Normalized \tau') 
% ylabel('Magnitude') 
% axis tight 
%  
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% figure 
% plot(v,z(:,tx)), grid on 
% title('PSK/FSK Costas code, Cut along the 0 delay axis') 
% xlabel('Normalized \nu') 
% ylabel('Magnitude') 
% axis tight 
%  
% %%%%%%%%%%% FOR OTHER PLOTS, USE THE FOLLOWING 

FIGURES%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % figure 
% % colormap(jet); caxis=[3 1]; 
% % mesh(t,v,z),grid on 
% % colorbar; 
% % title('PAF for a FSK/PSK Code') 
% % xlabel('Normalized \tau') 
% % ylabel('Normalized \nu') 
% % zlabel('Magnitude') 
% % axis tight 
% % 
%  
% % figure 
% % mesh(t,v,z),grid on 
% % view(0,0) 
% % colorbar 
% % title('Side-view towards the delay axis')  
% % xlabel('Normalized \tau') 
% % ylabel('Normalized \nu') 
% % zlabel('Magnitude') 
% % axis tight 
% %  
% % figure 
% % mesh(t,v,z),grid on 
% % view(90,0) 
% % colorbar 
% % title('Side-view towards the doppler axis') 
% % xlabel('Normalized \tau') 
% % ylabel('Normalized \nu') 
% % zlabel('Magnitude') 
% % axis tight 
% % 
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APPENDIX C. LIST OF LPI RADAR SIGNALS ANALYZED 

SIGNAL NAME 
 
 
 
 

CARRIER 
FREQUENCY 
OR HOPPING 
SEQUENCE 

(kHz) 

BW 
(Hz) 

 
 
 

NPBB/
CPP 

 
 
 

NUMBER OF 
BITS / PHASES 

AND 
MODULATION 

PERIOD 
 

MODULATION TYPE 
 
 
 
 

B_1_7_11_1_-6.mat 1 1000 1 11 BPSK 
B_1_7_11_1_0.mat 1 1000 1 11 BPSK 
B_1_7_11_1_s.mat 1 1000 1 11 BPSK 
B_1_7_11_5_-6.mat 1 200 5 11 BPSK 
B_1_7_11_5_0.mat 1 200 5 11 BPSK 
B_1_7_11_5_s.mat 1 200 5 11 BPSK 
B_1_7_7_1_-6.mat 1 1000 1 7 BPSK 
B_1_7_7_1_0.mat 1 1000 1 7 BPSK 
B_1_7_7_1_s.mat 1 1000 1 7 BPSK 
B_1_7_7_5_-6.mat 1 200 5 7 BPSK 
B_1_7_7_5_0.mat 1 200 5 7 BPSK 
B_1_7_7_5_s.mat 1 200 5 7 BPSK 

FR_1_7_16_1_-6.mat 1 1000 1 16 FRANK 
FR_1_7_16_1_0.mat 1 1000 1 16 FRANK 
FR_1_7_16_1_s.mat 1 1000 1 16 FRANK 
FR_1_7_16_5_-6.mat 1 200 5 16 FRANK 
FR_1_7_16_5_0.mat 1 200 5 16 FRANK 
FR_1_7_16_5_s.mat 1 200 5 64 FRANK 
FR_1_7_64_1_-6.mat 1 1000 1 64 FRANK 
FR_1_7_64_1_0.mat 1 1000 1 64 FRANK 
FR_1_7_64_1_s.mat 1 1000 1 64 FRANK 
FR_1_7_64_5_-6.mat 1 200 5 64 FRANK 
FR_1_7_64_5_0.mat 1 200 5 64 FRANK 
FR_1_7_64_5_s.mat 1 200 5 64 FRANK 

