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ABSTRACT 
 
  
As fiscal constraints demand maximum utilization, engineers must develop more 

rigorous methods to predict the life limits of aircraft components.  Current Navy policy 

requires that aircraft and aircraft parts be retired before they reach 100% FLE.  An 

investigation has been initiated that would attempt to quantify the probability of failure if 

aircraft parts were extended in service life beyond 100% FLE.   

The work of this thesis was to investigate the probability distributions of test data 

taken for aluminum 7050-T7451, and to attempt to develop a probability based model 

from the variation of the 4 fatigue life constants ( ,
fσ , '

fε ,b,c).  The goal was to create 

strain-life-probability curves that would more accurately describe the likelihood of failure 

at a given strain amplitude. 

The investigator determined that the test data did not demonstrate any consistent 

known probability density function.  The investigator cautioned against assuming a 

normal distribution before it could be completely established as the predominate 

probability density function.  Possible consequences of invalid assumptions were 

presented.  Attempts were made to explain the disparity of sample data between two 

different laboratories testing of the same material.   

Assuming random behavior within an established range, probability based models 

were developed using the 4 strain-life constants.  It was determined that in order to create 

a complete probability based model, an accurate regression of the test data must fit all 

strain levels to include the intermediate strain level’s “knee”.  In an attempt to solve that 

problem, 8 parameter equations were explored.  Methods to predict the 8 parameters 

included random number simulation combined with non-linear least squares curve fits, 

evolutionary algorithms and genetic algorithms. 
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I.   INTRODUCTION 

A.   METAL FATIGUE 

The prediction of the useful life of metals has been of interest to man since the 

advent of the railroad.    How long a metal will withstand the level of applied stress 

presents many interesting problems.   Of interest to this paper is that there is a wide 

variation in how long a given metal will last at a constant level of stress or strain.  Simply 

put, no two samples, even though manufactured exactly the same will ever have exactly 

the same physical constitution.  Therefore, their lives will not be the same.  Obviously, 

the more man is able to control and refine his processes, the less the materials will vary.  

Until the day when a process has been created to make each piece exactly the same to 

include the orientation of each molecule, there will always be variation to deal with.  

Probabilities, statistics, and variational analysis are just a few of the ways people attempt 

to explain the unknown.  This paper takes a look at how the variation of each metal may 

be better quantified and possibly predicted. 

 

B. STRAIN-LIFE 

(The following discussion on Strain-Life relies heavily on Fundamentals of Metal 

Fatigue Analysis [1].) 

For years, engineers and mathematicians have quantified metal fatigue with the 

use of sample testing.  By testing small coupons of a given material, according to 

American Society of Testing Materials (ASTM) methods, engineers predicted the 

average life a material would have at a given stress or strain level.  The results were 

typically depicted in the form of stress–cycles to failure or strain–cycles to failure.   

Traditionally, samples were tested with constant amplitude loadings.   The heart of this 

analysis was the following relationship between stress and strain: 

stress elasticEσ ε=  

This equation describes the interaction between stresses applied to a material and 

the percent deformation due to those stresses (strain).  The two are related by the elastic 
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properties of the material, the Modulus of Elasticity  (E).  Upon loading, the material’s 

deformation is resisted by the modulus of elasticity.  Once the load is no longer applied, 

the material “snaps” back to its original size with no permanent deformation.  When a 

material is never stressed to the point at which it permanently deforms, the material is 

said to be undergoing elastic strains.  When this type of behavior is applied to alternating 

or cyclic stresses, it is describe as High Cycle Fatigue, since the material life-times 

associated with non-deforming load levels are  much higher than materials subjected to 

loadings where there is permanent deformation.  High Cycle Fatigue (HCF) is thus 

usually tested with constant amplitude load test.  When the material does fail, the 

determination of the level of strain is a simple transformation: 

elastic applied Eε σ= ÷  

During testing, this equation is used to evaluate the strain at failure based on an 

established constant amplitude load level.  At each failure, the number of cycles to failure 

(2Nf) is recorded.   (A cycle is counted as, zero stress, to maximum compressive stress, to 

maximum tensile stress, and then back to zero load.) After many samples have been 

tested at different load levels the failure points are plotted on log-log paper, and 

predictions can be made about the life of the material based on a given stress level 

applied.   The life is determined from the following equation: 

'

'

2
2

stress amplitude
2

 = fatigue strength coefficient

    = fatigue strength exponent
2 = cycles to failure

b
f

f

Nf

b
Nf

σ σ

σ

σ

∆
= ×

∆
=

 

In log space, a lined describes the trend of the data points.  The fatigue strength 

coefficient is the Y intercept and the fatigue strength exponent is the slope of the line. 

During HCF the elastic strain equals the total strain.  If materials are subjected to 

larger loads, when deformation takes place, it includes two effects, elastic and plastic.  

With a large enough load applied, a material will not “snap” back into shape after the 
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load is released.  Instead there will be some amount of permanent deformation.  The 

relationship between strains is given as: 

total elastic plasticε ε ε= +  

When permanent deformations occur, the Stress-Life Methods can no longer be 

used to analyze the strain at failure.  Strain-Life Methods must be used.  It was realized 

that a similar log-linear transformation could be applied to plastic strain. 

'

'

2
2

plastic strain amplitude
2
        = fatigue ductility coefficient

          = fatigue ductility exponent

plastic c
f

plastic

f

Nf

c

ε
ε

ε

ε

∆
= ×

∆
=  

As with the Stress-life equation, the fatigue ductility coefficient represents the Y 

intercept and the fatigue ductility exponent represents the slope of the log-linear line. 

If the Stress-life equation is converted to strain amplitude the following equation 

is derived: 

'

2
2

f belastic Nf
E
σε∆

= ×  

Since it has been previously determined that total strain is the combination of 

elastic and plastic strain, the two previous equations are combined to yield the Strain-life 

equation, also known as the Coffin-Manson equation: 

'
'2 2

2
f b ctotal

fNf Nf
E
σε ε∆

= × + ×  

 

  Since Strain-life includes the plastic effects, it is usually used when evaluating 

Low Cycle Fatigue.  LCF, by definition, has a shorter life than HCF.  This is due to the 

fact that larger loads are applied, plastic effects are introduced and the materials breaks 

much more quickly.  Strain-life methods usually determine the required coefficients and 

exponents from constant amplitude strain tests.  Since the strain-life method has wider 
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application, it is the chosen tool for the Navy’s aircraft metal fatigue prediction.  When 

samples are tested with this method, a variable load is applied that will result in a 

constant strain amplitude.  Initially, the material exhibits only elastic strain.  It is loaded, 

it deforms, and then it is unloaded and it snaps back into place.  During this stage, while 

plastic deformation does not occur, the relationship between stress and strain is linear, 

related by the modulus of elasticity.  Since the strain is constant, the load to produce that 

strain remains constant.   At some point, as the material properties begin to break down, 

micro-cracks develop, permanent deformation occurs, and the load requirement to cause 

the established strain level is reduced.  As the material becomes increasingly weakened, 

there is a significant decrease in load required to strain the material (load drop).  When 

the material no longer resists the load, it breaks.        

When samples are tested in a strain controlled manner, the resulting plot of the 

elastic strains regression line, added to the plastic strains regression line, yields the 

equation previously established as the Strain-life or Coffin-Manson equation.  The 

following is an example of a number of tests with regression lines of the plastic and 

elastic strain levels.  The sum of these two equations would predict the mean life of this 

material for a given constant amplitude strain level.           
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Figure. 1.   Example Strain-Life Plot 

 

In log space, a power law regression to the plastic and elastic points provides the basis for 

the Coffin-Manson equation [1].   

'

'( ) ( )(2 ) (2 )
2

f b c
fNF NF

E
σε ε∆

= +     For this data set the equation becomes: 

( .075) ( .7259).115 (2 ) .913 (2 )
2
total Nf Nfε − −∆

= × + ×   

This equation defines a predicted average life at a given strain.   Because this method is 

based on a regression, the equation does nothing to describe the variation that the 

material has.  There is a variation of life, which is demonstrated by the scatter of the data 

points.  The following figure demonstrates the strain-life equation, as it was derived from 

the regression of the elastic and plastic parts of this data set. 

Aluminum Strain Life

y = 0.0115x-0.075

y = 0.9193x-0.7259

0.001

0.01

0.1

10 100 1000 10000
2NF

Strain

Max_Strain
Elastic
Plastic
Power (Elastic)
Power (Plastic)
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Figure. 2.    Strain-Life Equation  

 

C. PROBABALISTIC METHODS 

To compensate for the fact that the strain-life equation only predicts an average 

life, engineers typically use a scatter factor to account for the variance that a material may 

have.  Obviously, an aeronautical engineer would want to design for the worse possible 

case.  For that matter, a scatter factor of 4 is often used to translate from the design stage 

to the actual product.  This large scatter factor helps to account for actual material 

geometries, manufacturing defects and other uncertainties.  This factor attempts to 

correlate a coupon test to a full-scale structure.  Other less sensitive designs may be able 

to use scatter factors as low as 2 or 3.   

Since the late 1940s, engineers have examined the test data in an attempt to define 

a probability distribution that would explain and characterize the behavior of the data.  

Early advances of this type of analysis, were popularized by the famed W. Weibull with 

his 1951 paper, “A Statistical Distribution Function of Wide Applicability”  [2].  To date 

there are many different methods that attempt to predict the probabilities of failure.   

