BENZOXAZOLE AND BENZOTHIAZOLE ANITIRUST GREASES
Work Unit Directive (WUD) 51

John B. Christian
Christ Tamborski

MAY 1980

Approved for public release; distribution is unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

MATERIALS AND MANUFACTURING DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YT)	2. REPORT TYPE	3. DATES COVERED (From - To)
May 1980 | Reprint | 5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER
--- | --- | ---
--- | --- | ---
--- | --- | ---
--- | --- | ---
--- | --- | ---

4. TITLE AND SUBTITLE
 BENZOXAZOLE AND BENZOTHIAZOLE ANTIRUST GREASES
 Work Unit Directive (WUD) 51

6. AUTHOR(S)
 John B. Christian
 Christ Tamborski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 NonStructural Materials Branch (AFRL/MLBT)
 Nonmetallic Materials Division
 Materials and Manufacturing Directorate
 Air Force Research Laboratory, Air Force Materiel Command
 Wright-Patterson Air Force Base, OH 45433-7750

8. PERFORMING ORGANIZATION REPORT NUMBER
 AFRL-ML-WP-TP-2002-404

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Materials and Manufacturing Directorate
 Air Force Research Laboratory
 Air Force Materiel Command
 Wright-Patterson Air Force Base, OH 45433-7750

10. SPONSORING/MONITORING AGENCY ACRONYM(S)
 AFRL/MLBT

11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)
 AFRL-ML-WP-TP-2002-404

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Presented at the 35th Annual Meeting in Anaheim, California, May 5-8, 1980.

14. ABSTRACT (Maximum 200 Words)
 Perfluoroalkyl and perfluoroalkylether substituted benzoazoles, benzothiazoles, bisbenzoxazoles, and bisbenzothiazoles have been synthesized and have been extensively tested as antitrust and anticorrosion additives in grease compositions based on fluorine-containing fluids and fluorinated ethylene-propylene (FEP) and polytetrafluoroethylene (PTFE) thickeners. Testing has shown that one percent concentrations of the additives in the grease formulations provide inhibition against rusting of ferrous metal components under conditions of high humidity. Testing in high-temperature environments has shown that corrosion of the ferrous metals is inhibited under these conditions also. Variations in fluid and thickener concentrations or grease consistency had no deleterious or synergistic effects on the inhibiting characteristics of the additives.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT
 SAR

18. NUMBER OF PAGES
 10

19a. NAME OF RESPONSIBLE PERSON (Monitor)
 Jeff Zabinski
19b. TELEPHONE NUMBER (Include Area Code)
 (937) 255-4860

Standard Form 289 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18
Benzoazole and Benzoniazole Antirust Greases

JOHN B. CHRISTIAN and CHRIST TAMBORSKI
United States Air Force Materials Laboratory
Wright-Patterson Air Force Base, Ohio 45433

Perfluoroalkyl and perfluoroalkylether substituted benzoazoles, benzoniazoles, bisbenzoazoles, and bisbenzoniazoles have been synthesized and have been extensively tested as antirust and anticorrosion additives in grease compositions based on fluorine-containing fluids and fluorinated ethylene-propylene (FEP) and polytetrafluoroethylene (PTFE) thickeners. Testing has shown that one percent concentrations of the additives in the grease formulations provide inhibition against rusting of ferrous metal components under conditions of high humidity. Testing in high-temperature environments has shown that corrosion of the ferrous metals is inhibited under these conditions also. Variations in fluid and thickener concentrations or grease consistency had no deleterious or synergistic effects on the inhibiting characteristics of the additives.

INTRODUCTION

With the advent of high-speed aircraft and aerospace vehicles and their support equipment, and the increase in their scope of operations under extreme conditions, severe demands have been placed on grease lubricants. Two of these demands are the provision of anticorrosion characteristics to grease-lubricated ferrous metal components operating at high temperatures while maintaining good antirust protection when these same grease-lubricated components are exposed to high-humidity conditions at mild temperatures.

