

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

Approved for public release; distribution is unlimited

MODELING SINGLE-EVENT TRANSIENTS
IN

COMPLEX DIGITAL SYSTEMS

by

Kenneth A. Clark

June 2002

 Dissertation Supervisors: Herschel H. Loomis, Jr.
 Alan A. Ross

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE: Modeling Single -Event Transients in
Complex Digital Systems

6. AUTHOR(S) Kenneth A. Clark

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

A methodology to determine the effect of single -event transients (SETs) on complex digital
systems has been developed. This methodology is based on the SET-state-transition model. This model
breaks the complex digital system down into five states. These states are the error-free/transient-free
state, the logic-gate-transient state, the single -event-upset (SEU) state, the output-driver transient state,
and the failure state. The state -transitional probabilities of the model are determined by SET generation
modeling, SET propagation modeling, and SEU propagation modeling. SET generation and
propagation are primarily modeled using SPICE. SEU propagation modeling is accomplished using a
combination of VHDL fault-injection modeling and mode-dependent (or instruction-based for a
processor) register-usage analysis.

To verify this methodology, the SET tolerance of a 16-bit RISC microprocessor, the KDLX,
was predicted. The transitional probabilities for this processor were determined, and the effective cross-
section of the processor for three different test programs was predicted. Laser testing was performed on
the KDLX to validate the predicted transitional probabilities. Heavy-ion testing was performed to
validate system-level predictions. The results from the heavy-ion testing show that the methodology
accurately predicts the saturated effective cross-section of a complex digital system.

15. NUMBER OF
PAGES

183

14. SUBJECT TERMS single-event-transients; single-event upsets; single-event effects; transient
fault propagation;

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

MODELING SINGLE-EVENT TRANSIENTS
IN COMPLEX DIGITAL SYSTEMS

Kenneth A. Clark

B.S., The University of Virginia, 1990
M.S., The Johns Hopkins University, 1993

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2002

Author: __
Kenneth A. Clark

Approved by:

______________________ _______________________
Herschel H. Loomis, Jr., Professor Alan A. Ross, Professor
Dept. of Electrical & Computer Engr. Space Systems Academic Group
Dissertation and Committee Supervisor Dissertation Supervisor

______________________ _______________________
Douglas J. Fouts, Todd Weatherford,
Associate Professor, Assistant Professor,
Dept. of Electrical & Computer Engr. Dept. of Electrical & Computer Engr.

George E. Price,
Engineer,
Naval Research Laboratory (retired)

Approved by: __

 Jeffrey B. Knorr, Chair, Department of Electrical & Computer Engr.

Approved by: __

Carson K. Eoyang, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

A methodology to determine the effect of single-event transients (SETs) on

complex digital systems has been developed. This methodology is based on the SET-

state-transition model. This model breaks the complex digital system down into five

states. These states are the error-free/transient-free state, the logic-gate-transient state,

the single-event-upset (SEU) state, the output-driver transient state, and the failure state.

The state-transitional probabilities of the model are determined by SET generation

modeling, SET propagation modeling, and SEU propagation modeling. SET generation

and propagation are primarily modeled using SPICE. SEU propagation modeling is

accomplished using a combination of VHDL fault- injection modeling and mode-

dependent (or instruction-based for a processor) register-usage analysis.

To verify this methodology, the SET tolerance of a 16-bit RISC microprocessor,

the KDLX, was predicted. The transitional probabilities for this processor were

determined, and the effective cross-section of the processor for three different test

programs was predicted. Laser testing was performed on the KDLX to validate the

predicted transitional probabilities. Heavy- ion testing was performed to validate system-

level predictions. The results from the heavy- ion testing show that the methodology

accurately predicts the saturated effective cross-section of a complex digital system.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION ...1
A. ON-BOARD PROCESSING REQUIREMENTS OF SATELLITES...............1
B. TECHNICAL PROBLEM DESCRIPTION..1
C. OBJECTIVE OF RESEARCH...2
D. TECHNICAL APPROACH..2
E. DISSERTATION ORGANIZATION ..3

II. MODELING METHODOLOGY...5
A. OBJECTIVE...5
B. PREVIOUS WORK ...5
C. SET-STATE-TRANSITION MODEL..7

1. Objective ..7
2. Definitions ..8
3. Description...8

D. METHODOLOGY DEVELOPMENT ..10
E. METHODOLOGY APPLICATION..11

III. MODELING APPROACH..13
A. OBJECTIVE...13
B. SET GENERATION MODELING ..13

1. Objective ..13
2. Underlying Theory ..13
3. Previously Used Electrical Models ..17
4. SET Generation Modeling Approach ...18

a. Determining the PSET(σ ,Φ)...18
b. Electrical Modeling Approach...19
b. Conversion of Charge Collected (fC) to LET(MeV*cm2/mg)22

C. SET CLOCK-EDGE EFFECTS MODELING...23
1. Objective ..23
2. Underlying Theory ..23
3. Previous Approaches ..24
4. Clock-Edge Effects Modeling Approach ..24

D. SET ANALOG PROPAGATION MODELING...26
1. Objective ..26
2. Previous Approaches ..26
3. SET Analog Propagation Approach..27

E. SET LOGIC PROPAGATION MODELING ...27
1. Objective ..27
2. Previous Approaches ..27
3. SET Logic Propagation Modeling Approach ...28

F. SEU PROPAGATION MODELING..28
1. Objective ..28
2. Underlying Theory ..29

viii

3. Previous Approaches ..29
4. SEU Modeling Approach ...29

IV. MODELING AND SIMULATION..31
A. OBJECTIVE...31
B. SET GENERATION MODELING ..31

1. Objective ..31
2. Determination of Key Parameters ...31
3. Determination of Transitional Probability β 1..33
4. Determination of Transitional Probability β 2..36
5. Determination of Transitional Probability β 3..39