Some of the methods include, First/Second Order Reliability Methods (FORM/SORM), 

Monte Carlo simulation, and probabilistic finite element. [4].   Many involve the 
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intersection of the probability distribution function of failure of a given material with the 

probability distribution function of the load levels.    

The goal of such probabilistic methods is to develop a more accurate prediction of 

fatigue life.  This would ultimately increase the range of useable life over the scatter 

factor methods with an increased confidence of safety. 

 
Figure. 3.   Hypothetical Probabilistic Model  

 

D. PROBLEMS WITH STRAIN-LIFE 

In addition to the problem that the actual life at a given strain level cannot be 

predicted, with certainty, because of the scatter, there are other difficulties.  There exists a 

significant problem with the strain-life equation at the transition from LCF to HCF in the 

“Intermediate” region.  The actual data is not always exactly log-linear and there exists a 
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“knee”.  Additionally, there is often another “knee” in the high cycle elastic strain data.  

Figure (4) demonstrates these problems. 

 
Figure. 4.   Strain-Life Equation Problems 

 
Note that the equation matches the first five levels very well, however, at level 

six, there exists an irregularity to the data.  The last several high cycle levels also move 

away from the line.   Most fatigue data does not have a “well behaved” and simple 

solution through all mean points.  The data points are often piece wise continuous at best.     

 

E.   GOALS 

The goal of this thesis was to investigate the possibility of predicting the 

probabilistic fatigue life of the material by varying the four strain-life fatigue constants 

( ,
fσ , '

fε ,b,c) using Monte Carlo simulation.  Genetic Algorithms were also to be 

investigated as a means of predicting the fatigue life.  The objective was an efficient 

method that would use Monte Carlo simulation to make accurate predictions about 

fatigue life based on a small amount of test samples.    The desire was the ability to take a 
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few parameters of the material properties, possibly from the monotonic (static) data, and 

to create a probabilistic strain-life model.  A hope was that the simulation or genetic 

algorithm methods would somehow be able to correct for the “knee” problem.                      

If the simulation could produce results that matched the test data, then strain life 

probability curves could be produced that would be able to more accurately specify the 

fatigue life of a material.   A goal would be to be able to use minimal data and still be 

able to more safely and accurately predict the safe life region of material at different 

strain and ultimately stress levels. 

In addition to a simulation model, there was a requirement to determine the best 

testing method to properly characterize the probabilistic nature of the material’s fatigue 

life.   The data used for this thesis was compiled from the NAVAIR structures division.  

Their data included an average of 15 data samples over 13 strain levels.  NAVAIR testing 

methods will be explained in the next chapter. 
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II.  ANALYSIS OF NAVAIR TEST DATA 

A.    NAVAIR GOALS 

Aging aircraft are of increasing concern in aviation, especially Naval Aviation.  

NAVAIR’s safe life methodology is the strain-life approach.  Currently aircraft are 

retired from service before they reach 100% Fatigue Life Expended (FLE).  FLE is 

defined as an aircraft having a 1 in 1000 chance of having a .0100 inch crack or larger in 

a structural member.  As air platforms are increasingly extended in service to due to 

operational and fiscal requirements, there is an approaching time when aircraft may be 

required to operate beyond 100% FLE.   While the FLE does provide a significant safety 

factor (1 in 1000 chance), an important question is, with what certainty can safe life be 

predicted beyond 100% FLE?  In order to be able to address this question with 

confidence, the structures division of NAVAIR has undertaken the task of developing a 

probability-based strain life model. [3]  (NOTE:  A 1 in 1000 chance means a probability 

of .001.  This also happens to correspond to the probability at -3 sigma on a standard 

normal probability curve.)  

 

B.   NAVAIR DATA 

 In order to develop the required database for a probability based strain-life model, 

an experimental strain-life test program was initiated by NAVAIR.  The tests consisted of 

hourglass and uniform gage section test specimens.  All specimens were cut from the 

same piece of sheet metal.  The testing was accomplished in accordance with ASTM 

E606 for low cycle fatigue, and E466 for high cycle fatigue.   Cycle times were 

investigated at 2%, 5%, 10% 15%, 20%, and rupture.  NAVAIR selected the 10% load 

drop level to correspond to a .01 inch crack.  This assumption was based on what other 

testing agencies have done in the past.  It is not reflective of what the actual size of 

micro-cracks exist at 10% load drop.  To date, there has not been a thorough analysis of 

this variable.   

 The investigator of this thesis took a slightly different approach.  He considered 

that the “intent” of the NAVAIR definition of a 1 in 1000 chance of a .01 inch crack 
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really meant that a crack existed that would cause failure.  The following chart 

demonstrates that at a 2% load drop, there must exist a crack of unknown size that is 

rapidly leading to metal failure.  In theory, without a crack, fatigue life is infinite.  

Therefore, a 2% load drop demonstrates that there is a crack and the material is going to 

break shortly.  In the following chart, each line represents a sample’s fatigue life as a 

function of its load drop during the crack initiation and failure process.  The X axis is the 

% load drop, so as the load drop goes from 0 to 1 (100%load drop), the life time of the 

material is plotted on the Y axis.  As an example, in the top cluster of samples,  when the 

load first begins to drop (2%), there has been approximately 8000 cycles.  As the load 

required to strain the material drops even further to 5%, the material has lasted about 

9500 cycles.  When the load finally drops by 100% and the coupon breaks in two, it has 

lasted approximately 10,000 cycles. 

 

Figure. 5.   Load Drop Analysis of Aluminum 7050-T7451 
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It can readily be seen from figure (5) that at a 2% load drop, there must exist a 

crack, and the material is quickly headed to failure.  At 10% there also certainly exist a 

crack.  The problem with using 10% is that from 10% to 100% (failure), there is little 

fatigue life left.  The life at 10% is almost the same as life at failure.  Therefore, the 

author assumed, that 10% essentially defined failure.  If the intent of the NAVAIR 

definition actually was meant to serve as an indicator of a 1 in 1000 chance of failure, 

then clearly, 10% would be a satisfactory pick.  However, if the intent is that just a crack 

exists, then 2% should be used.  In order to quantify failure as a .01 inch crack, the author 

selected the cycle count at a 2% load drop to define the end of useful life.  For more 

information about this aspect of the test sequence see ref [3].   

 

C.   EXTRACTION OF NAVAIR DATA 

 The NAVAIR investigation team, tested AL 7050-T7451 in accordance with 

reference [3] .  The NAVAIR data was a compilation of samples tested in their own 

laboratories and samples tested under contract by METCUT laboratories.  It was 

determined during the course of their testing that the grain orientation of the samples 

could produce significant testing errors.  For this reason, the majority of the samples 

tested by the NAVAIR laboratories were rejected since they were not grain controlled.  

The testing error was realized before the testing by METCUT laboratories.  Therefore, 

the majority of the samples investigated in this thesis were actually tested by the 

METCUT laboratory.  The interested (or not) reader can learn more about the grain 

control error from reference [3].   

The results of all samples (METCUT and NAVAIR, Grain controlled and 

uncontrolled, Uniform and Hourglass) were recorded to a Microsoft Access database.  

This information was provided to the Naval Post Graduate School.  The investigator then 

queried the material for grain-controlled, 2% load drop data and arranged the data for 

Microsoft Excel.  The following strain levels were selected for analysis: METCUT - .04  

(16 data points), .03(15 data points),.02(16 data points),.015(16 data points),.012(16 data 

points),.010(05 data points),.008(5 data points),.007(15 data points),.006(15 data points);  

NAVAIR - .005(15 data points), .004(15 data points), .003(15 data points), .025(10 data 
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points), .022(1 data point), .002(5 data points).  The 2% grain-controlled LCF METCUT  

data and the HCF NAVAIR data is provided in  Appendix A. 

The following chart presents the test data from Appendix A, which was also used 

to analyze the probability distributions and to create the strain-life probability models. 

Figure. 6.   Strain-Life Plot 
 

Since only 5 data points exist for the NAVAIR data, only the METCUT data was 

used for a power-law regression of the elastic and plastic data points.  The coefficients 

and the exponents provide the solution to the standard Coffin-Manson Strain-Life 

Equation.         
( .068) ( .7337).011 (2 ) 1.2418 (2 )

2
Nf Nfε − −∆

= × + ×  

Since the regression line of the NAVAIR HCF data demonstrates a different slope 

and intercept than the METCUT elastic regression line, the parameters of the NAVAIR 

HCF regression line were used as an adjustment for different models proposed by this 

paper.    
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D.   AL 7050-T7451 STATISTICAL ANALYSIS 

 Most natural phenomenon can be best described by a normal type distribution 

according to the Central Limit Theorem.  This is generally accepted to be the case with 

fatigue data, though sometimes it is more accurately characterized by the lognormal or 

Weibull distribution.   Initially, in the development of the probabilistic model proposed, a 

normal distribution of the experimental data was assumed.  This followed the 

assumptions of the NAVAIR probabilistic model [3].  Evaluating the data with normal 

probability plots, the results look reasonably normal since the data points appear to be 

described by a straight line. 