While a grease in its simplest form consists of a lubricating fluid thickened by a solid to impart a semisolid consistency, the lubricant problems such as corrosion or rusting associated with specific applications have led to the evolution not only of advanced fluid and thickener materials, but also various types of advanced additives. New grease developments have selectively improved antirust and anticorrosion characteristics. Among these are greases based on the various types of ethers and polysiloxanes; however, the thermal properties of these base materials are restricted to temperatures in the range of about 200°C to 230°C. These shortcomings in the thermal properties of fluids have been overcome to a great degree by the evolution of the perfluoroalkylethers. It has been shown that greases can be produced from these fluorinated fluids by employing either fluorinated ethylene-propylene copolymer (FEP) or polytetrafluoroethylene (PTFE) thickeners. Greases formulated from these materials have proved to be able to provide good lubricating characteristics at temperatures as low as −40°C and −55°C and as high as 315°C. Although these greases have superior lubricating properties, and a wide temperature range, their utility is severely curtailed by their inability to prevent rusting of ferrous metal components in high-humidity environments. Their utility is also curtailed by their lack of anticorrosion properties when exposed to high temperatures (above 232°C).

Research has led to the development of fluorine-containing additives which have overcome these rust and corrosion problems associated with perfluoroalkylether greases. Prominent among these fluorine containing additives are benzoazoles and benzoniazoles.

SYNTHESIS OF ADDITIVES

In the course of developing a lubricant capable of reducing the coefficient of friction and offering protection to metal surfaces against rusting and corrosion, a series of nitrogen heterocyclic compounds were examined as additives with rust- and corrosion-inhibiting properties. Since all the base fluids studied were highly fluorinated, the original premise of utilizing highly fluorinated additives to ensure compatibility with the fluids seemed justified.

Although there are numerous nitrogen containing heterocyclic compounds, the initial study was concerned with compounds indicated by the general structures:

\[
\text{where } X = O \text{ or } S \\
R = \text{perfluoroalkyl, perfluoroaryl or perfluoroalkylether}
\]

\[
\text{where } X = 0 \text{ or } S \\
R = \text{perfluoroalkylene or perfluoroalkylene ether}
\]
DESCRIPTION OF PERFLUOROALKYLETHYL FLUIDS

As a class of base fluids, the perfluoroalkylethers are characterized as having these properties:

- High degree of chemical inertness
- Excellent thermal stability
- Good lubricity
- Nonflammability
- High radiation resistance
- Good dielectric properties
- Excellent compatibility with plastics and elastomers
- Good nondeposit-forming properties
- Insolubility in most solvents
- Long-term reliability over wide temperature range

Two different perfluoroalkylether fluids were used in the development of the greases in this investigation. One of these fluids has the general formula

\[F = (CF_2CF_2O)_n \ C_2F_5, \]

and the second fluid has the general formula

\[X - O - (C_F_2O)_n - (C_F_2O)_n - (C_F_2O)_n - Y, \]

where X and Y are perfluoroalkyl. Both fluids are further distinguished by the properties given in Table 1.

<table>
<thead>
<tr>
<th>Table 1—Properties of Perfluoroalkylether Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid 1</td>
</tr>
<tr>
<td>Viscosity @ -18°C, cs</td>
</tr>
<tr>
<td>Viscosity @ 38°C, cs</td>
</tr>
<tr>
<td>Viscosity @ 100°C, cs</td>
</tr>
<tr>
<td>Viscosity Index</td>
</tr>
<tr>
<td>Pour Point, °C</td>
</tr>
<tr>
<td>Density, g/cc @ 25°C</td>
</tr>
<tr>
<td>Surface Tension, dynes/cm @ 26°C</td>
</tr>
<tr>
<td>Volatility, % wt loss 22 hours @ 204°C</td>
</tr>
</tbody>
</table>

DESCRIPTION OF THICKENERS

Two thickeners were used in these investigations. It was previously discovered that approximately equal thickening of the perfluoroalkylether fluids was exhibited by either an FEP copolymer or PTFE Ref. (1). Their properties are given in Table 2. The thickening characteristics of the FEP and PTFE are similar. Table 3 shows the results of FEP and PTFE grease formulations in which two types of perfluoroalkylether base fluids were used. The thickeners had no effect on the outcome of the tests for rusting and high-temperature corrosion. There was evidence of rusting or corrosion in only those tests in which no additive had been in the grease formulations.

RESULTS

Greases were formulated by mixing and stirring the fluid, thickener and additive components until a uniform mixture was obtained. The amounts of fluids used ranged from 65 to 72 percent by weight while the amount of thickeners ranged from 27 to 34 weight percent. Each grease composition contained one weight percent of the fluorine containing benzoazole or benzothiazole additives. Greases were also formulated with no additive present to be used as controls for showing the additive effects. The grease mixtures were further blended to grease consistencies by passing them two times through a three-roll mill with the rollers set at an opening of 0.005 millimeter at about 25°C. The various grease compositions were tested according to standard test procedures.