F_1_7_250_20_-6.mat 1 250 X 20 FMCW 
F_1_7_250_20_0.mat 1 250 X 20 FMCW 
F_1_7_250_20_s.mat 1 250 X 20 FMCW 
F_1_7_250_30_-6.mat 1 250 X 30 FMCW 
F_1_7_250_30_0.mat 1 250 X 30 FMCW 
F_1_7_250_30_s.mat 1 250 X 30 FMCW 
F_1_7_500_20_-6.mat 1 500 X 20 FMCW 
F_1_7_500_20_0.mat 1 500 X 20 FMCW 
F_1_7_500_20_s.mat 1 500 X 20 FMCW 
F_1_7_500_30_-6.mat 1 500 X 30 FMCW 
F_1_7_500_30_0.mat 1 500 X 30 FMCW 
F_1_7_500_30_s.mat 1 500 X 30 FMCW 
Table 49.   Test matrix of LPI radar signals analyzed. 
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P1_1_7_16_1_-6.mat 1 1000 1 16 P1 
P1_1_7_16_1_0.mat 1 1000 1 16 P1 
P1_1_7_16_1_s.mat 1 1000 1 16 P1 
P1_1_7_16_5_-6.mat 1 200 5 16 P1 
P1_1_7_16_5_0.mat 1 200 5 16 P1 
P1_1_7_16_5_s.mat 1 200 5 16 P1 
P1_1_7_64_1_-6.mat 1 1000 1 64 P1 
P1_1_7_64_1_0.mat 1 1000 1 64 P1 
P1_1_7_64_1_s.mat 1 1000 1 64 P1 
P1_1_7_64_5_-6.mat 1 200 5 64 P1 
P1_1_7_64_5_0.mat 1 200 5 64 P1 
P1_1_7_64_5_s.mat 1 200 5 64 P1 
P2_1_7_16_1_-6.mat 1 1000 1 16 P2 
P2_1_7_16_1_0.mat 1 1000 1 16 P2 
P2_1_7_16_1_s.mat 1 1000 1 16 P2 
P2_1_7_16_5_-6.mat 1 200 5 16 P2 
P2_1_7_16_5_0.mat 1 200 5 16 P2 
P2_1_7_16_5_s.mat 1 200 5 16 P2 
P2_1_7_64_1_-6.mat 1 1000 1 64 P2 
P2_1_7_64_1_0.mat 1 1000 1 64 P2 
P2_1_7_64_1_s.mat 1 1000 1 64 P2 
P2_1_7_64_5_-6.mat 1 200 5 64 P2 
P2_1_7_64_5_0.mat 1 200 5 64 P2 
P2_1_7_64_5_s.mat 1 200 5 64 P2 
P3_1_7_16_1_-6.mat 1 1000 1 16 P3 
P3_1_7_16_1_0.mat 1 1000 1 16 P3 
P3_1_7_16_1_s.mat 1 1000 1 16 P3 
P3_1_7_16_5_-6.mat 1 200 5 16 P3 
P3_1_7_16_5_0.mat 1 200 5 16 P3 
P3_1_7_16_5_s.mat 1 200 5 16 P3 
P3_1_7_64_1_-6.mat 1 1000 1 64 P3 
P3_1_7_64_1_0.mat 1 1000 1 64 P3 
P3_1_7_64_1_s.mat 1 1000 1 64 P3 
P3_1_7_64_5_-6.mat 1 200 5 64 P3 
P3_1_7_64_5_0.mat 1 200 5 64 P3 
P3_1_7_64_5_s.mat 1 200 5 64 P3 
P4_1_7_16_1_-6.mat 1 1000 1 16 P4 
P4_1_7_16_1_0.mat 1 1000 1 16 P4 
P4_1_7_16_1_s.mat 1 1000 1 16 P4 
P4_1_7_16_5_-6.mat 1 200 5 16 P4 
P4_1_7_16_5_0.mat 1 200 5 16 P4 
P4_1_7_16_5_s.mat 1 200 5 16 P4 
P4_1_7_64_1_-6.mat 1 1000 1 64 P4 
P4_1_7_64_1_0.mat 1 1000 1 64 P4 
Table 50.   Test matrix of LPI radar signals analyzed. 



