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Adaptive, Model-Based Monitoring and Threat Detection 
Alfonso Valdes 

Keith Skinner 

SRI International 

333 Ravenswood Ave. 
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Summary 
With the expanded use of networked computers and proliferation of high-bandwidth connections, 

there has been an unfortunate increase in computer and network abuse. Detecting and correlating 

incidents of abuse is an essential aspect of information assurance. To date, intrusion detection 

systems have relied on matching “signatures” of known attacks to those contained in a 

knowledge base. This approach, while effective, misses variants of attacks as well as new attacks 

that are not in the knowledge base. Conversely, anomaly detection approaches have the potential 

for recognizing novel attacks, but in practice have been hampered by low sensitivity, lack of 

specificity, and unacceptable false alarm rates. This research effort explored probabilistic 

approaches such as Bayes systems, which encode their knowledge base not as specific 

signatures, but as conditional probability relations. Rather than relying on rules for metrics 

related to transaction control protocol (TCP) connections, the system adaptively learns these and 

also discovers hosts and services on the monitored network. The result is an IDS that detects 

many novel attacks, and aided by its adaptive capability achieves acceptable sensitivity and false 

alarm rates. 

The number of IDS alerts in typical systems can overwhelm network security officers, raising the 

need for effective prioritization and correlation of alert messages. We address this need in two 

ways. First, in cooperative research with the SRI Mission-Based Correlation effort (supported by 

the same DARPA program), we reused the Bayes inference library from the TCP detector to 

implement an inference engine for alert ranking and priority. This capability allows the security 

administrator to specify preferences in a configuration file, and includes an adaptive capability 

that dynamically adjusts the internal knowledge base guided by administrator decisions. 

Additionally, we explored probabilistic techniques for alert correlation. The approach is a mix of 

Bayes techniques with concepts from sensor fusion. This correlation component shares the 



 

 

 

2

ranking and prioritization capability of the Mission-Based Correlator. The probabilistic 

correlation system has proven effective with alerts that report incomplete content, or with reports 

from heterogeneous sensors that are at variance with each other. The system demonstrates the 

ability to thread an attack from probe to internal exploit as well as recognize as the same incident 

reports from multiple heterogeneous sensors. These capabilities have been demonstrated in our 

live network, in a pilot deployment at a government agency, and with the Cyberpanel Grand 

Challenge Problem (GCP). 
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Adaptive, Model-Based Monitoring and Threat Detection 
 

 
1. Introduction and Overview 
 
The field of intrusion detection has considered a variety of approaches based on anomaly 

detection and signature or rule-based systems. A subclass of anomaly detection systems attempts 

to learn behavior in a probabilistic sense. Anomaly detection systems are attractive in their 

ability to detect novel unusual activity, while signature systems lack this generalization potential. 

However, anomaly detection has enjoyed only modest success in practice, due to lack of 

specificity and unacceptable false alarm rates. Moreover, many important attacks do not manifest 

as anomalies in the features these systems observe. Signature systems have enjoyed greater 

success, and all leading commercial and most research systems are in this class. These systems 

incorporate a knowledge base that can be as simple as matching suspicious patterns in packet 

traffic or as sophisticated as “stateful” systems such as EMERALD [Por97]. 

Our objective when undertaking this research was to explore a middle ground, that is, the class of 

systems that incorporate a knowledge base in a probabilistic sense, giving the system some 

generalization potential but greater sensitivity and specificity. Bayes networks represent 

knowledge as conditional probability relations between observable features and hypotheses of 

use and misuse. Moreover, conditional probabilities are maintained as internal tables that can 

adaptively learn in response to new observations. The first component we implemented was a 

Bayes sensor for attacks visible in TCP header traffic. This proved to be effective with the 

Lincoln Laboratory 1999 evaluation data set [Lip00], and was further validated through 

extensive experimentation with live traffic. Today, this component runs live in our environment 

as well as at the National Security Agency (NSA). 

One innovative feature of this system is that it is actually a coupled sensor, with one 

subcomponent that adaptively learns hosts and services on the monitored network, and another 

that uses this information to adjust its state dynamically. The result is improved sensitivity with a 

reduced false alarm rate, particularly for false alarms that are side effects of an attack or a 

nonmalicious failure (what we term “collateral damage”). This host availability monitor is useful 

in its own right in discovering new and possibly unauthorized services as well as notifying the 

administrator of nonmalicious failures. 
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Besides sensor coupling, which can be considered a form of sensor state correlation, we have 

explored three aspects of alert correlation. In alert threading (within-sensor correlation), the 

sensor maintains a concept of session, and issues alerts for suspicious sessions that consolidate 

many low-level events. For many attacks such as address sweeps the reduction in the number of 

alert messages can be two orders of magnitude. Threading is a concept common to most 

EMERALD sensors, but is absent from many other systems. In incident correlation, multiple 

reports from different and possibly heterogeneous sensors are recognized as describing the same 

incident. Scenario correlation chains together multiple attack steps (each a thread or incident) to 

reassemble more complex attacks. We have implemented a correlation engine based on 

probabilistic inference to accomplish these goals. The system adapts concepts from 

heterogeneous sensor fusion and a transition model for multistep attacks. The probabilistic 

approach is robust against incomplete or conflicting information from multiple sensors, which 

will represent the state of affairs as standards such as IDMEF [Cu01] are adopted in varying 

degrees. This system shares with the EMERALD Mission-Based Correlation a subsystem to 

prioritize and rank alerts. This subsystem in turn is based on the same Bayes inference code that 

underlies the Bayes TCP sensor, and adaptively learns the security administrator’s preferences 

for alert ranking and prioritization. 

The remainder of this report is organized as follows. By way of background, we provide relevant 

material describing Bayesian inference, including the representation of a knowledge base as 

conditional probability relations. We then describe the components developed in our work, 

namely, the Bayes TCP sensor and the probabilistic correlation module. In the description of the 

latter, we give an overview of the prioritization and ranking module shared with the Mission-

Based Correlator. We give results of experimentation and use of these components in attack 

simulations as well as live traffic analysis. We then give conclusions and suggestions for further 

work. 

