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Abstract  We consider the statistical analysis of a
recently proposed non-homogeneity detector (NHD) for
Gaussian interference statistics. We show that a formal
goodness-of-fit test can be constructed by accounting for the
statistics of the generalized inner product (GIP). Specifically,
the Normalized-GIP follows a central-F distribution. This
fact is used to derive the goodness-of-fit test in this paper.
We also address the issue of space-time adaptive processing
(STAP) algorithm performance using the NHD as a pre-
processing step for training data selection. Performance
results are reported using simulated as well as measured data.

I.  INTRODUCTION

An important issue in space-time adaptive processing
(STAP) for radar target detection is the formation and
inversion of the covariance matrix underlying the clutter and
interference.  Typically, the unknown interference covariance
matrix is estimated from a set of independent identically
distributed (iid) target-free training data that is representative
of the interference statistics in a cell under test.  Frequently,
the training data is subject to contamination by discrete
scatterers or interfering targets.  In either event, the training
data becomes non-homogeneous. Consequently, it is not
representative of the interference in the test cell.  Estimates
of the covariance matrix from non-homogeneous training
data result in severely under-nulled clutter. Consequently,
CFAR and detection performance suffer. Significant
performance improvement can be achieved by employing
pre-processing to select representative training data.

The problem of target detection using improved training
strategies has been considered in [1-8]. The impact of non-
homogeneity on STAP performance is considered in [9-11].
It was shown in [12] that the distribution information of a
class of multivariate probability density functions (PDF) is
succinctly determined through an equivalent univariate PDF
of a quadratic form. An application of this result is the non-
homogeneity detector (NHD) based on the generalized inner
product (GIP) [1-4,8].

Non-homogeneity of the training data arises due to a
number of factors such as contaminating targets, presence of
strong discretes, and non-stationary reflectivity properties of
the scattering surface. In these scenarios, the test cell
disturbance covariance matrix, RT, differs significantly from
the estimated covariance matrix, R̂ formed using target-free
disturbance realizations from adjacent reference cells [13]. If
a large number of test cell data realizations are available, the

underlying non-homogeneity is characterized via the
eigenvalues of T

-1ˆ RR [14].  However, in radar applications,
only a single realization of test cell data is usually available.
Consequently, the resulting estimate of RT is singular.
Hence, [1-4,8] compared the empirically formed GIP with a
theoretical mean corresponding to a ‘known’ covariance
matrix. Large deviations of the GIP mean from the
theoretical mean have been ascribed to non-homogeneity of
the training data.  Such an approach provides meaningful
results in the limit of large training data size.  In practice, the
amount of training data available for a given application is
limited by system considerations such as bandwidth and fast
scanning arrays. Furthermore, the inherent temporal and
spatial non-stationarity of the interference precludes the
collection of large amounts of training data. Consequently,
the approach of [1-4,8] can be misleading since it ignores
finite data effects and the resulting variability in the
covariance matrix estimate. In a recent paper [15], we
derived significant results pertaining to the statistics of the
GIP for Gaussian interference.  Using  (15) of  [15] it follows
that the empirical GIP mean using an estimated covariance
matrix with finite data can be twice as large as the
corresponding GIP mean for a known covariance matrix.
Consequently, such a scenario can easily lead to incorrect
classification of training data.

The main result of [15] is that the normalized GIP, P’,
admits a remarkably simple stochastic representation as the
ratio of two statistically independent Chi-Squared distributed
random variables.  As a result, the GIP follows a central-F
distribution. This fact is exploited to construct a formal
goodness-of-fit test for selecting homogeneous training data.

This paper presents performance analyses of the NHD
using the goodness-of-fit test for the GIP. Performance
results are presented using both simulated and measured
data.  We then employ the NHD as a pre-processing step for
training data selection and assess performance of the
adaptive matched filter (AMF) test [16,17,18].  Performance
is reported in terms of the probability of detection versus
output signal to noise ratio for simulated data.  For measured
data, a plot of the test statistic versus range is used as a
performance metric.