Figure. 7.   METCUT Data Normal Probability Plots 

Upon a closer analysis, the aluminum test data was not found to correlate well to a 

normal distribution.  Visually, several strain levels appear to be moving toward a normal 

distribution.  However, each strain level seems to exhibit a different form of behavior.  A 

very distinctive normal behavior is not seen.     
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Figure. 8.   Test Data Frequency Plot with Superimposed Normal PDF 

 

A visual inspection of the frequency plots of the data points paints the most 

accurate picture of what the data represents.  However, in the interest of accuracy, 

Crystalball software was used to investigate the best fit of the data.  Crystalball was 

used to evaluate the test data with the Chi squared test, the Anderson- Darling Test and 

the Kolmogorov-Smirnov Test in order to evaluate the best fit to 11 standard distributions 

(Normal, Lognormal, Weibull, Uniform, Logistic, Extreme Value, Pareto, Gamma, Beta, 
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Exponential, and Triangular).  The Kolmogorov-Smirnov Test was chosen since there 

were too few points for a Chi-squared evaluation and the Anderson-Darling is for use 

when there is concern at the “tails” of the distribution.  The following best fits were 

found with the 2% Load Drop, Grain-controlled METCUT data and the NAVAIR HCF 

Grain-controlled data:  

Table 1.   Al 7050-T7451 Test Data Distribution Best Fits 
Strain Level Best Fit Probability Density Funtion Kolmogorov-Smirnov coeff 

.004 Extreme Value .1359 

.005 Triangular .0838 

.006 Weibull .0933 

.007 Logistic .1845 

.012 Logistic .113 

.015 Beta .1066 

.02 Beta .1066 

.03 Normal .1776 

.04 Gamma .1416 

 

 The statistical analysis demonstrates that the data points lack the measures of 

standard normal distribution and there is no real trend between various strain levels.  

Additionally, the Kolmogorov-Smirnov correlation coefficient should typically be less 

than .03 in order to identify a good fit.  No such “good fit” was found with the present 

test data.  Altrnatively, the data could be described by a random distribution with a “few 

more” data points scattered about the middle of the distribution.  It should also be noted 

that the investigator conducted similar investigations of the 5% and 10% load drop data 

and found the characteristics of the probability distribution to be just as varied as the 2% 

data set.  

 A heuristic estimate can be made for the number of samples that will be required 

to demonstrate a normal distribution.  Assuming that the final profile of an infinite group 

of samples does demonstrate a normal distribution, then a visual inspection of figure (8) 

reveals that in all cases presented, there are several data points lacking in the 2 to 3 sigma 
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area of an imagined normal curve.  The MATLAB simulated normal curve (in red) helps 

with this visualization.  In order to develop a normal curve about the apparent mean point 

of the data in each set, there must exist approximately 4 more data points in the region 

between 2 and 3 standard deviations.  The probability of obtaining points within this 

region is 15.87%.  Since, (25 X .1587 = 4), 25 more data points are required by testing to 

validate a normal distribution and populate the region of deficiency.   The following 

figure visually describes the estimate. 

Figure. 9.   Estimate Method for Number of Samples Required for Normal Distribution  
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E.   AN ATTEMPT TO DEMONSTRATE A NORMAL TREND 

  A method has been presented to represent the test data in a way to 

understand the possible trends and behavior of the distribution.   In an attempt to gain 

some indication of the type of trend to the data, the test points were all normalized 

between 0 and 1 at each strain level.  The reason for taking such measures was to 

compensate for the lack of data points at the given strain levels.  With this approach all 

test points could be plotted together.  Normalization was accomplished in the following 

manner.  Step 1: Subtract all data points in a given level by the smallest 2Nf value.  This 

moved each range to the zero axis.  Step 2: The same points (having been subtracted) 

were again divided by the largest new 2Nf value of the new range.  This had the effect of 

making all the data points within a given level plot lie between 0 and 1.  Thus all strain 

level data points were put on the same “ playing field”.    The following chart presents 

this normalized data with the normalized 2Nf on the X axis, and the frequency (number 

within a set range) on the Y axis. 

 

Figure. 10.   Normalized Histogram 

When all the data points are considered together in this normalized fashion, the 

data seems to portray a normal type distribution.   Based on these findings, the 

investigator felt more confident assuming a normal distribution of data may ultimately 
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exist.  However, making the correct correlation back into each range of 2Nf-strain level 

would be too hypothetical.  It appears from figure (9), that the mean lies at about 50% of 

the maximum range and the standard deviation is at about 70% of the maximum range.  

When these correlations were later made in some Monte Carlo models, the results did not 

match the experimental data.   That may be because of there was not enough data 

demonstrating the spread of the entire normalized sample set. 

 

F.   ATTEMPTS TO EXPLAIN THE DISTRIBUTION OF THE DATA AND 
THE BIGGER PROBLEM 

 With 15 data points at each strain level, it is puzzling that the data did not follow 

the standard normal distribution or a lognormal or Weibull distribution.  It is often 

assumed that the fatigue data follows one of the standard distributions.  However, a 

careful analysis must be completed of each material to determine the proper distribution 

before a probabilistic reliability method can be generated.  Charles Annis of the 

American Society of Mechanical Engineers explains that “Computing a mean and 

standard deviation doesn’t make a distribution normal (or even random).  Actual behavior 

can be quite different from idealized behavior suggested by normal assumptions” [4]   

 The fact that the fatigue specimens were all cut from the same sheet of aluminum 

may be another clue.  In order to illustrate this notion, the following experiment is 

presented.  Let it be assumed that there are 3 things that could contribute to metal fatigue, 

micro cracks, grain alignment and test method.  (Certainly there are a lot more factors 

than that, but this analysis is meant to present an idea.) Assume that the factors decrease 

the life accordingly.  A 1 would mean that the material was essentially perfect in this 

category and that there was no loss of life due to this factor.  A 5 would mean that the life 

would be limited by some factor, which would result in an average lifetime at a given 

strain.  A 10 would mean that the factor was exceedingly bad and that the sample would 

have the shortest life.  Using Crystal Ball software, a Monte Carlo simulation was run.   

(Monte Carlo simulation is the method in which random number generators are 

given parameters that match the distribution of the phenomenon of interest.  The 

randomly picked random numbers are then mapped into the range specified by the 

distribution of the test sample set.  Since the simulations are often run on computers, this 
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Monte Carlo simulation can predict the outcome of thousands of “events” or data points.  

This allows an investigator to make inferences about a very large population of samples 

vice the small set of test points that actually exist.  This method is only as good as the 

degree to which the actual probability of the tests is predicted with accuracy.) [5].   

One set of samples were established to have very high quality and very little 

variance.  Random number generation picked numbers between 1 and 3 for each failure 

criteria.  At each iteration, the result of the 3 numbers random generation was added to 

predicted the total fatigue damage inherent in that random sample.  The simulation was 

run 1000 times, simulating 1000 random samples.   Another sample set was made from 

weaker stock and had factors ranging from 1 to 9.  Random number generation in this 

range would indicate that a few samples had very good characteristics, but there was also 

a wide range of samples, some of which have very poor characteristics (9s) .  The 

following is a plot of the simulation.  Since the Nearly perfect sample (blue) had 3 factors 

influencing fatigue, but those factors did not affect life significantly, there is a tight group 

of the probability distribution at about 7.  In this simulation, that would mean that , on 

average, the blue samples had a summation of negative influences that would reduce life 

by a factor of 7.  In contrast, the imperfect samples (red) had wide variance and a mean 

life reduction factor of 11. 

 

 

Figure. 11.   Probability Distribution Explanations 
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 It can be seen that independently, both simulations follow a normal distribution.  

However, when grouped together, they appear to follow a different distribution, possibly 

lognormal.   Certainly, this simulation is a simplistic way to view the different 

distributions that often describe fatigue behavior.  The purpose of this simulation was to 

propose the following question.  When testing is completed, what do the results really 

show?  Did the test group define the real characteristics of the entire population of the 

material or are “hidden” distributions resulting from material or testing variations 

skewing the results. 

 Another simulation was investigated which was more suggestive of the NAVAIR 

data.  The Rusk and Hoffman paper, reference [3], describes the investigation of grain 

orientation in relation to the simulation.  It was reported that there was a more favorable 

grain orientation.  However, the grain orientation was not controlled during the initial 

experiments so that grain orientations were random during the testing process.  The short 

transverse(S-T)  specimens are modeled in a similar simulation, as was previously 

described, by the best life factors (1-4) and the long transverse specimens (L-T) are 

represented by the worst life factors (4-9).   (An important note is that the grain 

orientation errors were not a result of unfavorable material characteristics, but were the 

result of testing errors generated from improper strain gage placement to the grains.)  

Never the less, the idea previously presented holds. If another simulation was run, 

comparing 1000 simulated best grain samples to 1000 simulated worst grain samples, two 

separate distribution would be produced.  The following figure demonstrates this 

simulation. 
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Figure. 12.     Grain Orientation Simulation  
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Since the best grain orientation samples had better life reduction factors, the 

average reduction factor could be described as a 7.  The worst grain orientation samples 

would be described as having a mean of 13.  Both distributions demonstrate the normal 

trend.  However, what would be the distribution of these same samples if they had not 

been sorted.  The investigators would be left to figure out a way to fit some strange 

double-peaked distribution data.  The investigator would be left wondering why his test 

data did behave according to the central limit theorem.  Figure (12) demonstrates the 

same pattern that was found in Figure (11) with the actual test data.   If the grain-

controlling error had not been realized during testing, what type of distribution would 

have been defined for the material?  What this simulation and investigation was meant to 

demonstrate was that the degree of material quality control significantly impacts the 

distribution of the sample.  This, of course, comes as no surprise. 