 

2. Background 

Intrusion detection to date has considered system audit trails [Val94, Lin00] and monitored 

network traffic [SNORT, ISS, Por97]. Most of these systems use rule-based inference ranging 

from simple pattern matching [SNORT, ISS] to systems that maintain some notion of session 
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state [Por97, Lin00]. A minority employ some form of anomaly detection, including variants 

based on nonparametric statistics [Val94, Ski98], sequence analysis [For96], and data mining 

[Lee00]. To date, the rule-based systems have dominated the field, comprising all major 

commercial intrusion detection systems (IDS) and most research efforts. Moreover, critics of 

anomaly detection correctly point out that intrusions are not necessarily anomalous, and 

anomalies are not necessarily intrusive [McH01]. This observation raises an objection to 

anomaly detection in principle; additionally, in practice these systems have not shown acceptable 

sensitivity and sufficiently low false alert rates to gain wide acceptance. On the other hand, 

critics of rule-based systems point out that such systems may not be capable of detecting novel 

attacks. Our research explores systems where models of malicious use are not expressed as 

specific signatures, which are bypassable by varying the attack slightly, but are encoded in a 

probabilistic sense. Bayes networks [Pearl88] are particularly suitable to this representation, 

relating hypotheses to observable evidence by means of conditional probability relations. Our 

system adapts as its view changes (mathematically, by changing prior belief among competing 

hypotheses or modifying conditional probability relations appropriately). Our goal was to 

develop a system with specificity, sensitivity, and false alarm rate comparable to the better rule-

based systems, but retaining some of the potential to detect novel attacks of anomaly detection. 

To this end, we developed a TCP session monitor capable of detecting attacks visible in TCP 

header data, adaptively learning system resources and parameters such as typical connection 

completion times. This system is probabilistic (inference is based on Bayes probability), adaptive 

(some parameters are learned by the system as it observes the monitored network), and model 

based (important classes of misuse are encoded as conditional probability models). It includes a 

capability based on more traditional anomaly detection that causes alerts based on extremely 

unusual patterns of TCP port use, but the core detection capability is Bayesian and model based 

[Val00]. 

We were also interested in the problem of IDS alert correlation, which was largely unexplored 

when our effort began, although there have been some contributions in the interim [De01, 

Hoa01]. As in the area of intrusion detection, most correlation approaches to date are based on 

rules and heuristics. As with the intrusion detection component, we explored a probabilistic 

approach to intrusion alert correlation as well. The Bayes paradigm of maintaining a prior belief 

over a number of hypotheses and updating this belief as new evidence is observed is used to 
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model attack evolution over time. To assess whether a newly observed alert is plausibly 

connected to an existing set of correlated alerts, we define a number of features in the alert and 

employ an approach somewhat analogous to that used in multisensor data fusion [Hall92]. While 

concepts from traditional multisensor fusion provide useful guidance, definitions of such 

concepts as feature similarity are specific to the intrusion correlation domain. We were able to 

develop a successful prototype system capable of correlating alerts from heterogeneous sensors, 

even when the sensors disagreed as to specifics of the alert or the alert messages were improperly 

formed. As standards for alert interchange are still fairly immature, we feel that the inherent 

robustness of probabilistic systems endows them with an important advantage [Val01]. 

3. Methods, Approaches, and Procedures 
Bayes TCP Sensor 
Foundations 
Mathematically, we have adapted the framework for belief propagation in causal trees from Pearl 

[Pearl88]. Knowledge is represented as nodes in a tree, where each node is considered to be in 

one of several discrete states. A node receives π (prior, or causal support) messages from its 

parent, and λ (likelihood, or diagnostic support) messages from its children as events are 

observed. We think of priors as propagating downward through the tree, and likelihood as 

propagating upward. These are discrete distributions, that is, they are positive valued and sum to 

unity. The prior message incorporates all information not observed at the node. The likelihood at 

terminal or “leaf” nodes corresponds to the directly observable evidence. A conditional 

probability table (CPT) links a child to a parent. Its elements are given by 

CPTij = P state = j parent _ state = i( ) 

As a consequence of this definition, each row of a CPT is a discrete distribution over the node 

states for a particular parent node state, that is, 

CPTij ≥ 0,∀i, j,

CPTij
j

∑ = 1,∀j  

The basic operations of message propagation in the tree are most succinctly expressed in terms 

of vector/matrix algebra. We will adopt the convention that prior messages are represented as 
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row vectors. Downward propagation of the prior messages is achieved by left multiplication of 

the parent’s prior by the CPT, that is, 

π node( ) = απ parent _ node( )• CPT  

where α is a normalizing constant to ensure that the result sums to unity. Note that since CPT is 

not required to be square, the number of elements in π node( )  and π parent _ node( ) may be 

different. Since we limit ourselves to trees, there is at most one parent per node. However, there 

may be multiple children, so upward propagation of the likelihood messages requires a fusion 

step. For each node, the λ message, represented as a column vector, is propagated upward via the 

following matrix computation: 

λ _ to _ parent node( ) = CPT • λ node( ) 

Note that λ node( )  has number of elements equal to the number of states in the node, while 

λ _ to _ parent node( ) has number of elements equal to the number of states in the parent node. 

These messages are fused at the parent via elementwise multiplication: 

Li parent( ) = Πc∈children parent( )λ _ to _ parenti c( )

λi parent( ) = Li parent( )/ Lj parent( )
j∑

 

Here, L represents the raw elementwise product, and λ  is obtained by normalizing this to unit 

sum. Finally, the belief over the states at a node is obtained as follows: 

BELi = βπiλi  

where β is a normalizing constant so that BEL has unit sum. Figure 1 illustrates propagation in a 

fragment of a tree. 
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Figure 1: Message Propagation in a Tree Fragment 
Adaptive CPT Adjustment 
The system is preconfigured with CPTs relating observable features to normal and misuse 

hypotheses. These CPTs can adaptively evolve to adjust to specific environments. Adaptation via 

reinforcement proceeds as follows. We recall that the CPT relates a child node to its parent. In 

our representation, the rows of the CPT correspond to parent states, while the columns 

correspond to child states. If a single hypothesis is dominant at the root node, we adapt the 

corresponding row of the CPT matrix at each child slightly in the direction of the λ message at 

the child node for the present observation. Specifically, if hypothesis i  “wins” at the root node, 

we adjust CPT as follows. First, we decay the internal effective counts via a decay function: 

countsi
decay = γcountsi + 1− γ( )  

The decayed count is used as a “past weight” for the adjustment, and is the effective number of 

times this hypothesis has been recently observed. The CPT row is first converted to effective 

counts for each child state, and the present observation is added as an additional count distributed 

over the same states. Then the row elements are divided by the row sum so that the adjusted row 

has unit sum. This is accomplished by the following equation: 

  CPTij
adj =

countsi × CPTij + λ j

countsi × CPTij + λ j
j

∑  
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Finally, the internal counts are recomputed for all parent states: 

countsi = countsi
decay +

γ ,  hypothesis i is the winner
0,  otherwise

 
 
 

 

By this procedure, the effective count never decays below 1.0 (if the hypothesis is never 

observed) and never grows beyond 1
1 −γ( ) if the hypothesis is always observed. We typically 

choose the decay factor so that the effective count grows to between 200 and 1000 observations. 

