Defense Advanced Research Projects Agency
Information Assurance and Survivability
Operational Experimentation (OPX)

Phoenix Challenge 2002

Brian Witten
OPX Program Manager
bwitten@darpa.mil
Information Assurance and Survivability Operational Experimentation (OPX)

Witten, Brian

DARPA

DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE

15. SUBJECT TERMS
IATAC Collection

19b. TELEPHONE NUMBER
International Area Code
703767-9007
DSN
427-9007

See report.

See report.
Information Assurance and Survivability Operational Experimentation (OPX)

Witten, Brian

DARPA

Defense Advanced Projects Research Agency

This briefing was presented during the Phoenix Challenge 2002 Conference and Warfighter Day.
Vision

- New Capability: Situational Awareness
- Reduce Overload: Analyst Workbench
- Protect Centers of Gravity: Survivable Servers
- Pervasive Sensors: Hardened Clients
Objectives:
- Accelerate transition of effective technologies
- Inform research agenda with operational experience

Key Experimentation Risks, Transition Metrics:
- Limited operational staff time
- Impact on operational systems

Approach:
- Leverage mature research, well tested in lab
- Field cautiously: walk before we run
The Analyst’s Challenge

Impact of Transition to T3 volume at Internet Access Points

Potential IAP Traffic (T3)

Today

Tomorrow
Intrusion Detection in the Lab

DARPA 1998 Results (MIT/LL and AFRL)

- **Operational sensors:**
 - Hundreds of false alarms per attack
 - Actually miss most attacks

- **Research sensors:**
 - Dramatically reduce false alarm rates
 - Substantially improve detection coverage
Analyst Workbench

- Analysts currently overwhelmed
 - Flood of data, high false alarm, low detection rates
 - Not... real time, decision quality, always actionable

- DARPA Algorithms
 - Over a dozen lab tested real time algorithms
 - Data mining, anomaly, self organizing, expert systems

- Execution: September 2001 – September 2002
Hardened Client

- MARFORPAC Challenge
 - Classic SIPR/NIPR PC problem
 - Compounded by TAD laptop theft
 - Insider threat and unknown viruses

- Proposed Technology
 - Safe e-mail “wrappers” and encrypting file system
 - Autonomic Distributed Firewall
 - PGP Disk & Disk Eraser
Operating System Wrappers

- Trap and stop unknown viruses
- Enable safer use of mobile code
- Performance impact: Low
- Availability: Solaris, Linux, NT, Win2K

Developers: Network Associates, Teknowledge, Cigital, Telcordia
Autonomic Distributed Firewall

- Firewall on Network Interface Card (NIC)
- Hardware based cryptographic accelerator
- Trustworthy control of untrustworthy OS

ADF Controller
- Converts high level policy into low level packet filtering rules for each NIC
- Triple redundancy, manages thousands
- Drag and drop INFOCON changes
- Encrypted communication with NIC
- Audit database and browser

LAN → NIC → Workstation
LAN → NIC → Server
NIC → Internet → Remote user

Made by Secure Computing and 3Com
Research performed under DARPA sponsorship
Hardened Client Timeline

- MARFORPAC Limited Objective Experiment
 - Apply safe e-mail wrappers and encrypting file system
 - MARFORPAC approved internal experiment charter
 - Execution: Late CY2001, RSO&I 02, UFL 02

- Fleet Battle Experiment India (C3F)
 - Execution: Jun 2001 – Autonomic Distributed Firewall (PCI)

- Fleet Battle Experiment Juliet Goals (PACFLT)
 - Complete application of diverse wrappers
 - Autonomic Distributed Firewall (PCMCIA)
Motivating factors:
- High-value and commonly targeted center of gravity
- Need Intrusion Tolerant Systems:
 Ability to confidently execute mission while under attack
- Reactive defense not adequate

Possible technologies:
- PASIS: Perpetually Available Survivable Information System
 Leverage fragmentation, redundancy, and scattering
- SELinux, Immunix, Emerald, NetTop Vmware, Wrappers

Execution: 2002
Situational Awareness

- Am I under attack?
- What is the nature of the attack?
 - Class, mechanism, and source
- What is mission impact?
 - Urgency, damage assessment and control, initial response
- When did attack start?
 - More detailed damage assessment. What have I done wrong?
- Who is attacking?
 - What are they trying to do? What is their next step?
- What can I do about it?
 - Course of action analysis, collateral damage risk, reversibility
Theater C4I Coordination Center
PACOM TCCC

Need
- Theater Wide
- Real Time
- Decision Quality
- Actionable Information

Strategy
- Leverage Cyber Panel emerging research

Network Management

Information Dissemination Management

Information Assurance
Summary

FY 01
- Analyst’s Workbench
 - PAC CERT
- Hardened Client - MARFORPAC, PACFLT

FY 02
- Possible extension to other CERTS
- Survivable Server
- Situational Awareness - TCCC
Context

- Functionality
- Performance
- Security
- Availability
- Confidentiality
- Integrity

Tolerance Detection Prevention

Layered Protection Dynamic Defense

Attacks

Risk-Balanced Optimizing Strategy

Information Treasures

Methodology