 

Figure. 13.    Grain Control vs. Not Controlled Ref [3] 

 

 In an attempt to predict the fatigue-life characteristics of AL 7050 with the 

highest degree of accuracy, the NAVAIR test was very well devised to eliminate 

variability.  There is another problem that presents itself.  The tests were conducted by 
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Figure. 14.   Testing Laboratories Comparisons 
 

It can be seen that the NAVAIR average life times are significantly shorter than 

the METCUT life times.   This can be visualized with the following figures that 

demonstrate the probability characteristics of a combined set of data (NAVAIR and 

METCUT 2% load drop samples). 
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Figure. 15.   Combined Distribution Histograms 
 
Figure (15) depicts the weak normal distribution of the METCUT data combined 

with the few data points from the NAVAIR data, which essentially creates a “tail”.   The 

NAVAIR data obviously distorts the probability characteristics of the METCUT data.  

Does that mean that the NAVAIR data should be disregarded since there is only a few 

samples and they do not appear to fit in with the METCUT data?  Suppose that an 

assumption is made that the NAVAIR data is erroneous, and it is not used in the 

probability-based model.  The METCUT data is used exclusively, and later testing 

confirms a distinctive normal distribution about the current mean.  With the distinctively 

defined METCUT data, probabilistic models can be developed that will accurately 

predict the strain life of the METCUT tests.  That information is then transferred to the 

engineers assessing the life of the Navy/Marine Corps’s aircraft.  Since the distribution of 

the METCUT data is so well defined, the probability models infer clearly where the third 

standard deviation from mean lies with respect to a given strain level.  Therefore a 100% 

FLE (Fleet Life Expended) would be re-defined and the engineers would be able to 
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predict with the highest statistical certainty the probability of a .01 inch crack if the 

aircraft was retired beyond 100% FLE.  

 NOW SUPPOSE THAT THE METCUT DATA WAS ERRONEOUS and the 

NAVAIR data was accurate.  The probabilistic model based on MATCUT would not b e 

accurate and the Navy/ Marine Corps would put a few more in the water.   This all seems 

logical but what does it mean to the development of a probabilistic model?  

In order to safely predict the probability density function of the fatigue life of a 

material it is essential to consider all possible variables that will effect the nature of the 

fatigue life probability.  With the present test, all samples were cut from the same piece 

of material while specially controlling the grain direction.  The investigator does not 

intend to propose that sample testing should not be highly controlled.  However, a few 

questions arise with the correlation of highly controlled test coupons to real world aircraft 

components.  If component life is based on a direct correlation of the probabilistic model 

of the coupon samples, then the investigator has serious misgivings.  The investigator 

believes that highly controlled experiments are a requirement, but that purposeful 

variation of material should be introduced into the investigative process.  This would help 

to quantify the real world variations that occur between components due to different 

manufacturers, different material batches and different standards, just to name a few 

potential variables.  To account for such problems and variations, engineers have 

traditionally relied on Safety Factors and Scatter Factors.  Does that mean that engineers 

should throw in the towel and stick to their older simpler methods?  Maybe in some 

cases, but the ability to develop better models is only a function of desire and 

investigation.  After all, the only reason probabilities are used in engineering is to attempt 

to quantify what which cannot be explained deterministically.   In order to develop a 

model accurate enough to extend the lives of aircraft beyond the original engineering best 

guesses, a very comprehensive investigation of metal fatigue will need to be completed, 

building on and going beyond what has been done in the past. 

The first step would be to establish a very controlled probabilistic base line of the 

most ideal of all specimens.  This is essentially what NAVAIR has already implemented.   

The second step would be to carefully evaluate those variables that could affect the life of 

the material, and would be evident in the population of real world components.  Some 
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examples would be to determine the probability distribution from the same metal 

specimen, but measured at a different company.  Another would be to test samples that 

all had the weakest grain direction.  After all these different distributions have been 

determined, the investigators would be able to compare how different variable affected 

the life and make reasonable assumptions about the probability distribution of the entire 

population.  This would give the engineer much more confidence in his material 

properties database. The development of the probabilistic model should very carefully 

control each of the different variables that could possibly effect the fatigue life of the 

metal parts used in Navy/Marine Corps aircraft and then quantify what each variable does 

to the probabilities of the whole sample space of all possibilities of aircraft parts.   

As an example, let it be assumed that a particular type of aluminum was used in 

90% of all helicopter drive trains and thus it was of interest to develop a better 

probabilistic model in order to extend the service life of these components.    Samples 

should first be drawn in a highly controlled grain oriented manner.  The probabilities of 

the distribution of these nearly perfect samples should be evaluated.  Unless it is known 

that all drive trains are manufactured such that the component grains are oriented in the 

most favorable manner, there should be samples tested that purposefully have the poorest 

grain orientation.  Then the two probabilities should be evaluated together.  In that 

manner, the developing engineer would gain some understanding about the value of grain 

orientation.  In the same manner more grain-controlled samples should be cut from 

another manufacture’s product.  Then these distributions should be compared against the 

former, also measuring the degree of error introduced by different companies.  This type 

of testing should be conducted until all known life-changing possibilities have been 

examined and related.  Here is a very simplistic example, obviously, reality is several 

orders of magnitude more complicated!  The figure depicts the simulated distributions of 

4 simulated sets of test data. Company A’s specimens are depicted in shades of red, and 

Company B’s in shades of green.   
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Figure. 16.   Example Testing Distributions 
 

What could does this tell the investigator? Company A makes a better product, 
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parts in question, this model would no longer hold and more testing would be required, 

since company C’s parts have not been plotted and there is no way of knowing where 

they would fall. Unless “Management” is willing to pay for, at least this level of testing, 

no probability model will ever be able to safely provide a probability prediction beyond 

100% FLE.    
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III.   HYPOTHESIS 

Since practicality dictates that only a small amount of testing can be conducted 

for a given material, the Monte Carlo simulation of the four strain-life constants 

( ,
fσ , '

fε ,b,c) should provide a matching data set of strain-life data points 

corresponding to hundreds of thousands tests.  A measurement of the statistics of the 

simulation could be made and inferred to the actual material, thus completing the 

Probabilistic Strain-Life Model.  The following is an illustration of Monte Carlo 

Simulation to model this material.  (Note this is drawn from an early stage program 

“thesisdata4”.) 

 

Figure. 17.   Hypothetical Monte Carlo Simulation 
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 A resulting probability distribution derived from the simulation is given in the 

following figure: 

 

Figure. 18.   Probability Profile from Monte Carlo Simulation 
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IV.   SIMULATION METHODS 

A.    OVERVIEW 

IF a distribution can be defined and related to the material’s fatigue properties, 

then a Monte Carlo simulation model can be developed that will describe the solution to 

the variable strain-life problem at all levels, not just those defined by testing.    Sufficient 

testing must be completed to correctly identify the distribution pattern of the material.  

Additionally, the test data must provide some sort of “anchor” on which to vary the 

model.  This anchor could be the mean line of all data points or it could be the minimum 

or maximum.  Somehow, a key parameter of the data must be defined to restrict the range 

of perturbation.   

These models were developed with the assumption that variation would be about 

the Coffin-Manson strain-life equation, which is the best known fit to the mean line of the 

test data points.  Additionally, a normal distribution was initially assumed to define the 

characteristics of variation.  Many of the models were developed before the completion 

of all the sample testing.  Therefore, the evaluator used the historical assumption of the 

strain-life equation and a normal distribution.  After new test data was presented that 

obviously did not demonstrate a normal distribution, the investigator modified the 

simulations to reflect a uniform distribution.  As has been previously stated, there could 

be problems with an assumption of the probability characteristics of a particular metal.  

However, the methods developed for simulation could provide insight and a baseline for 

the future development of strain-life models once the material is accurately measured. 

 

B.   MULTIPLE SOLUTION METHOD OF MONTE CARLO SIMULATION 

The difficulty with the determination of life with the strain-life equation is that the 

best-fit function is highly non-linear and therefore requires a solver to determine the life 

(2Nf) given a particular strain of interest.   In order to run a Monte Carlo simulation in 

this manner, the 4 strain-life parameters were randomly varied a determined number of 

times.  At a given strain level, simulation created a large number of sets containing 

random combinations of the constants.   These random sets were then used to solve the 
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strain-life equation for life(2Nf).  The resulting output was a variation of life at a given 

strain level which was the result of randomly varying constants.  The sequence was then 

repeated for each desired strain level.  For this paper, algorithms will be used to more 

distinctively describe the method. 

MULTIPLE STRAIN LEVEL SOLUTION MONTE CARLO ALGORITHM 

1 . Establish number of simulations at each strain level (n). 