Observations for frequently seen hypotheses have a smaller CPT adjustment than do 

observations for rare hypotheses. In addition, since only “winning” hypotheses cause a potential 

CPT adjustment, our system has one key advantage over other statistical ID systems. A large 

number of observations for a hypothesis corresponding to an attack will not be considered 

“normal” no matter how frequently it is observed, as its adjustment only reinforces the 

corresponding internal attack hypothesis model in the system. 

State Transition 
As a simplifying assumption, the states observed for the respective variables are considered to be 

independent of what was observed for these variables in past inference intervals, given the 

session class. In addition, given the value of the session class in the current interval, X is 

independent of any other observable variable Y. In other words, for all observable variables X, Y 

and inference intervals 0 to k, we have 

P Xk = x Sess_ classk = s,Xk−1...X0 ,Yk−1...Y0( )= P Xk = x Sess_ classk = s( ) 

The evolution of session class over inference intervals is modeled as a discrete time-and-state 

Markov process. The transition matrix is a convex combination of an identity matrix (to express 

state persistence) and a matrix whose rows are all equal to some prior distribution over the 

possible values of session class (to express the tendency of the process to decay to some prior 

state). In other words, for some0 ≤ γ ≤ 1, the transition matrix M is given by 

M = γI + 1− γ( )P  

where I is an identity matrix and each row of P is given by 
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Pi,. = PRIOR 

and PRIOR is a prior distribution over possible values j for session class, that is, 

 PRIOR j = Prior probability (Sess_ class = j)  

Mij  is the probability that if the process is currently in state i  it will be in state j  at the next 

event. More generally, if POST_BEL is our current belief state (a distribution over the possible 

state values, given the evidence up to and including this time interval), left multiplication with M 

redistributes our belief to obtain the prior belief before the next observation: 

PRE_BELk = POST_BELk−1M  

We manipulate the parameter γ to capture, albeit imperfectly, the continuous nature of the 

underlying process. We typically invoke the inference function every 100 events within a 

session, and always when the session enters the idle state. Some sessions are less than 100 events 

in total, while others, particularly many denial-of-service (DOS) attacks, consist of tens of 

thousands of events in a very short time interval. In the latter case, even though many inference 

steps are invoked, we prefer to have a moderately high persistence parameter (about 0.75) 

because very little time has elapsed. If the parameter is 0, the belief reverts to the prior at each 

event. 

It can be shown that, unless γ  is unity, iteratively multiplying M by itself results in a matrix that 

approaches P, that is, 

 limn→∞ Mn = P  

In practice, this limit is nearly reached for fairly small values of n. The result of this observation 

is attractive from the intuitive standpoint: in the absence of reinforcing evidence from subsequent 

events, the belief distribution tends to revert to the prior. 

The inference operation at interval k begins by setting the Bayes π  message to PRE_BELk . 

Then the observables over the interval are presented to the leaf nodes, and the belief state at the 
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root node is extracted. If this is deemed sufficiently suspicious, the system generates an alert 

message that can be displayed at a console or forwarded to a correlation utility. 

Probabilistic Correlation 
Our probabilistic correlation approach considers feature overlap, feature similarity, minimum 

similarity, and expectation of similarity. In this context, a “feature” is the value of a field in the 

alert that is pertinent to alert correlation. Features include source and target network addresses 

and ports, the type of attack, and the attack time. We maintain a list of “meta alerts” that are 

possibly composed of several alerts, potentially from heterogeneous sensors. For two alerts 

(typically a new alert and a meta alert), we begin by identifying features they have in common 

(feature overlap). Such features include the source of the attack, the target (hosts and ports), the 

class of the attack, and time information. With each feature, we have a similarity function that 

returns a number between 0 and 1, with 1 corresponding to a perfect match. Similarity is a 

feature-specific function that considers such issues as 

• How well do two lists overlap (for example, list of targeted ports)? 

• Is one observed value contained in the other (for example, is the target port of a DOS attack 

one of the ports that was the target of a recent probe)? 

• If two source addresses are different, are they likely to be from the same subnet? 

For attack class similarity, we maintain a matrix of similarity between attack classes, with values 

of unity along the diagonal and off-diagonal values that heuristically express similarity between 

the corresponding attack classes. We prefer to consider attack classes rather than attack 

signatures, which are much more specific and numerous but may be erroneously or incompletely 

reported. For example, in our demonstration environment, we run a variant of mscan that probes 

certain sensitive ports, that is, it is of the attack class “portsweep”. Our host sensors have a 

specific signature for this attack and call it “mscan”. The Bayes sensor trades specificity for 

generalization capability and has no “mscan” model, but successfully detects this attack as a 

“portsweep”. These reports are considered similar (S = 1) with respect to attack class. 

Not all sensors produce all possible identifying features. For example, a host sensor provides 

process identifier, while a network sensor does not. Features not common to both alerts are not 

considered for the overall similarity match. 
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The meta alert itself supports the threading concept, so we can visualize composing meta alerts 

from meta alerts. 

Similarity Expectation and Minimum Similarity 
An important innovation we introduce is expectation of similarity. As with similarity, this is also 

between 0 and 1, and expresses our prior expectations that the feature should match if the two 

alerts are related, considering the specifics of each. For example, two probes from the same 

target might scan the same set of ports on different parts of our subnet (so expectation of 

matching target IP address is low). Also, some attacks such as SYN FLOOD spoof the source 

address, so we would allow a match with an earlier probe of the same target even if the source 

does not match (expectation of match for source IP is low). 

We now give some examples of how expectation of similarity depends on the situation, that is, 

the features in the meta alert and the new alert. 

If an alert from a sensor has a thread identifier that matches the list of sensor/thread identifiers 

for some meta alert, the alert is considered a match and fusion is done immediately. In other 

words, the individual sensor’s determination that an alert is an update of or otherwise related to 

one of its own alerts overrides other considerations of alert similarity. 

If the meta alert has received reports from host sensors on different hosts, we do not expect the 

target host feature to match. If at least one report from a network sensor has contributed to the 

meta alert and a host sensor alert is received, the expectation of similarity is that the target 

address of the latter is contained in the target list of the former. 

In determining whether an exploit can be plausibly considered the next stage of an attack for 

which a probe was observed, we expect the target of the exploit (the features host and port) to be 

contained in the target host and port list of the meta alert. 

Some sensors, particularly those that maintain a degree of state, report start and end times for an 

attack, while others can only timestamp a given alert. The former deal with time intervals, while 

the latter do not. Similarity in time comprehends overlap of the time intervals in the alerts 

considered for correlation, as well as the notion of precedence. We do not penalize time 

similarity too far from unity if the time difference is plausibly due to clock drift. 
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Deciding whether the attacker is similar is somewhat more involved. In the case of an exact 

match of originating IP address, similarity is perfect. We assign high similarity if the subnet 

appears to match. In this way, a meta alert may potentially contain a list of attacker addresses. At 

this point, we consider similarity based on containment. In addition, if an attacker compromises a 

host within our network (as inferred by a successful outcome for an attack of the root 

compromise class), that host is added to the list of attacker hosts for the meta alert in question. 