II. GIP STATISTICS

The generalized inner product is defined by xRx -1H ˆ  P =
where x denotes a realization of test cell data and
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identically distributed ‘target free’ training data vectors
having zero mean and covariance matrix R.  Additionally,
the test and training data are assumed to be statistically
independent.  For complex-Gaussian distributed x and xi ,
sharing the same covariance matrix, R, it was shown in [15]
that the probability density function (PDF) of the normalized
GIP, P’ = P/K , follows a central F distribution given by
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where M is the dimensionality of x and K = L – M + 1.
Furthermore, it was shown in [14] that P’ admits a stochastic
representation as a ratio of two statistically independent Chi-
squared distributed random variables.  Consequently, the
mean and variance of the GIP are readily expressed as [15]
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These facts are used to construct a mechanism for selecting
homogeneous training data in the next section.

III. NON-HOMOGENEITY DETECTOR

We now present two methods for selecting homogeneous
data from a set of training data.  The first method exploits the
central-F distribution of P’ given by (2.1) to construct a
formal goodness-of-fit test, while the second method relies
upon a comparison of empirically formed P’ with the
theoretical mean predicted by (2.2) and discarding those
realizations for which P’ deviates significantly from the
theoretical mean. The cumulative distribution function of P’
is given by
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The goodness-of fit test consists of determining whether
realizations of P’ formed from a given set of training data are
statistically consistent with the PDF of (2.1). For this purpose
a suitable type-I error, α, is chosen. More precisely, α is
simply the probability of incorrectly rejecting the hypothesis

that a given realization of P’ is statistically consistent with
the PDF of (2.1). Specifically, we seek a threshold, λ, such
that
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λ is determined from an inversion of (3.2).  The goodness of
fit test consists of forming realizations of P’ from a set of
training data and rejecting those training data vectors for
which P’ exceeds λ. The second method is based on
comparing the realizations of P with the theoretically
predicted mean of P given by (2.2) and retaining those
realizations exhibiting least deviation from the theoretically
predicted mean of (2.2).  Examples that illustrate the two
approaches are presented.  For a given training data set, a
moving window approach is used to form realizations of P’.
This approach is sub-optimal because it does not guarantee
statistical independence of the realizations of P’.  However,
we adopt this approach due to the limited training data
support.  For the examples presented here, data from the
MCARM program [19] corresponding to 16 pulses and 8
channels from acquisition ‘220’ on Flight 5, cycle ‘e’ is used.
For this example, α is set to 0.1. The plot in Fig. 1 shows P’
and λ as a function of range.  A moving window approach is
used to obtain P’ for each range cell considered.  Non-
homogeneity of the training data is seen in those range cells
for which P’ exceeds λ. Fig. 2 plots the normalized GIP as a
function of range.  The normalized GIP theoretical mean is
obtained from (2.2) with a simple normalization.  Values of
the normalized GIP, which exceed the theoretical mean
correspond to non-homogeneous training data realizations.
Observe that the second method is more sensitive to the
presence of discrete scatterers in the training data.

IV. PERFORMANCE ANALYSIS OF THE AMF TEST

In this section, we consider the performance analysis of
the AMF test [15,18,19] in non-homogeneous training data.
The AMF test is given by

AMF1-H
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where s is the spatio-temporal steering vector, x is the
received data vector, R̂ is the sample covariance matrix

given by H
i

K

i
i  ˆ

K
1 xxR ∑=  with xi denoting independent

identically distributed training data and λAMF is a threshold
selected to obtain a desired probability of false alarm.

For the case of homogeneous training data, analytical
expressions for the probability of false alarm and probability
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Fig. 1. Normalized GIP versus Range

of detection are given by [17]
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and ‘b’ is related to the output signal to noise ratio (SNR).
For K→∞, the sample covariance matrix tends to the true
clutter covariance matrix, R. Consequently, the AMF test
converges to the matched filter (optimal receiver in Gaussian

   

Fig. 2. Normalized GIP versus Range

clutter) for large K. The expressions for the matched filter Pfa
and Pd are given by [17]

Pfa = exp(-λMF)   (4.6)
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where A is related to the output SNR and λ MF  is the
threshold.