2. Determine strain levels to evaluate. 

3. Select the first strain level. 

4.  Generate  (n) sets of 4 constants varied randomly (distribution dependant). 

5. Use a numerical solver to solve the strain-life equation (n)-times for 2Nf. 

6.  Group the life values at that strain level. 

7. Return to step 3 and compute new strain level until complete. 

8. Determine the probability density function of life at each strain level 

9. Determine probability parameters of interest (ex. Mean, 2sigma, 3sigma) 

10. Connect the parameters of interest at each strain level   

11. Plot 

 

C.   2NF SEEDING SOLUTION METHOD OF MONTE CARLO 

Since the previous method required the non-linear numerical solution of the life 

for each strain-constant set combination, computation time was significant.  Large 

simulations often took several hours.   For this reason, a simpler, quicker method was 

developed.  Instead of solving the equation many times for life, a very large number of 

random, uniformly distributed, 2Nf data points were generated across the range of 

interest.  Each 2Nf was matched with a sample set of the 4 randomly varied constants.  

Thus a strain level was directly computed from the equation.  After all these strain levels 

were found, they were grouped into small ranges corresponding to a strain level.  Once 
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that was complete, distributions were obtained as before.  This method was significantly 

faster. 

2NF SEEDING MONTE CARLO SOLUTION ALGORITHM 

1 . Establish number of (n) random data points. 

2.   Generate (n) uniformly distributed random life points with in the desired 

range. 

3.   Generate the same number of random sample sets of the 4 constants for 

use with each life point. 

4.  Calculate the strain at each life data point. 

5. Sort the data pairs into small strain intervals. (ie all between .015 and .025 

would be called as .02 strain) 

6. Evaluate the probability distributions of each strain interval 

7. Determine probability parameters of interest (ex. Mean, 2sigma, 3 sigma) 

8. Connect the parameters of interest at each strain level   

9. Plot 
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V.   CORRELATION METHODS 

A.   OVERVIEW 

After creating models that would compute Monte Carlo simulations of input 

parameters, there was a requirement to input the correct parameters that would model the 

characteristics of the material properly.  During the model-building phase of this thesis,  a 

normal distribution was assumed to model the fatigue life characteristics.   Standard 

deviations of the life cycles at each level were established to be 10% of the mean at each 

level.   Thus, the 4 strain-life constants ( ,
fσ , '

fε ,b,c)  were set to vary about their mean 

with a 10% standard deviation.  This approximate method provided the initial basis for 

the Monte Carlo simulation.  As the process was refined, many more correlation methods 

were developed and will be discussed in later sections. 

 

B.   2NF VARIATION EQUALS PARAMETER VARIATION CORRELATION 

 As has been described, the variation of the 4 strain-life constants with the same 

probability distribution type was the simplest method of correlation for a Monte Carlo 

simulation.  Other, similar, probabilistic attempts validated the possibility of this method.  

The investigator found a paper prepared for the Virginia Transportation Research 

Council, [6] which computed the probabilistic fatigue life of bridges in a very similar 

manner.  The bridge investigators modeled the damage stress function(h[B(ω)]) 

parameters (θ, m) with the same distribution parameters as the damage stress function. 

[Note: This paper was extremely important to the investigator of this thesis since his 

father drove over the bridge in question on his way to work.]    

What type of distribution to use became difficult to determine since the actual 

experimental data did not demonstrate any clear profile.   Since the test data did not 

demonstrate a solid normal distribution, the constants were varied with a uniform 

distribution.  The range of the constants was of the same ratio as the actual test data mean 

to maximum range.  The test data values and the strain-life constants were imported from 

the Excel file into a MATLAB file (“strainlife9.m” Appendix B).  That program 

computed the mean value and range of each strain level.  The average data variation was 
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then computed by dividing one half the range at each level by the average life at each 

level.  These values were then averaged to determine the mean variation of the uniform 

distribution of each of the 4 strain-life constants during Monte Carlo simulation.   

Figure. 19.   Monte Carlo Simulation of Strain-Life Equation: 
Uniform Variation of Strain-Life Constants 

 
The resulting probabilistic profile was entirely too wide.  Variation of all 4 

constants by an averaged amount of the 2Nf variation allowed for too much variability 

into the solution.  The investigator experimented with varying the degree to which the 4 

constants were varied.  Each parameter had a specific and significant impact on the 

output.    Large variations of the ductility constant resulted in very wide bands of scatter 

in the low cycle region.  Conversely, large variations of the strength coefficient resulted 

in wide bands of scatter in the high cycle region.  Variation of the exponents had similar 

yet magnified effects.  Nice fits of the data could be obtained by visual adjustment, in 

other words, trial and error.  Unfortunately, that method lacked a clear correlation to the 
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data and was simply an engineering adjustment .  (Square peg into round hole with big 

hammer) 

In order to visualize the impact the fatigue life exponents have on the Monte 

Carlo solution, a simulation was completed in which only the 2 exponents (b,c) were 

varied with the test data degree of variation.   The other constants, ,
fσ and '

fε were held 

constant.  The following figure displays that simulation. 

 

 
Figure. 20.   Monte Carlo Simulation of Strain-Life: Variation of Exponents b and c, only 

 
The exponents had a significant impact on the scatter of the Monte Carlo solution.  

The next chart will demonstrate that it was the variation of the exponents that contributed 

the most to the scatter of the simulation.  Of course this only makes sense considering the 

mathematical significance of an exponent compared to a coefficient!  If the exponents 

were held constant, the resulting simulation distribution of only ,
fσ and '

fε , appears to be 

very good. 
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Figure. 21.   Monte Carlo Simulation of Strain-Life: Variation of ,
fσ  '

fε  only 
 

Variation of the 2 coefficients, ,
fσ  '

fε  , provided the best solution to the model 

that set parameter variation equal to the data variation .  Although this method seemed to 

describe the nature of low cycle fatigue, the figure demonstrates some obvious 

deficiencies.   Simulation with an averaged range doesn’t accurately describe the data 

spread at every sample level.   Possibly with a large sample of the population, these 

inconsistencies would disappear.  The greatest problem is with the strain-life equation 

itself.  It can readily be seen that the mean line rapidly diverges from the actual data in 

the intermediate range.  Since the high cycle data was generated only from the NAVAIR 

laboratory, it is possible that high cycle fatigue samples tested in the METCUT lab may 

have been a little closer to the mean line.   

As a comparison of Monte Carlo models, the solution method (solving for 2Nf, 

instead of seeding with 2Nf) was also computed using a 10% uniform parameter variation 

of the 2 coefficients.  The results are almost identical except for their output 
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characteristics.  Unfortunately, the solution method of Monte Carlo simulation is 

numerically intensive and took 30 minutes to generate.  This is contrasted to the 2NF 

seeding method, which completed the task in about 3 minutes.    This program was called 

“strainlife8a.m” Appendix C.  Due to the time required to run this type of simulation, the 

2Nf seeding method will be used exclusively through out the remainder of this report. 

Figure. 22.   Coefficient Variation by Solution Method of Monte Carlo Simulation 

 

C.    DATA PROJECTION/PARAMETER VARIATION METHOD OF 
CORRELATION 

Another approach to predict life (2Nf) is presented in this section.  Instead of 

computing the final solution’s (2Nf) as a result of parameter variation during the Monte 

Carlo simulation, a more specific estimation was derived.  The approach was to break the 

solution into the elastic and plastic parts of the equation and evaluate the contribution of 

each parameter to the entire solution.  This method would allow different variations 

between parameters.  Once the elastic and plastic strain regression lines were obtained, 

the data points were projected about the regression slope back to the Y axis.  This method 
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assumed that the slopes (b,c) were constant.   Using constant slopes the scatter about ,
fσ  

and '
fε  was obtained with the following. 
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Figure. 23.   Constant Slope Projection Visualization 

 

 This method demonstrated a greater variability for the fatigue ductility constant 
'
fε , than the fatigue strength constant ,

fσ .  After projections the following data was 

obtained: 
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Table 2.   Elastic and Plastic Y Intercepts 

 

This approach quantified the larger variation of the data spread for the plastic 

points as compared to the elastic points.  In the correlation model, discussed in the 

previous section, all parameters were varied with the same degree of variation as the final 

solution.  Since it was shown that the variation of the exponents adversely affect Monte 

Carlo simulation, b and c were held constant.   The fatigue ductility constant, '
fε  , was 

varied with a uniform distribution with a range from 1.06 to 1.4.    The fatigue strength 

constant, ,
fσ , was varied with a uniform distribution of range .0107 to .0114.  The 

following figure shows the resulting Monte Carlo simulation. 

Figure. 24.   Slope Intercept Correlation Method 
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This method demonstrated good correlation through the LCF range, although the 

solution was erroneous for the HCF range for reasons previously discussed.   This model 

has a subtle difference to the previous two, coefficient variation models.  Although they 

both appear almost identical, the second method results in a smaller scatter band in the 

HCF range.  In the “solution variation equals parameter variation” model there was a 

wider band of variation in the HCF range.  This is because the fatigue strength constant 

was only uniformly varied by about 3% from the mean in this model instead of 10% in 

the previous model.    
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VI. BEST SOLUTION METHODS 

A. OVERVIEW 

It became apparent during the course of this study that there was no simple 

solution or Monte Carlo simulation that would correctly model the present test data and 

provide a reasonable probabilistic model.  This was due in part to the fact that there was 

not enough data collected at the strain levels to clearly define a distribution.  

Additionally, the fact that two separate laboratories’ test results were used, one lab 

providing LCF and one lab providing HCF, caused the test data to be ill-behaved to the 

standard strain-life equation model.  The investigator realized without an accurate 

prediction of some parameter of the test data (probably a mean value), that accurate 

probabilistic model could never be built.  For this reason, the investigator attempted 

many methods to establish some function that would accurately predict all mean values.  