Finally, for attack classes where the attacker’s address is likely to be spoofed (for example, the 

Neptune attack), similarity expectation with respect to attacker address is assigned a low value. 

Our correlation component implements not just expectation of similarity (which effectively acts 

as a weight vector on the features used for similarity matching) but also enforces situation-

specific minimum similarity. Certain features can be required to match exactly (minimum 

similarity for these is unity) or approximately (minimum similarity is less than unity, but strictly 

positive) for an alert to be considered as a candidate for fusion with another. Minimum 

expectation thus expresses necessary but not sufficient conditions for correlation. 

The overall similarity between two alerts is zero if any overlapping feature matches at a value 

less than the minimum similarity for the feature (features for which no minimum similarity is 

specified are treated as having a minimum similarity of 0). Otherwise, overall similarity is the 

weighted average of the similarities of the overlapping features, using the respective expectations 

of similarity as weights. 

Correlation Modes 
By appropriate settings of similarity expectation and minimum similarity, the correlation 

component achieves the following hierarchy of correlation. The system is composable in that we 

can deploy multiple instances to obtain correlation at different stages in the hierarchy. For 

example, we can infer threads (within sensor correlation) and then correlate threaded alerts from 

heterogeneous sensors into security incidents. 

Synthetic Threads: For sensors that do not employ the thread concept, the correlation 

synthesizes threads by enforcing high minimum expectation similarity on the sensor itself (the 

thread must come from a single sensor) and the attack class, as well as source and target (IP and 

ports). We have wrapped the alert messages from a leading commercial sensor and observed that 

this facility reliably reconstructs threads. 
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In particular, by placing an aggregator component topologically close to an IDS, the pair is made 

robust against attacks that cause the IDS itself to flood, as described in a recent NIPC advisory 

[NIPC01]. 

Security Incidents: By suppressing minimum expectation of similarity on the sensor identifier, 

and relaxing expectation of similarity for this feature, we can fuse reports of the same incident 

from several heterogeneous sensors into a single incident report. In this case, we enforce a 

moderately high expectation of similarity on the attack class. This is not unity because different 

sensors may report a different attack class for the same attack. We construct a table of distances 

between attack classes that expresses which ones are acceptably close. For security incident 

correlation, we enforce minimum expectations on the source and target of the attack. Using this 

technique, we have been able to fuse alert reports from commercial and EMERALD sensors into 

security incident reports. 

Correlated Attack Reports: By relaxing the minimum expectation of similarity on the attack 

class, we are able to reconstruct various steps in a multistage attack. Each stage in an attack may 

itself be a correlated security incident as described above. In this fashion, it is possible to 

recognize a staged attack composed of, for example, a probe followed by an exploit to gain 

access to an internal machine, and then using that machine to launch an attack against a more 

critical asset. 

Feature Fusion 
When the system decides to fuse two alerts, based on aggregate similarity across common 

features, the fused feature set is a superset of the features of the two alerts. Feature values in 

fused alerts are typically lists, so alert fusion involves list merging. For example, suppose a probe 

of certain ports on some range of the protected network matches in terms of the port list with an 

existing probe that originated from the same attacker subnet, but the target hosts in the prior alert 

were to a different range of our network. The attacker address list has the new attacker address 

appended, and the lists of target hosts are merged. The port list matches and is thus unchanged. 

Two important features are the sensor and thread identifiers of all the component alerts, so that 

the operator is always able to examine in detail the alerts that contribute to the meta alert report. 

One additional feature is the priority of the meta alert, supported by our template and provided 

by EMERALD sensors. We are developing a component that estimates criticality based on the 
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assets affected, the type of attack, the likelihood of attack success, and an administrative 

preference. The aggregator maintains the high-water mark for this field. We are investigating 

approaches whereby the contributing threads are permitted to update their priority downward, 

computing meta alert priority as the maximum across thread priorities at any given time. This 

approach would permit downward revision of the meta alert priority. 

The features presently considered in the probabilistic correlator component include sensor 

identification (identifier, location, name), alert thread, incident class, source and target IP lists, 

target TCP/UDP port lists, source user id, target user id, and time. Computations are only over 

features that overlap in the alert to be merged and the candidate meta alert into which it is to be 

merged. Incident signature is used as well, but with a low expectation of similarity as these vary 

widely across heterogeneous sensors. 

If present, a thread identifier from the reporting sensor overrides other match criteria. A new 

alert that matches the sensor and thread of an existing meta alert is considered an update of the 

earlier alert. 

The correlator first tries to infer a thread by looking for an exact match in sensor identification 

and incident class and signature. Note that alerts that are inferred to be from the same thread may 

be separated in time. The system attempts to infer threads even in incident and scenario 

operational modes. 

Next the system checks that all overlapping features match at least at their minimum similarity 

value. Setting minimum expectation for some features to unity (not normally recommended) 

causes the system to behave like a heuristic system that requires exact matches on these features. 

Given that this criterion passes, we compute the overall similarity between the two alerts as 

follows: 
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SIM X,Y( ) =

E jSIM Xj ,Yj( )
j

∑
E j

j
∑

X =  Candidate meta alert for matching
Y =  New alert
j =  Index over the alert features
Ej =  Expectation of similarity for feature j

X j,Yj =  Values for feature j in alerts X and Y ,  respectively (may be list valued)

 

Incident class similarity is based on a notion of proximity, which at present is the result of our 

judgment. The proximity of class A to B reflects how reasonably an attack currently of incident 

class A may progress to class B. Note that this is not symmetric; we more strongly expect an 

exploit to follow a probe than the other way around. The incident classes shown in Table 1 are 

from the EMERALD 602 message format. Note that some “default” classes such as “invalid” 

and “action logged” are reasonably proximal to most other classes. This occurs because the IETF 

standard does not require a common ontology, and reports from heterogeneous sensors for the 

same incident may not reliably represent this field. As such, we do not want to reject potential 

matches based on this field alone. 