157 

P4_1_7_64_1_s.mat 1 1000 1 64 P4 
P4_1_7_64_5_-6.mat 1 200 5 64 P4 
P4_1_7_64_5_0.mat 1 200 5 64 P4 
P4_1_7_64_5_s.mat 1 200 5 64 P4 
C_1_15_10_-6.mat 4, 7, 1, 6, 5, 2, 3 - 10 1 COSTAS 
C_1_15_10_0.mat 4, 7, 1, 6, 5, 2, 3 - 10 1 COSTAS 
C_1_15_10_s.mat 4, 7, 1, 6, 5, 2, 3 - 10 1 COSTAS 
C_1_15_20_-6.mat 4, 7, 1, 6, 5, 2, 3 - 20 1 COSTAS 
C_1_15_20_0.mat 4, 7, 1, 6, 5, 2, 3 - 20 1 COSTAS 
C_1_15_20_s.mat 4, 7, 1, 6, 5, 2, 3 - 20 1 COSTAS 
C_2_17_10_-6.mat 2, 6, 3, 8, 7, 5, 1 - 10 1 COSTAS 
C_2_17_10_0.mat 2, 6, 3, 8, 7, 5, 1 - 10 1 COSTAS 
C_2_17_10_s.mat 2, 6, 3, 8, 7, 5, 1 - 10 1 COSTAS 
C_2_17_20_-6.mat 2, 6, 3, 8, 7, 5, 1 - 20 1 COSTAS 
C_2_17_20_0.mat 2, 6, 3, 8, 7, 5, 1 - 20 1 COSTAS 
C_2_17_20_s.mat 2, 6, 3, 8, 7, 5, 1 - 20 1 COSTAS 

FSK_PSK_C_1_15_11_1_0.mat 4, 7, 1, 6, 5, 2, 3 1000 1 11 FSK/PSK COSTAS 
FSK_PSK_C_1_15_11_1_s.mat 4, 7, 1, 6, 5, 2, 3 1000 1 11 FSK/PSK COSTAS 
FSK_PSK_C_1_15_11_5_0.mat 4, 7, 1, 6, 5, 2, 3 200 5 11 FSK/PSK COSTAS 
FSK_PSK_C_1_15_11_5_s.mat 4, 7, 1, 6, 5, 2, 3 200 5 11 FSK/PSK COSTAS 
FSK_PSK_C_1_15_5_1_0.mat 4, 7, 1, 6, 5, 2, 3 1000 1 5 FSK/PSK COSTAS 
FSK_PSK_C_1_15_5_1_s.mat 4, 7, 1, 6, 5, 2, 3 1000 1 5 FSK/PSK COSTAS 
FSK_PSK_C_1_15_5_5_0.mat 4, 7, 1, 6, 5, 2, 3 200 5 5 FSK/PSK COSTAS 
FSK_PSK_C_1_15_5_5_s.mat 4, 7, 1, 6, 5, 2, 3 200 5 5 FSK/PSK COSTAS 

FSK_PSK_T_15_128_10_0.mat - 3600 10 128 Hops FSK/PSK TARGET 
FSK_PSK_T_15_128_10_s.mat - 3600 10 128 Hops FSK/PSK TARGET 
FSK_PSK_T_15_128_5_0.mat - 4200 5 128 Hops FSK/PSK TARGET 
FSK_PSK_T_15_128_5_s.mat - 4200 5 128 Hops FSK/PSK TARGET 

FSK_PSK_T_15_256_10_0.mat - 3600 10 256 Hops FSK/PSK TARGET 
FSK_PSK_T_15_256_10_s.mat - 3600 10 256 Hops FSK/PSK TARGET 
FSK_PSK_T_15_256_5_0.mat - 4200 5 256 Hops FSK/PSK TARGET 
FSK_PSK_T_15_256_5_s.mat - 4200 5 256 Hops FSK/PSK TARGET 

T_1_7_1_s.mat 1000 - - - 
TEST SIGNAL 1 

CARRIER 

T_12_7_2_s.mat 1000 and 2000 - - - 
TEST SIGNAL 2 

CARRIERS 
Table 51.   Test matrix of LPI radar signals analyzed. 
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