Such methods included developing an algorithm that would fit a line between each mean 

data point, the use of alternative functions to the strain-life equation, incorporation of an 

8 constant strain-life equation, and the use of evolutionary algorithms and genetic 

algorithms to model the test data.  The final result should come as no surprise.  There are 

an infinite number of ways to fit the data points, each with it’s advantages and 

disadvantages, accuracies and inaccuracies.   The best-fit model developed for this 

material would in no way have any correlation to any other material.  However, the 

methods and concepts evaluated herein may be of adopted for other material behavior.  

However, each new material will require a rigorous investigation to create a best-fit 

probabilistic model for each particular material.  As in all engineering, there are no easy 

solutions!  The remainder of this chapter will discuss the development of some of the 

more useful and accurate methods. 

 

B. STRAIGHT LINES METHOD 

The most obvious and simplest method that could be useful in the development of 

a probabilistic model is the use of fitting a straight line between the mean data points. 

This model would work very well for tests in which data for many strain levels were 
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available.  In the limit, of an infinite number of strain levels tested, there would be a 

smooth curve.  Upon completion of the accurate determination of the mean points, and 

with a solid understanding of the actual distribution of the fatigue scatter, Monte Carlo 

simulation could be run to define the scatter distribution outside the tested range.   An 

even more simple method would be to use the distribution profile described by the data at 

each strain level and connect alike probability likelihood estimators.   The following 

figure shows such a curve and is obtained from “strainlifelinz.m” Appendix D. 

Figure. 25.   Linear Solution of Probability Based Fatigue Life Model 

 

This depiction does not look like a good solution, however, it is the most accurate 

of all solutions based on the data obtained from testing.  The red bands depict the 

maximum and minimum values that were obtained from testing.  Since there was no 

conclusive probability distribution obtained from the data, the best guess for a probability 

distribution would be a uniform distribution between the maximum and minimum points.  
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If a distinctive probability distribution could be obtained from the data, then the defining 

parameters could be incorporated to enhance this simple solution. 

 

C. 4 PARAMETER PIECE-WISE ALGORITHM 

Having previously established that the 4- parameter, Strain-Life equation could 

not fit all the test data points effectively, the investigator improved the previous straight-

line method.  This method involved breaking the data sets up into pairs as was done in the 

previous straight-line method.  Instead of fitting a straight line between the points, a 

curve defined by some variation of the Strain-Life equation, was fit between the two 

points.  Essentially, each segment was created from the Strain-Life equation with it’s own 

particular set of parameters. 

PIECE-WISE,  4 PARAMETER STRAIN-LIFE ALGORITHM 

1 . Create (uniform or normal) random vectors of the 4 parameter possibilities 

for each parameter ( ,
fσ , '

fε ,b,c)   .  

2.   Evaluate the 4 parameter ( ,
fσ , '

fε ,b,c)  equation at the first data point. 

3. Find all the combination sets of parameters that provide the solutions 

within a specified tolerance from the known data point. 

4. From those sets of best fit parameters, find the set that was a best fit to the 

next data point. 

5.  Plot the function from the first data point to the second data point. 

6. Establish the second data point as the new first data point and then repeat 

Steps 1 through 5. 

The program “strainlifega.m”, (Appendix E.), was developed to evaluated the best 

fit to the data and to run Monte Carlo 2Nf seed simulation at the same time.   The 

following figure was produced from a run of this program. 
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Figure. 26.   4 Parameter Evolutionary Algorithm 
 
Because each partial solution was determined between two data points, the final 

solution is very similar to the straight-line method.  This method does allow for some 

small amount of curvature to be introduced between points.  This further optimizes the 

probabilistic model.  This model only defines an average range of variation based on the 

actual data.  If more conclusive test data was available, the probabilistic model could also 

include probability bands.  This chart further demonstrates the possibilities that a 

probabilistic model might have over the conventional methods.  In chapter 2, NAVAIR’s 

definition of FLE was defined as ½ the mean life.  (If !) further research positively 

identifies the range of scatter to be that described by this model, then there would be a 

distinct advantage in using the probabilistic model to extend service lives beyond 100% 

FLE. 

 

D. POSSIBLE 8 PARAMETER SOLUTION 

After attempting to make the strain-life equation fit the test data with a variety of 

different techniques, the investigator realized that the irregularity of the data would not 
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permit a solution with only 4 constants.  Experimenting with possibilities, the investigator 

rationalized that 8 constants had to be better than 4.  Similar to a higher order polynomial 

in normal linear space, the investigator attempted to fit the data with the following 

equation. 

2 2 2 2b d f h
a A Nf C Nf E Nf G Nfε = × + × + × + ×  

The following figure shows the results, demonstrating that 8 constants provide a 

significant amount of flexibility in crafting the fit of the data points and may provide for 

an exact fit to the test data. 

Figure. 27.   Demonstration of 8 Parameter Strain-Life Equation 
 

This fit, which was done in about 10 minutes by trial and error, comes very close 

to accurately predicting a mean line.    The investigator believed that advanced methods 

of numerical analysis might find the exact solution.   The use of 8 parameters may not 

always be useful in correcting the strain-life equation.  This data set was particularly hard 

to fit to known functions.  Other sample data sets may find the use of a six constant 
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equation and the present algorithm useful in determining a best fit to sample data.  The 

coefficients and exponents of this 6 or 8 constant equation do not need to correlate to any 

physical parameter like ,
fσ etc., however, the use of the known elastic and plastic 

parameters may provide an initial guess for the solution.   

 

E.  EVOLUTIONARY ALGORITHM (PSEUDO-GENETIC ALGORITHM) 

Having determined that a better solution to this set of data points might best be fit 

with an 8 constant equation, the investigator tried a variety of methods to solve the 

problem.  The investigator drew upon the idea of “genetic algorithms”, which will be 

covered in more detail later in the paper.  Essentially, the idea involved finding the 

solution, by attempting many different possibilities using random number generation.   

This algorithm was slightly more complex because random numbers were used to 

generate the exponential values, and then a non-linear, least squares curve-fit was used to 

evaluate the coefficients.  After a large number of “tries” the best solution was picked 

based on the error of each possible solution. 

RANDOM EXPONENT/ NONLINEAR LEAST SQUARES CURVE-FIT  

ALGORITHM 

1 . Randomly pick 4 exponent values from within a prescribed range. 

2.   Pass the exponential parameters into a function that will determine the 

coefficients of that particular set based on a non-linear least squares curve 

fit. 

3. Evaluate the weighted error of that particular set of 4 randomly varied 

exponents and the solution of 4 coefficients. 

4. After a prescribed number of iterations, sort the sets for the least error. 

5.  Plot the function from the least error set. 
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This algorithm was used to generate “strainfit.m”  Appendix F.  The results are 

presented in the following figure. 

 

Figure. 28.   8 Parameter Curve Fit Compared to Coffin-Manson 

 

This was the result of 5000 sets of random exponents with the matching computed 

coefficients.  This method is an obvious improvement from the Coffin-Mason Strain-Life 

equation because it does a better job of describing the overall curvature of the fatigue life 

phenomenon.  However, even with advanced solution methods, there was still a 

discontinuity of the solution at the knee.  Possibly a better solution was found by the 

investigator’s trial and error method! 
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Figure. 29.   Good Engineering Guess Rivals Complex Mathematics 
 
Not that the investigator renounces the use of computers, but there is an irony that 

a solution which was completed quite simply in about 10 minutes is better than what a 

fairly complicated algorithm determined after 5000 iterations.  Note that the trial and 

error solution only failed to accurately place one data point within the predicted range, 

while the computer solution failed to correlate 4 data points.  This discrepancy was 

completely a function of the calculated mean line since both Monte Carlo simulations 

varied the solution about the determined mean line by exactly the same amount. 

 

F. GENETIC ALGORITHM METHOD 
Another attempt made by the investigator to lay the foundation for a probabilistic 

model, was with the use of “Genetic Algorithms”.   The idea behind such a method was 

to assume that a so-called “chromosome” could be encoded with information about the 

solution.  The chromosome must be relatable to some parameter of the function.  The 

chromosome is usually a string of ‘1’s and ‘0’s, 30 bits long.  Thus a binary 

representation of any number between 0 and 1073741823 is possible.  These numbers are 
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then mapped into the range that the variable is expected to lie within.  Multiple 

chromosomes are then created (possible solutions).  These possibilities are evaluated for 

their “fitness” to the desired solution.  If none of the solutions are satisfactory, then a 

pseudo-random selection of the best chromosomes, subsequent mating, cross-over and 

mutation of the genes, results in a new population of chromosomes (answers).     

Eventually, after several generations, an answer is usually found.  The difficulties with 

this method can be in relating a chromosome to some aspect of a fitness function of the 

problem.  Usually, genetic algorithms are used to either minimize or maximize a solution.  

The selection of a fitness function to minimize or maximize in the case of this data set 

was particularly challenging.  [7,8] 

In an attempt to solve the 8-parameter Strain-Life equation, the investigator 

attempted to use genetic algorithms.  Each of the 8 parameters was drawn from a 30 bit 

element of a 240 bit long chromosome.  In this manner each particular chromosome 

represented a set of 8 parameters with a corresponding strain vector.  The algorithm is 

provided below. [9] 

8 PARAMETER GENETIC ALGORITHM 

1 . Establish the length of the chromosomes and the population size  

(# of chromosomes per generation) 

2. Determine the probability of cross-over between chromosome “parents” 

3.   Initialize the chromosomes by setting each bit to a 1 or a 0 with the use of 

random number generation. 