For operational modes other than thread level aggregation, we do not recommend a high 

minimum similarity value for this field. 
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I
O
N
_
L
O
G
G
E
D

INVALID 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6
PRIVILEGE_VIOLATION 0.3 1 0.6 0.3 0.6 0.6 0.6 0.6 0.4 0.3 0.4 0.1 0.5 0.6
USER_SUBVERSION 0.3 0.6 1 0.3 0.6 0.5 0.5 0.4 0.6 0.3 0.4 0.1 0.5 0.6
DENIAL_OF_SERVICE 0.3 0.3 0.3 1 0.6 0.3 0.3 0.4 0.3 0.5 0.4 0.1 0.5 0.6
PROBE 0.3 0.2 0.2 0.3 1 0.7 0.3 0.3 0.3 0.3 0.4 0.8 0.3 0.6
ACCESS_VIOLATION 0.3 0.6 0.3 0.5 0.6 1 0.6 0.6 0.3 0.3 0.4 0.1 0.5 0.6
INTEGRITY VIOLATION 0.3 0.5 0.3 0.5 0.6 0.8 1 0.6 0.5 0.3 0.4 0.1 0.5 0.6
SYSTEM_ENV_CORRUPTION 0.3 0.5 0.3 0.5 0.6 0.6 0.6 1 0.6 0.3 0.4 0.1 0.5 0.6
USER_ENV_CORRUPTION 0.3 0.5 0.5 0.3 0.6 0.6 0.6 0.6 1 0.3 0.4 0.1 0.5 0.6
ASSET_DISTRESS 0.3 0.3 0.3 0.6 0.3 0.3 0.3 0.3 0.3 1 0.4 0.4 0.3 0.6
SUSPICIOUS_USAGE 0.3 0.3 0.5 0.3 0.5 0.6 0.5 0.6 0.5 0.3 1 0.1 0.3 0.6
CONNECTION_VIOLATION 0.3 0.1 0.1 0.3 0.8 0.3 0.3 0.3 0.3 0.5 0.4 1 0.3 0.6
BINARY_SUBVERSION 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.5 0.3 0.4 0.1 1 0.6
ACTION_LOGGED 0.3 0.3 0.3 0.3 0.6 0.5 0.3 0.3 0.3 0.3 0.4 0.3 0.3 1  

Table 1: Incident Class Similarity Matrix 
 

For two alerts that are extremely close in time, it is possible that the alerts may not be in time 

order. In this case, incident class similarity is the greater of SIM(X, Y) and SIM Y, X). 

Mathematically, the similarity computation for incident class can comprehend a discrete call (the 

alert is from one of the above classes) or a call that is a probability distribution over the above 

classes (as might result from a meta alert in which the contributing sensors do not agree on the 

class). 

Most other features are potentially list valued. For lists, the notion of similarity generally 

expresses the fraction of the smaller list that is contained in the larger. For source IP addresses, 

similarity also attempts to express the notion that the addresses in question may come from the 

same subnet. 
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Time similarity is a step function that drops to 0.5 after one hour. A close match in time is 

expected only when the system operates in “incident” mode. Thread and scenario aggregation 

may be over time intervals of days. 

Correlated Alert Prioritization 
In addition to rationally aggregating related alerts, a correlation system should also assign 

priorities to the correlated alert. Given a network topology and a preference for ranking different 

classes of attacks as more or less critical, a security expert can accomplish this priority 

assignment, but the process is manual and time consuming. We developed a Bayes system 

(reusing the inference library from the Bayes TCP sensor previously described) to duplicate the 

priorities that a security expert would assign to a given set of alerts. This system enables the 

following functions: 

• Ability to weight the priority ranking along several attribute groupings, such as attack type or 

criticality of assets affected. 

• Compact representation of the influence of the value of an attribute on the priority assigned. 

• Incorporation of the administrator’s preference profile as to the relative importance of 

observed values (such as attack type). 

• Ranking influenced only by those attributes specified on a given alert  in general, a given 

alert may not observe all possible attributes. 

• Ability to update the ranking based on observation of a new attribute. 

• Extensibility of the model to comprehend attributes that may be defined in the future, with 

minimal perturbation to the rest of the model. 

Computationally, our approach is to design a Bayes classifier whose output is a ranking value 

and whose observable evidence consists of the attribute values. The influence of an attribute on 

the output is expressed in terms of conditional probability relations. 

Bayes approaches and probabilistic formalisms in general represent a minority of methodologies 

employed to date by intrusion detection systems as well as evolving systems for correlating and 

prioritizing alerts from such systems. Theoretically, a probabilistic system needs to specify the 

entire joint probability distribution of observable attributes and corresponding priority ranking. 

This is extremely difficult because of the “curse of dimensionality.” Instead, the Bayes approach 

is to assume that dependencies between attributes are local, so a much more compact 
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representation of the system’s knowledge base (local conditional probability relations) is 

possible. The compactness of knowledge representation and the adaptive potential make this 

approach attractive relative to signature systems. 

4. Alternative Approaches and Evaluation 
Another form of adaptation is the potential ability to add a state, that is, a hypothesis representing 

a new mode of usage. Naïve Bayes models such as the one described above work well in practice 

as classifiers, and are typically trained with observations for which the true class is known. 

Dynamic hypothesis generation as described here takes on a more difficult problem, namely, the 

situation where the data cases are unlabeled and even the underlying number of hypothesis states 

is unknown. In this situation, it is legitimate to ask if a system can self-organize to a number of 

hypotheses that adequately separate the important data classes. In this respect, the ability to 

separate attack classes A and B from each other is less important than the ability to separate both 

A and B from the set of nonattack classes. 

To build this capability, we need to enable the system to add hypotheses at the root node (the 

reader will recall that the root node state value is not directly observable). As a configuration 

option, the system will create a “dummy state” at the root node (or more generally, at any node 

that is not directly observable), with an effective count of 1. If this node has children, a new CPT 

row is added at each child. We use a uniform distribution over the child state (each element has 

value 1
nstatechild

) for this CPT at present. 

Adding a state then proceeds as follows. The inference mechanism is applied to an observation, 

and a posterior belief is obtained for the dummy state as if it were a normal state. If this state 

“wins”, it is promoted to the valid state class and the CPT rows for all children are modified via 

the CPT adjustment procedure described above. Note that since the effective count of the dummy 

state is 1, the adjustment makes the CPT rows look 50% like the observation. Then a new 

dummy state is added, allowing the system to grow to the number of root node states that 

adequately describe the data. This dummy state is not to be confused with the OTHER ATTACK 

hypothesis, for which there is an initial model of nonspecific anomalous behavior (e.g., moderate 

error intensity). 
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There are two ways to exploit the hypothesis generation capability. In the first, we initialize the 

system with the normal and attack hypotheses described above, using CPTs derived from our 

own domain expertise. We observe that the system does adjust the CPTs somewhat, but does not 

choose to add more hypotheses when running in this fashion. From this, we tentatively conclude 

that no more than 12 hypotheses are needed to classify these data. 