Grease consistency was measured in accordance with ASTM D-217 method. The consistency of the greases have been expressed in NLGI grades. The NLGI (National Lubricating Grease Institute) has classified greases according to their worked penetration (the depth, in tenths of a millimeter, that a standard cone penetrates the grease sample under prescribed conditions of weight, time and temperature), and their classification ranges from 000 to 6 Ref. (2). The greases of this investigation were formulated to NLGI grades 1–2, or their penetrations ranged from 265 to 340 decimillimeters. The NLGI grades 1 and 2 are related below distinguished by the properties given in Table 1.

to the corresponding ASTM worked penetration range:

<table>
<thead>
<tr>
<th>NLGI Grade</th>
<th>Worked Penetration Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>310–340</td>
</tr>
<tr>
<td>2</td>
<td>265–295</td>
</tr>
</tbody>
</table>

Rust preventive properties of the greases were determined in accordance with ASTM D-1743 method. This method provides for determining the corrosion protection properties of greases using grease-lubricated tapered roller bearings stored under wet conditions. Clean new bearings were lubricated as prescribed and were subsequently stored for 48 hours at 52°C and 100-percent relative humidity. At the end of the test, the bearings were cleaned and examined for evidence of corrosion. A bearing showing no corrosion is rated 1; insipient corrosion, no more than three small spots is rated 2; large spots or more than three small spots is rated 3. In this investigation the greases were rated passing (P) when there was no corrosion or only three small spots in evidence. When there were more than three small spots the grease was rated as failing (F).

There was massive corrosion exhibited in the control tests in which no additive was used to inhibit the greases against corrosion. Bearing specimens shown in Fig. 2 illustrate this absence of corrosion. When only one-half percent of the
additive was used, there was no apparent effect on the corrosivity of the greases, as there was still evidence of massive corrosion present. There was one exception to the above observations. The benzothiazole additive having the formula

\[
\text{S} \quad \text{N} \quad \text{F} \quad \text{OCF}_3 \quad \text{CF}_3 \quad \text{OCF}_3 \quad \text{F}
\]

did not provide prevention against rusting at any concentrations.
The corrosion characteristics of the grease were determined by a method which provides for half submerging steel balls in the grease sample for 72 hours at 232°C Ref. (7). A 0–4 rating system is provided for rating the severity of corrosion exhibited in the test:

0 – No stain or pitting
1 – Light to moderate stain
2 – Moderate corrosion
3 – Staining and pitting
4 – Massive corrosion and pitting

In this investigation, the greases were rated as passing (P) or failing (F). A rating of passing or failing was used because where there was a failure it was indicated by massive corrosion and pitting. In those tests where a rating of passing is indicated, there were no stains, no corrosion and no pitting. Examples of passing and failing specimens are shown in Figs. 3 and 4.

Grease formulations containing no additive provided no protection for metals at high temperatures and corrosion was extensive as illustrated in Fig. 4. All of the greases containing at least one percent of the fluorine-containing additive exhibited good protection against corrosion of the metal specimens exposed to high temperature (above 232°C) for the prescribed time.

CONCLUSIONS

A variety of perfluoroalkyl and perfluoroalkylether substituted benzoazoles, and bisbenzothiazoles have been synthesized through convenient synthesis procedures. Extensive testing of these compounds showed that they have antitrust and anticorrosion additive properties when incorporated into greases based on fluorine-containing fluids. A one-percent-by-weight concentration of these additives was sufficient to inhibit against rusting and corrosion. Thickeners, e.g. fluorinated ethylene-propylene copolymers (FEP) and polytetrafluoroethylene polymers (PTFE) can be used in variable amounts with corresponding variation of perfluorinated fluids to produce greases with different consistencies. The concentration of additive is critical since less than one percent by weight offered no protection against rusting or corrosion to metal specimens under high-humidity mild-temperature conditions (~100°C) or conditions of high temperature (232°C or higher).

The technology developed by this study provides the guidelines for follow-on research and development on lubricants with higher temperature requirements (up to 316°C). Research efforts along these requirements are presently being formulated.

REFERENCES