4. Import each chromosome individually into the function. 

5. The function breaks the chromosomes up into smaller pieces representing 

the 8 parameters.  (Formally, these steps are referred to as; concatenation, 

multi-parameter-mapping, and fixed-point coding.) 

a.  The binary information is converted to decimal and then mapped to a 

decimal value within the range specified. 
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b.  After each part of the chromosome has been mapped into the 

appropriate range, the 8 parameter strain life equation is evaluated at the 

known 2NF mean values from each test range. 

 c.  The strain vector answer is then compared to the actual test data. 

d.  The weighted, maximum percent errors are normalized which 

represents the magnitude of the error.  This becomes the fitness function 

corresponding to the particular chromosome and is passed back to the 

main program. 

6. After each chromosome from the population has been evaluated, the set is 

sorted by smallest fitness (error) to largest error. 

7. The two best chromosomes (smallest error) are taken to be the king and 

queen.  The king and queen chromosomes are the first two chromosomes 

for the next generation to ensure the best answers are not discarded 

randomly. 

8.   The king and queen are also mated by passing them to the cross-over 

program which determines for each of the 8 partial strings within the 

chromosomes, whether or not,(and if so, how much) there will be a flip-

flop from the chromosome of one partial string to the corresponding 

chromosome of the other partial string.  After each partial string has been 

evaluated and cross-over has occurred, the program determines if a small 

amount of mutation should occur and if so to which Allele. (Allele are the 

individual 1s and 0s).  Allele mutation permits the possibility of a lucky 

solution being interjected along the way to a final solution. 

9.   The king and queen are mated approximately 10 times to produce 10 new 

chromosomes for the new population. 

10.   After the king and queen have finished mating, a larger set of new 

chromosomes is developed in the same manner.  However, the parents are 

randomly picked from the old population for each set of new 

chromosomes.  This set is called the “Clampetts”.   
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11.   After all the Clampetts have mated, another completely random set is re-

initialized, referred to as Melting-Pot.  From this completely random set, 

approximately 20 more parent sets are selected and mated.  This process 

allows for the rapid incorporation of new blood into each generation and 

prevents the solution from stalling. 

12.   After a predetermined number of generations, the chromosome 

corresponding to the best answer for the present generation is correlated to 

the 8 parameters and the modified strain-life equation is plotted.  

 

The real difficulties with this method involved, selecting a performance criteria.  

The magnitude of the positional errors alone was not enough to obtain a good solution.  

When only the difference between the test data and the solution was used, the genetic 

algorithm tended to fit a straight line through the data, exactly what the investigator did 

not want to happen.  A method of evaluating the slopes between data pairs was also 

investigated.  This method worked well to mirror the shape of the curve, but the curve did 

not lie on the line.  Thus a combination of the two methods was selected.  In addition to 

both slope and position errors, elements that were deemed the most significant were also 

weighted to draw the solution through those points or draw the solution toward a slope.  

The following figure is a plot from the MATLAB file “8paramGA”. This algorithm 

requires 19 separate MATLAB programs.  These programs are reproduced in Appendix 

G.  

 

 

 

 

 

 

 



54

 

Figure. 30.   Genetic Algorithm 8 Parameter Solution 
 

Even with the complexity of this algorithm, the weakest link was the fact that 

there were difficulties making the solution fit all the data points.  This was because a 

restrictive enough error function has yet to be determined.  If a error function could be 

developed that would give equal importance to all data points in both location and slope, 

then the genetic algorithm could probably solve the 8 parameter equation.  Another 

problem with the genetic algorithm was that the range of parameter constants was very 

important.   If the range was too limited, then no solution was found.  If the range was too 

wide, the solutions varied wildly.  There was the additional problem of decimal values.  

As an example, if the selected range for chromosome mapping was 0 to 1, then even with 

a 30-bit string, the probability of finding a number between 0 and .1 is only 10%.  If the 

number sought is less than .01 the probability drops to 1%.  This problem exists even 

though the idea of genetic algorithms was to infuse an almost infinite number of 
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possibilities to the solution, in fact, there was a much higher likelihood of larger scaled 

numbers selection.   The logic would say that if the investigator wants to find an answer 

between 0 and .01, then establish that as the range.  Unfortunately, when that was done, 

the first problem presented itself and the range was too restrictive to allow a solution to 

be found.  (One approach that may be used to address this problem is to use power-law 

scaling and mapping as opposed to a linear scaling used in the present implementation.)  

 An attempt was made to see if error minimization would continue through a large 

number of generations, even if there was a flaw with the fitness function.   

Figure. 31.   Genetic Algorithm after 15,000 Generations 
Unfortunately the solution at 500 generations was about the same as that done 

with 15000 generations.   Clearly, the fitness function needs to be improved to drive the 

solution to match all mean test data points. 

 

G. OTHER SOLUTION OPTIONS AND IDEAS  

The previously mentioned methods represented only a few of the best possible 

solutions to this particular problem.  Many other manipulations were tried with varying 
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degrees of success.  A few will be mentioned here because the ideas could be of use to 

other problems.   

Probably the most significant “other” method was also a simple one.  Since 

neither the elastic data points nor the plastic data follow a straight line in log space 

throughout the range of life, a varying slope method would be an obvious option.  

Typically, the plastic data points follow a fairly linear trend until the intermediate range 

when the plastic strain drops off dramatically.  This phenomenon significantly contributes 

to the knee of the total strain points.  Plastic strain is not alone in its bad behavior.  The 

elastic strain also exhibits a tendency to follow a line up until a point in which it also 

reduces significantly.  If the problem is carefully broken down into smaller pieces and 

regressions are done across a smaller range of data, then the slopes of the equations could 

periodically be revised during the course of the probabilistic model.  This method will 

provide the best approach,( other than the straight-line method!), to correcting for the 

knee problem. 

Along the same idea as the previous method would be the use of several different 

equations for the material behavior.  Each range (low, intermediate and high cycle) would 

have it’s own equation.  The only difference to the previous method is that this solution 

would have 3 independent solutions whereas the previous had the same solution with 

varying slopes and intercepts. 

The genetic algorithm may have some use in finding the equation of a 4, 6 or 8 

parameter equation in a specific region like the intermediate strain knee problem.  

Additionally, the use of a single Y intercept variable slope equation was explored.   For 

this problem the rate of change of the slope was found to be log-linear. 
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Figure. 32.   Slope Rate of Change 

This would imply that the following equation could be used to define the life. 

.0229 (2 ) .7664
int 2 Ln NF

a Y NFε −= ×  

The use of this equation may be a good fit for the low cycle region though the 

intermediate range.  It could not be used though-out the entire life due to the nature of the 

natural logarithm function.  The results are illustrated in the following figure. 
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Figure. 33.   3 Parameter Natural Logarithmic Function 
 
The use of this equation is limited.  However, the rate of change until 2Nf is 

10,000 is log-linear and the 3-parameter equation fits the data points very well until the 

10,000 cycle range.  An attempt was made with the use of genetic algorithms to find a 

better solution.  However, without a perfected fitness function, the solutions obtained 

were not satisfactory. 
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VII.   CONCLUSIONS 

A.   TESTING MUST PRODUCE CONCLUSIVE PROBABILITY 
DISTRIBUTION CHARACTERISTICS. 

Without sufficient test data, it would be difficult to accurately develop a 

probabilistic strain-life model.    Since the reason for such a probabilistic model is to 

stretch the range of life beyond traditional methods, the level of accuracy of the testing 

must be extremely high with a very high level of confidence.   The test data for Al 7050-

T7451 does not show any conclusive trends toward a probability distribution.  Ultimately 

the testing may show that the data does exhibit a normal distribution.  However, at this 

time, with the present test data, the investigator does not feel that it would be appropriate 

to assign a known probability distribution this data set if it is to be used in a subsequent 

life-extension analysis 

 

B. VARIABLES CONTROLLING THE SCATTER MUST BE MEASURED 
AND QUANTIFIED AS THEY RELATE TO THE PROBABILITY 
DISTRIBUTION OF THE ACTUAL MATERIAL. 

If the current testing is tightly controlled, the probability distribution may show a 

normal or log normal, or Weibull distribution, with a very small standard deviation.  

However, how does this idealized sample correspond to a real-world piece of metal in an 

actual aircraft component?  To extend service life by inference to the probability 

distributions of idealized samples would lead to certain disaster.  A comprehensive look 

must be made at all possibilities of the material variations that may be used to make 

aircraft components.   

 

C. THE CENTRAL LIMIT THEOREM MAY NOT BE AN ACCURATE 
ASSUMPTION, DEPENDING ON HOW THE TESTING IS COMPLETED. 

The normal distribution and the central limit theorem may not be an accurate 

assumption for current material fatigue test data sets.  With refined methods of testing 

methodology and material manufacturing, the degree of randomness required for a 

Gaussian distribution may no longer exist.  Imagine a random selection of people taken 
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near the exit of a NBA locker room.  There would obviously be some pseudo-normal 

distribution with a very small standard deviation.  The mean would be about 6’6’’.  Now 

imagine that a random sampling of people was taken of people coming out of the midget 

tent at the circus.  Again, a normal distribution would characterize the population.  This 

time the mean would be about 3’6’’!  Now imagine those two sample sets were grouped 

and used to describe the characteristics of a random population of all people in the world.  