Our next experiment examined the other extreme. We initialized the system with a single valid 

hypothesis and a dummy hypothesis at the root node. We then presented a week of normal 

(attack-free) data, and the system generated two valid states. As these states were generated, the 

CPTs were adjusted according to the procedure previously outlined. We then arbitrarily decided 

that any new states learned would be reported as potential attacks, and presented data known to 

contain attacks. The system added two new states, which captured the attacks seen previously by 

the 11-state expert-specified model. Therefore, with the capabilities of adaptation via 

reinforcement as well as state space expansion described above, it is in fact possible to start the 

system with essentially no initial knowledge. It then organizes to an appropriate number of 

hypotheses and CPT values. It is interesting that this system does nearly as well at separating the 

important classes (here, attack versus nonattack) as the expert-specified model with only four 

root node hypothesis states. Normal data is adequately represented by two states, and the variety 

of attack data by two abnormal states. While this does tend to separate important normal and 

attack classes into separate hypotheses, explaining the result is more difficult. Nonetheless, this 

minimal knowledge approach does remarkably well, and is a very favorable indicator of the 

generalization potential of our methodology. 

The learning procedures described above have proven useful in our experimentation, guiding us 

both in refinement of existing hypotheses as well as developing new hypotheses for both normal 

and attack modalities. However, we have observed better operation if the adaptive capability is 

disabled, for several reasons. First, attacks and alert-worthy events are a very small fraction of 

total traffic in a real-world setting, so that learning an attack modality that may be seen only once 

is problematic. Second, we found that the normal hypotheses become “hardened” so as to be 

relatively intolerant of erroneous outcomes. The fraction of such outcomes for nonmalicious 

reasons is too high to be tolerable from an alert standpoint, but is too low to permit sufficient 

“breathing room” if adaptation is permitted indefinitely. For the present, therefore, we run the 
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system in adaptive mode to identify unanticipated modalities and large CPT deviations from 

what is observed in true traffic. We then take the results of this phase and moderate it with our 

judgment (sanding the corners off very hardened hypotheses, so to speak) and arrive at a batch 

specification of the CPT. We then verify that this new encoding remains sensitive against 

simulated datasets (such as the Lincoln data). At present, we detect the most attacks we have 

ever detected in the Lincoln data, and detect alert-worthy events in our real-world data with an 

acceptable level of apparent false alerts. 

 
5. Proposed Solution 
Bayes TCP Sensor and Host Availability Monitor 
The probabilistic methodologies presented above present an important complement to heuristic 

and rule-based systems for both detection and alert correlation. We explored a number of 

variants in the Bayes TCP sensor, such as adaptive CPT adjustment dynamic hypothesis 

generation. While these proved to be interesting capabilities, we must at this point consider them 

research features and do not make them active by default in the production version. We instead 

employ a system that considers simultaneous TCP sessions, maintains a Bayes hypothesis that 

classifies this session into one of a number of normal or misuse categories, transitions this 

session state over time, and evaluates the state as new evidence is observed. 

We have developed eBayes as a part of the broad EMERALD system, which permits us to 

leverage from a substantial component infrastructure. Specifically, it is an analytical component 

that interfaces to the EMERALD ETCPGEN and EMONTCP components. ETCPGEN can 

process either live TCP traffic or TCPDUMP data in batch mode. EMONTCP extracts the TCP 

state for a number of generally simultaneous TCP connections. When we refer to “events”, we 

mean events from EMONTCP, which already represents a considerable reduction from the raw 

TCP data. There are two components in eBayes: the session monitor, and the host availability 

monitor. 

The first of these components analyzes TCP sessions, which are imperfectly described as 

temporally contiguous bursts of traffic from a given client IP. We say “imperfectly” because it is 

not very important for the system to demarcate sessions exactly. The analysis is done by 

Bayesian inference at periodic intervals in a session, where the interval is measured in number of 



 

 

 

22

events (inference is always done when the system believes that the session has ended). Between 

inference intervals, the system state is propagated according to a Markov model. 

The second component discovers what services are advertised within the domain monitored by 

eBayes, and then adapts to traffic intensity and connection failure rates. It continuously estimates 

belief in the operational state of these services, generating alerts when a service failure is 

apparent. As such, it can potentially detect a coordinated, distributed attack where no session 

appears sufficiently anomalous to the session monitor. It can also detect failures due to 

nonmalicious faults. 

The innovation provided by eBayes is that it captures the best features of signature-based 

intrusion detection as well as anomaly detection (as in EMERALD eStat). Like signature 

engines, it can embody attack models, but has the capability to adapt as systems evolve. Like 

probabilistic components, it has the potential to generalize to previously unseen classes of 

attacks. In addition, the system includes an adaptive capability, which can “grow” quite 

reasonable models from a random start. However, since it has major attack classes encoded in its 

conditional probability tables, it can provide effective detection “out of the box”. 

This system detects a variety of scans and sweeps as well as flood attacks. It does not examine 

packet payload, but is limited to attacks that are visible in the packet headers. The session logic 

achieves alert threading in the sense of aggregating a small number of reports from attacks that 

manifest as a large number of raw events, which is typical of floods and some probes. 

Probabilistic Correlation 
Our probabilistic alert fusion approach considers feature overlap, feature similarity, minimum 

similarity, and expectation of similarity. We maintain a list of “meta alerts” that are possibly 

composed of several alerts, potentially from heterogeneous sensors. For two alerts (typically a 

new alert and a meta alert), we begin by identifying features they have in common (feature 

overlap). Such features include the source of the attack, the target (hosts and ports), the class of 

the attack, and time information. With each feature, we have a similarity function that returns a 

number between 0 and 1, with 1 corresponding to a perfect match. 

Expectation of similarity is also a number between 0 and 1, and expresses our prior expectations 

that the feature should match if the two alerts are related, considering the specifics of each. We 
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can consider expectation of similarity as a feature weighting that can vary based on the type of 

correlation being performed. 

If an alert from a sensor has a thread identifier that matches the list of sensor/thread identifiers 

for some meta alert, the alert is considered a match and fusion is done immediately. In other 

words, the individual sensor’s determination that an alert is an update of or otherwise related to 

one of its own alerts overrides other considerations of alert similarity. 

If the meta alert has received reports from host sensors on different hosts, we do not expect the 

target host feature to match. If at least one report from a network sensor has contributed to the 

meta alert and a host sensor alert is received, the expectation of similarity is that the target 

address of the latter is contained in the target list of the former. 

In determining whether an exploit can be plausibly considered the next stage of an attack for 

which a probe was observed, we expect the target of the exploit (the features host and port) to be 

contained in the target host and port list of the meta alert. 

Some sensors, particularly those that maintain a degree of state, report start and end times for an 

attack, while others can timestamp only a given alert. The former deal with time intervals, while 

the latter do not. Similarity in time comprehends overlap of the time intervals in the alerts 

considered for correlation, as well as the notion of precedence. We do not penalize time 

similarity too far from unity if the time difference is plausibly due to clock drift. 