Fig. 3 presents Pd versus output signal-to-interference plus
noise ratio (SINR). Relevant test parameters are reported in
the plot. The matched filter (MF) curve obtained from (4.7)
corresponds to the optimal performance in Gaussian clutter.
The Pd curve for the AMF operating in homogeneous
Gaussian clutter follows from (4.3) and exhibits performance
to within 3 dB of the MF.  The AMF performance operating
in non-homogeneous training data with and without NHD
pre-processing is carried out by Monte Carlo simulation at
AFRL. For this example, the training data contained thirty
high-amplitude, mainbeam discrete targets located at various
range cells and Doppler frequencies. Initial sample support
for NHD pre-processing is 6M. A sliding window approach
is used to select a subset consisting of 4M training data
realizations. Each GIP value obtained at a specific range cell
is computed using R̂ formed from 2M adjacent training data
vectors.  Previously, we noted the sub-optimality of this
scheme.  In practice, its use is dictated by training data size
limitations.  In this manner 4M GIP values are obtained. The
NHD pre-processing used in this example is based on a
comparison of the empirical GIP with its theoretical mean
value given by (2.2). The training data used in forming R̂
after NHD processing is obtained by sorting the GIP values
and retaining K=2M realizations corresponding to the
smallest GIP deviation from the theoretical mean of (2.2).
Observe that the AMF performance in non-homogenous
clutter degrades severely.  Also note that NHD pre-
processing restores the AMF performance to its analytical
value.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Output SINR

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

MF                      
AMF(analytical)         
AMF(discretes, with NHD)
AMF(discretes, no NHD)  

M = 64
K = 128
Pfa = 0.01
CNR = 40 dB 

Fig. 3. Performance of the AMF with and without NHD
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Fig. 4. GIP versus Range

Fig. 4 shows a plot of the GIP versus range prior to NHD
pre-processing for the simulated data used in carrying out the
performance analysis of Fig. 3. Fig. 5 shows a plot of the
sorted absolute value of the difference between the GIP and
its theoretical mean versus range after NHD pre-processing
for the example in Fig. 3. Observe the absence of discretes in
the first K=2M range cells.
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Fig. 5. Absolute value of difference between
GIP and Theoretical GIP mean vs Range

Fig. 6 depicts performance using measured data from the
MCARM program [19]. For this case, it is not possible to
present performance in terms of detection probability versus
SINR. This is due to the fact that only one realization of
target present data is available. Hence, we present a plot of
the detection test statistic versus range.

Since the AMF test statistic is an ad-hoc estimate of the
output SINR, and since the probability of detection is a
monotonically increasing function of the output SINR, this is
an acceptable performance metric. Performance of the AMF
without NHD processing degrades significantly in non-
homogeneous clutter.  Performance improvement is noted
when the AMF is employed in non-homogeneous data with
NHD pre-processing. Consequently, the use of NHD affords

moderate performance improvement of the AMF test in non-
homogeneous clutter. The performance with measured data is
characterized by the ratio of the test statistic at the test cell to
the mean of the test statistics formed from adjacent cells, ψ1,

and the ratio of the test statistic at the test cell to the highest
test statistic formed from adjacent cells, ψ2, respectively.
Table 1 shows these values for the AMF test with and
without NHD pre-processing.

Fig. 6. Test Statistic vs Range

Table 1: AMF performance with measured data

Algorithm ψ1(dB) ψ2(dB)
AMF with NHD 13.25 5.68
AMF 11.83 3.38

.
V. CONCLUSIONS

We presented a performance analysis of the AMF test in
non-homogeneous clutter scenarios. We showed that the
performance of the AMF test degrades severely in non-
homogeneous clutter.  A new implementation of the NHD
based on finite sample support for covariance estimation was
presented. Examples of the NHD performance with
simulated and measured data were shown. Our results
demonstrate that the use of NHD pre-processing affords
considerable performance improvement for the AMF test.
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