Both sets were both drawn randomly.  Would the total probability distribution 

demonstrate the central limit theorem?  Obviously not!   This is much the same as 

materials testing.  If only NBA basketball stars are measured, but the world (of materials) 

includes midgets, then the probability model to extend life is flawed.  Before this 

probability model can be completed, the investigators must understand how the midgets 

and the NBA stars will affect the total solution. 

 

D.  IT IS MUCH SIMPLER TO MODEL THE MONTE CARLO 
SIMULATION WITH USE OF THE 2NF SEEDING METHOD INSTEAD 
OF SOLVING FOR THE STRAIN AT EACH LEVEL. 

The fact that the 4-parameter strain-life equation must be solved for with some 

sort of non-linear solver makes the 2NF seeding method much simpler to use.  By placing 

many thousands of uniformly spaced 2NF data points into the simulation, determining the 

corresponding strain is simply a matter of evaluating the expression.  This saves a 

significant amount of complexity and computational time.  This method also does seem 

to be an extremely effective way of characterizing the nature of the total range of strain. 

 

E. VARY ONLY THE 2 COEFFICIENTS OF THE STRAIN-LIFE 
EQUATION DURING MONTE CARLO SIMULATION. 

Varying the exponents (b and c) of the strain-life equation invokes too much 

scatter to the probabilistic solution.   The perturbation of the coefficients, 
,
fσ '

fε ,         

results in a profile that is sufficiently varied to characterize the scatter of the test data.  

For materials that exhibit strange variations, small variations of the exponents may help 

to model the behavior. 
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F. THE CORRELATION OF THE TEST SCATTER TO THE CONSTANT’S 
VARIATION, IS BEST DESCRIBED BY THE SIMPLEST METHOD. 

There may be other formal methods that could describe the amount of 

perturbation required by the coefficients to model the probability distribution of fatigue 

data.   However, the investigator found that simply varying the coefficients by the same 

percentage variation as the test scatter resulted in a satisfactory Monte Carlo simulation.  

Once a more complete set of testing has occurred, there may be a requirement to adjust 

this simple variation for more complex methods in order to predict more formal 

probability distributions.  Currently, a uniform variation of constants is used.  Accurate 

prediction of a normal distribution of test data may require the use of a normal variation 

of parameters. 

 

G. IN ORDER TO CREATE A PROBABILISTIC MODEL OVER THE 
ENTIRE FATIGUE LIFE, A FUNCTION OR ALGORITHM MUST BE 
SPECIFIED THAT FITS ALL CHARACTERISTICS. 

The “knee” and other irregularities cannot be fit with the use of the standard 4- 

parameter strain-life equation.   If a probabilistic model is attempted, the data points near 

the “knee” or “the transient zone” will not lend themselves to be modeled accurately.      

The probabilistic model needs some sort of anchor point at each strain level about which 

a probability distribution may be defined. 

 

H. AN EIGHT PARAMETER STRAIN-LIFE EQUATION MAY WORK TO 
SATISFACTORY FIT ALL CHARACTERISTICS OF FATIGUE LIFE TO 
INCLUDE THE “KNEE”. 

A strain-life equation that is the sum of 4 log-linear segments affords the 

flexibility to model the shape of the mean fatigue life with more accuracy than the 2- 

segment strain-life model.  These 4 segments have no physical interpretation like elastic 

part and plastic part.  However, the elastic and plastic equations can provide a baseline 

for estimation of all the 8 parameters. 

 

I. FINDING THE RIGHT MIX OF THE 8 PARAMETERS IS EXTREMELY 
DIFFICULT. 
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The best method found was using a random variation of the exponents and then 

using a least squares-nonlinear solver to evaluate the corresponding coefficients until a 

satisfactory solution was found.  As computationally advanced as this method was, it still 

was not better than the investigator’s eye, patience and best guesses (namely, the 

heuristic approach).  

 

J. GENETIC ALGORITHMS ARE AN IMPROVEMENT OVER RANDOM 
NUMBER SOLUTION FINDING TECHNIQUES, BUT THEIR 
ACCURACY IS, IN PART, FITNESS FUNCTION DRIVEN. 

The manner in which a genetic algorithm seeks out the answer speeds up the 

solution process significantly over standard random number generation.  However, better 

fitness function definitions must be developed before genetic algorithms can provide 

satisfactory solutions.  

 

K. THE BEST MODELS MAY BE OBTAINED FROM THE SIMPLIEST 
METHODS. 

The quickest and most accurate models were the simplest.   Drawing a straight 

line between the mean data points from one level to the next, leaves no room for 

question.  If enough strain levels are tested, these straight lines essentially define the 

curve.   

Obviously, if only 2 strain levels (one low cycle and one high cycle) were tested 

then the straight line method would not predict the fatigue life at all, but how well would 

the data be represented anyway!  Certainly, investigators could use the two levels to do a 

regression and then compute the elastic parts and plastic parts.  Thus the stain-life 

equation could be used to create a curve of sorts that would theoretically describe the 

behavior.  However, life prediction between the two points would not be realistic.    

Does this mean that there should be tests taken at every strain level?  (Certainly 

not.)  The number of strain levels taken during these tests accurately describes the 

materials behavior in the region tested. 
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Another very simple model was the strain-level to strain-level, piece-wise 

solution of the 4-parameter strain-life equation.  This algorithm added the ability for the 

final solution to have a degree of curvature.  The slight curvature enhanced the accuracy 

of the final probabilistic model by rounding off the corners of the straight-line method. 

 Monte Carlo simulation of the 4, 6 or 8 parameters might make the testing 

evaluator feel more confident in his probabilistic model since it simulates the testing of 

tens of thousands or hundreds of thousands of samples.  However, the best results will be 

obtained from connecting lines or curves, of confidence intervals from one strain level to 

the next as was done with the mean line fit. 
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VIII.  RECOMMENDATIONS 

A. MORE TESTING IS THE STANDARD AND OBVIOUS ANSWER. 

If aircraft must be extended beyond their current FLEs, then a very sound decision 

can only be made from sufficient evidence.  If service lives are extended without enough 

testing, then the evaluators are betting against the very good intuition of many years of 

engineering experience and basing there assessment on un-conclusive data.  More testing 

is definitely required. 

Specifically, several strain levels should be selected in which to test a much larger 

number of samples.  The investigator makes a guess that at least 25 samples will be 

required if a normal distribution does exist.  The large number of samples is not 

necessary at all strain levels.  4%, 1% would be useful in characterizing the nature of low 

cycle fatigue. .9%,.7%,and .6%  should be tested in large numbers to examine the 

probabilities associated with the “knee”.  One or two levels of lesser sample size should 

also be tested here to better characterize the shape of the knee.   .04% and .02% could 

describe the nature of scatter in high cycle fatigue with a larger set of samples. 

 

B. TESTING MUST ATTEMPT TO QUANTIFY THE VARIABILITY 
ASSOCIATED WITH CHANGES BETWEEN MANUFACTURES, GRAIN 
ORIENTATION, AND ANY OTHER MATERIAL CHARACTERISTICS 
THAT AFFECT LIFE. 

Testing should include purposeful variations of the material in order to quantify 

the true nature of the actual aircraft construction materials.  Testing methods should 

follow the ideas presented in Chapter II, section F. 

 

C. A BETTER FITNESS FUNCTION MUST BE DEVELOPED THAT WILL 
ALLOW FOR A GENETIC ALGORITHM SOLUTION TO THE 8-
PARAMETER EQUATION. 

The 4-parameter strain-life equation may work for some materials if the nature of 

the “knee” is not too severe.  Otherwise, an 8-parameter equation will sufficiently model 

and fit the data.  Preliminary investigations revealed the difficult nature of the 
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uncertainties associated with fatigue data modeling.   However, development of 

appropriate fitness functions reflecting the location and slope of the strain-life curve may 

result in satisfactory modeling of the fatigue life prediction using genetic algorithms. 

 

D. TESTING MUST BE COMPLETED TO ESTABLISH CORRELATION 
BETWEEN % LOAD DROP AND .01 INCH MICRO-CRACK. 

Since NAVAIR’s Fatigue Life Expended (FLE) definition is based upon a 1 in 

1000th chance of a .01 inch micro-crack in existence, testing must establish at the % load 

drop to crack size relationship.   
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 APPENDIX A(1) NAVAIR HCF DATA 
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APPENDIX A(2) METCUT LCF DATA 
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APPENDIX B. STRAINLIFE9.M 
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APPENDIX C. STRAINLIFE8A.M 
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APPENDIX D. STRAINLIFELINZ.M 
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APPENDIX E. STRAINLIFEGA.M 
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APPENDIX F. STRAINFIT.M 
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APPENDIX G(1) GA.M 
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APPENDIX G(2) INITIALIZE.M 
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APPENDIX G(3) FLIP.M 
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APPENDIX G(4) OBJ_FUNCTION.M 
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APPENDIX G(5) DECODE.M 
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APPENDIX G(6) GENERATE 
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APPENDIX G(7) CROSSOVER.M 
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APPENDIX G(8) MUTATION.M 
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APPENDIX G(9) STATICISE 
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