Deciding whether the attacker is similar is somewhat more involved. In the case of an exact 

match of originating IP address, similarity is perfect. We assign high similarity if the subnet 

appears to match. In this way, a meta alert may potentially contain a list of attacker addresses. At 

this point, we consider similarity based on containment. In addition, if an attacker compromises a 

host within our network (as inferred by a successful outcome for an attack of the root 

compromise class), that host is added to the list of attacker hosts for the meta alert in question. 

Finally, for attack classes where the attacker’s address is likely to be spoofed (for example, the 

Neptune attack), similarity expectation with respect to attacker address is assigned a low value. 

Our correlation component also enforces situation-specific minimum similarity. Certain features 

can be required to match exactly (minimum similarity for these is unity) or approximately 

(minimum similarity is less than unity, but strictly positive) for an alert to be considered as a 
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candidate for fusion with another. Minimum expectation thus expresses necessary but not 

sufficient conditions for correlation. 

The overall similarity between two alerts is zero if any overlapping feature matches at a value 

less than the minimum similarity for the feature (features for which no minimum similarity is 

specified are treated as having a minimum similarity of 0). Otherwise, overall similarity is the 

weighted average of the similarities of the overlapping features, using the respective expectations 

of similarity as weights. 

By appropriate settings of similarity expectation and minimum similarity, the correlation 

component achieves a hierarchy of correlation into threads, incidents, and scenarios. The system 

is composable in that we can deploy multiple instances to obtain correlation at different stages in 

the hierarchy. For example, we can infer threads (within sensor correlation) and then correlate 

threaded alerts from heterogeneous sensors into security incidents. The correlation component 

can function in thread, incident, and scenario modes, and the modes may be run concurrently. 

 
 
6. RESULTS AND DISCUSSION 
Bayes TCP Sensor 
Lincoln Laboratory 1999 Evaluation Study 
We have run our model against the TCP dump data from the 1999 Lincoln Laboratory IDEVAL 

data sets [Lip00]. It is highly effective against floods and nonstealthy probe attacks, and 

moderately effective against stealthy probe attacks. 

This data simulates activity at a medium-size LAN with typical firewalls and gateways. Traffic 

generators simulate typical volume and variety of background traffic, both intra-LAN and across 

the gateway. Attack scripts of known types are executed at known times, and the traffic (a mix of 

normal background as well as attack) is collected by standard utilities, such as TCPDUMP. 

For this prototype we examined external-to-internal traffic using the TCP/IP protocol. This 

means that console attacks, insider attacks, and attacks exploiting other protocols such as IDP 

and UDP are invisible. These are not theoretical limitations, and we intend to include the UDP 

protocol in the near future. However, this did limit attacks that were visible to the system. The 

fourth week of the data set was considered the most difficult, as it contained the most stealthy 

attacks. We detected three visible portsweeps and missed one that accessed three ports over four 
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minutes with no errors. All of the portsweeps in this data set are stealthy by the standards of the 

Lincoln training data and the week 5 data (we detect 100% of visible, nonstealthy sweeps). A 

Satan attack and a TCPRESET attack are also detected as portsweeps. This particular Satan 

attack was run in a mode where it in fact is characteristic of a portsweep. For the TCPRESET, 

the portsweep hypothesis slightly edges out the OTHER hypothesis. Other detected attacks in 

this data include MAILBOMB and PROCESS TABLE (both 100% detected) as well as three 

password-guessing attacks (one detected as OTHER, two as DICTIONARY). The latter three 

detections demonstrate the power of the approach. They were not in the set of attacks that 

Lincoln thought should be detected by this sensor, so we initially considered them false alarms. 

Further review of the full attack list indicated that they were in fact good detections, even though 

at that time we had no DICTIONARY hypothesis and they were called OTHER. By elucidating 

characteristics of these attacks, we added the DICTIONARY hypothesis (indicative of password 

guessing), which now captures two of these attacks and is a close second to OTHER as a 

classification for the third. 

Real-World Experience 
The Bayes TCP component runs on our own TCP gateway, and it has proved to be stable for 

indefinite periods of time. The TCP event generator, EMONTCP, and Bayes inference 

components require about 15MB on a Free BSD platform, and never use more than a few percent 

of the CPU. For real-world traffic, we of course have no ground truth, but the results have 

nonetheless proved interesting to us in the sense of scientific experimentation, as well as being of 

practical interest to our system administrators. 

Our initial observation was that, not surprisingly, real-world data contains many failure modes 

not seen in a set such as the IDEVAL data described above. For example, we regularly observe a 

pattern of http sessions of moderate or long duration in which a significant number of 

connections terminate abnormally, but on such a time scale and in such modes that we are fairly 

certain they are not malicious. To capture these sessions, we decided to add the HTTP_F 

hypothesis (for failed http). This reduced the alert volume to a manageable 15 or so per day. A 

representative two-week period comprised about 470,000 connection events, grouped by the 

session model into about 60,000 sessions of which 222 produced alerts. It is important to point 

out that many of these are almost certainly attacks, consisting of IP and probe sweeps and some 
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attempted denials of service. Some of the false alert mechanisms are understood and we are 

actively working to improve system response to these without being too specific (for example, 

ignoring alerts involving port 113 requests, which are screened in our environment but will be 

seen from normal mail clients). 

Probabilistic Correlator 
Live Traffic 
The following is an example of alert correlation over time, in this case correlating alerts that are 

components of a stealthy port sweep. The following example is one of the contributing alerts. In 

the interest of space, we do not include all the content that is in the alert and meta alert templates, 

but limit ourselves to the fields needed to illustrate the result. 

 

Thread ID 69156 Class= portsweep   BEL (class) =  0.994 BEL(attack)=  1.000 
2001-06-15 17:34:35 from xx.yyy.148.33 ports 1064 to 1066 duration=   0.000 
dest IP aaa.bbb.30.117 
3 dest ports: 12345{2} 27374{3} 139 
 

 
This is a probe for three vulnerable ports on a single IP address in the protected network, and is 

detected by the Bayes TCP sensor. The example above is just a single step in a probe that 

apparently transpired over several days, and resulted in the following correlated meta alert. 

 

Meta Alert Thread 248 
Source IPs source_IParray: xx.yyy.148.33 xx.yyy.148.47 
 
Target IPs target_IParray: aaa.bbb.30.117 aaa.bbb.6.232 aaa.bbb.8.31 
aaa.bbb.1.166 aaa.bbb.7.118 aaa.bbb.28.83 aaa.bbb.19.121 aaa.bbb.21.130 
aaa.bbb.6.194 aaa.bbb.1.114 aaa.bbb.16.150 
 
From  2001-06-15 17:34:35 to  2001-06-21 09:19:57 
correlated_alert_priority -1 
 
Ports target_TCP_portarray: 12345{4} 27374{4} 139{3} 
 
Number of threads 10 Threads :69156 71090 76696 84793 86412 87214 119525 
124933 125331 126201 
Fused: PORT_SCAN 

 
We note that we have correlated events from two source addresses that were judged to be 

sufficiently similar. The attack is quite stealthy, consisting of a small number of attempted 

connections to single target hosts over a period of days. The list of thread identifiers permits the 

administrator to examine any of the stages in the attack. In this case, each attack stage is 
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considered a portsweep; if the stages consisted of different attack classes, these would be listed 

under “Attack steps”. Over the three-week time period containing this attack, the IDS sensor 

processed more than 200,000 sessions and generated 4439 alerts. The probabilistic correlation 

system produced 604 meta alerts. 

In a more recent live traffic analysis experiment, we considered alerts from several EMERALD 

sensors as well as SNORT, operating in August 2001 during the height of the Code Red and 

Code Red II attacks. The probabilistic correlation engine considers attack class as one of the 

features in its similarity matching algorithms. The mapping between attack classes and attack 

signatures is implemented in the EMERALD incident handling knowledge base (IHKB), which 

is shared by all EMERALD sensor and correlation components. Currently, all signatures are 

mapped into the 14 IHKB classes listed in Table 2. 

 

ACCESS VIOLATION DENIAL OF SERVICE SUSPICIOUS USAGE 

ACTION LOGGED INTEGRITY VIOLATION SYSTEM ENVIRONMENT CORRUPTION 

ASSET DISTRESS INVALID USER ENVIRONMENT CORRUPTION 

BINARY SUBVERSION PRIVILEGE VIOLATION USER SUBVERSION 

CONNECTION VIOLATION PROBE  

Table 2: EMERALD IHKB Incident Classes 
 

Due to time constraints, we were not able to populate the mapping of SNORT alerts to 

EMERALD incident classes, so SNORT alerts are assigned to a fallback “ACTION LOGGED” 

class. An advantage of probabilistic techniques is that this approach produces slightly lower 

fidelity results, but the technique is sufficiently robust to tolerate this as a minor deficiency. 

 

Because of the overall architecture of EMERALD, we are able to deploy a correlation capability 

at one or more points in a monitoring network, and can in fact correlate correlated alerts. We 

chose to separately correlate the SNORT alerts, the EMERALD alerts, and the entire set. The 

first function of correlation, as presented in the introduction, is to reduce the raw number of alert 
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reports that a security administrator must examine. Table 3 reflects totals for a one-day collection 

period in our laboratory, starting at 10 a.m. PDT, August 6-7, 2001. 

 

Sensor Raw Alerts Correlated Alerts 

Snort 4816 487 

EMERALD 1586 523 

Composite 6402 869 

Table 3: Heterogeneous Sensor Correlation Live Traffic Results 
 

As described above, it is possible that a raw alert will fail to correlate with any other alerts. In 

this case, the corresponding correlated alert will consist solely of the contents of the single 

contributing raw alert. Therefore, the set of correlated alerts contains information for all of the 

raw alerts. We observe that correlation achieves about a 10 to 1 reduction in SNORT alerts, and 

about 3 to 1 for EMERALD alerts. This occurs because the EMERALD sensors attempt to thread 

alerts, as we have previously discussed. 

Cyberpanel Grand Challenge Problem 
The Cyberpanel Grand Challenge Problem (GCP) was formulated to facilitate experimentation 

with alert correlation systems. The goal was to present to correlation systems a set of alerts that 

were realistic in the sense of the volume and nature of alerts, containing many nuisance attacks 

and one critical attack scenario. The objective of the developer of a correlation methodology was 

to correlate the nuisance and critical alerts, thereby reducing total alert volume to a more 

manageable level, and to identify alerts related to the critical attack as representing something 

more serious than the background nuisance traffic. It is also crucial that the alerts from the 

critical attack not spuriously correlate with alerts from the nuisance attacks. To prioritize alerts, 

we activated the alert prioritization functionality, which is based on the same Bayes inference 

library as the TCP sensor and is shared by the EMERALD MCorrelator as well. 

Table 4 summarizes alert reduction results. The “truth” files contain alerts representing the 

critical attacks, while the “all” files contain the same critical attack alerts and a large number of 

nuisance attack alerts. 
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Attack 1 Attack 2
Truth

Total 117 8
Correlated 13 3

All
Total 7216 7634

Correlated 474 475  

Table 4: Grand Challenge Problem Correlation Results 
 

As desired, the alerts representing the critical attacks did not correlate with the other alerts. 

Moreover, the correlated alerts representing critical attack scenarios were assigned priorities of 

240 (on a 0 to 255 scale) while other alerts were scored below 127. 

 
7. Conclusions and Suggestions for Future Work 
We have developed components for intrusion detection and intrusion report correlation that use 

probabilistic techniques rather than the more common signature and heuristic approaches used in 

the field. We believe that they are not a replacement for the latter approaches, but do provide 

important complementary capabilities in the areas of generalization potential, adaptability to 

changing conditions, and robustness against improperly formed or conflicting messages. 

The intrusion detection components consist of a TCP session monitor and a closely coupled host 

availability monitor, both based on Bayes inference. The former detects a variety of attacks 

visible in TCP packet headers, while the latter discovers new network hosts and services and 

detects failures (malicious or not). By coupling these sensors, the sensitivity and false alarm rate 

of the overall system are greatly improved. 

The probabilistic correlation component adapts concepts from multisensor data fusion and 

introduces innovative similarity functions suitable to the IDS alert correlation domain. It includes 

a Bayes subsystem that reproduces the priority assignment that an expert security administrator 

would give to a set of alerts. The probabilistic approach is robust in the heterogeneous sensor 

environment, where sensors may not agree about the particulars of a given attack, and some 

sensors may implement alert interchange standards incompletely. 
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We have extensive experimental and live experience with both systems. Also, these systems 

operate against live traffic at an Internet gateway for the NSA. Their experience and our own has 

enabled continuous refinement of the components, so that they now achieve impressive results 

with high stability. 

In terms of future work, we would like to explore the scenario of cross-domain correlation. This 

is motivated somewhat by the grand challenge problem, and addresses the issue of a 

simultaneous attack against multiple autonomous but cooperating domains. The scenario is 

appropriate to a distributed command mission, as well as potentially to civilian infrastructure and 

homeland defense. 

We would also like to explore synergies between our correlation work and the Correlated Attack 

Modeling (CAM) effort. Specifically, we would represent CAM models as a special class of 

meta alert that is essentially a template, with appropriate wildcards for feature matching. These 

would form a special set of “seed” alerts in the meta alert list. A set of alerts that match the seed 

alert then initiate a correlated alert of the corresponding correlated attack type. 

We are actively pursuing opportunities to transition this technology into the OPX Analyst Work 

Bench (AWB), as well as to the U. S. Army and the Federal Aviation Administration. 
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