C. SET PROPAGATION MODELING ...40
1. Objective ..40
2. SET Analog Propagation Modeling ..40

a. Objective ...40
b. Modeling Configuration ..40
c. Modeling Results...41

3. SET Logic Propagation Modeling ...43
4. Clock-Edge Effects Modeling ...44

a. Objective ...44
b. Modeling Configuration ..44
c. Modeling Results..45

5. Determination of the Transitional Probability δ 1..................................48
5. Determination of the ε2 Transitional Probability49

D. SEU PROPAGATION MODELING ...50
1. Objective ..50
2. Instruction-Based Register-Usage Analysis..50
3. VHDL Fault-Injection Modeling ...52
4. Determination of the Transitional Probability ε1..................................55

E. SYSTEM-LEVEL PREDICTION ..56

V. MODELING VALIDATION ..61
A. OBJECTIVE..61
B. TEST SYSTEM ..61

1. Objective ..61
2. Description...61
3. Operation...63

C. LASER TESTING..64
1. Objective ..64
2. Test Configuration..64
3. Test #1 ..65
4. Test #2 ...68
5. Test #3 ..71

D. HEAVY-ION TESTING..73
1. Objective ..73
2. Test Operation...73
3. Test Results ..75

ix

E. COMPARISON BETWEEN SYSTEM PREDICTIONS AND TEST
RESULTS ...79

F. CONCLUSION ...82

VI. CONCLUSION ...83
A. SUMMARY OF RESEARCH...83
B. THE 90% SOLUTION ..86
C. ORIGINAL CONTRIBUTIONS..87
D. EXTENSION TO OTHER IMPLEMENTATIONS ..87

1. The Standard-Cell Application Specific Integrated Circuit (ASIC) ...87
2. Field Programmable Gate Array (FPGA)..88
3. Off-the-Shelf Processor...88
4. Off-the-Shelf ASIC..90

E. AREAS FOR FURTHER INVESTIGATION...90

APPENDIX A – KDLX PROCESSOR DESCRIPTION ...93
A. INTRODUCTION..93
B. TOP-LEVEL FUNCTIONAL BLOCK DIAGRAM ..94
C. GENERAL-PURPOSE REGISTER FILE..96
D. PIPELINE MODULE..96
E. PC CONTROL MODULE DESCRIPTION..97
F. ARITHMETIC LOGIC UNIT (ALU) MODULE ...98
G. INSTRUCTION SET DESCRIPTION ..99

APPENDIX B – SIMULATION RESULTS ..109
A. OBJECTIVE...109
B. SET GENERATION MODELING ..109

1. Objective ..109
2. Nand2 ...109
3. Nand3 ...111
4. Nand4 ...113
5. Nor2 ..116
6. Nor3 ..117
7. Nor4 ...119
8. Xor2 ..122
9. Mux2...124
10. Buf4 ..127

C. ANALOG PROPAGATION ...128
D. EFFECTIVE CROSS-SECTIONS OF DATAPATHS...................................130
E. INSTRUCTION-BASED REGISTER-USAGE ANALYSIS142

LIST OF REFERENCES:...157

INITIAL DISTRIBUTION LIST...163

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Methodology Validation Path..3
Figure 2. SET-state-transition Model..9
Figure 3. CMOS Inverter Cross-Section...14
Figure 4. Charge Generation ...15
Figure 5. Charge Collection ..16
Figure 6. Current Source SET Injection..17
Figure 7. NFET SET Injection ..18
Figure 8. SET Injection Circuit (Low-Level)..20
Figure 9. SET Injection Circuit (High-Level) ...21
Figure 10. Setup and Hold Time ...24
Figure 11. Clock-Edge Effects Simulation Circuit ...25
Figure 12. Latching Window Determination...26
Figure 13. DFFC D-Flip-Flop Schematic (after [41])...34
Figure 14. DFFC Cross-Section Versus LET Curve ...36
Figure 15. Inverter Standard-Cell Schematic and Test Circuit ...37
Figure 16. Injection Current and Node Voltage ..37
Figure 17. SET Pulse Shape Versus LET..38
Figure 18. Inverter Propagation Circuit ...40
Figure 19. Propagation of Small SET ...41
Figure 20. Propagation of Medium SET ...42
Figure 21. Propagation of Large SET..42
Figure 22. Clock-Edge Effects Modeling Circuit ...45
Figure 23. SET Above Latching Threshold ..47
Figure 24. SET Below Latching Threshold ...47
Figure 25. AND Combina tional-Logic Datapath..48
Figure 26. VHDL Fault-Injection Circuit..54
Figure 27. Example Program...56
Figure 28. Sensitive Window for R1 ...56
Figure 29. Predicted Access-Error Cross-Section Versus LET ..58
Figure 30. Predicted Control-Error Cross-Section Versus LET..59
Figure 31. Predicted Program-Address-Error Cross-Section Versus LET........................59
Figure 32. Test Configuration ...62
Figure 33. Test-Board Block Diagram..63
Figure 34. Laser Test Configuration (after [44])...65
Figure 35. Target Regions for ALU_Logic_Slice ...66
Figure 36. Target Regions for ALU_Logic_Slice – Layout (after [45])67
Figure 37. Target Region of Full Adder – Schematic (after [46]).....................................69
Figure 38. Target Region of Full Adder – Layout (after [45]) ..70
Figure 39. Laser Test #2 Results: Clock-Edge Effects ..71
Figure 40. Laser Target Region for DFFC D-Flip-Flop – Schematic (after [41])72
Figure 41. Laser Target Region for DFFC D-Flip-Flop – Layout (after [45])..................72
Figure 42. Heavy-Ion Test Configuration...74
Figure 43. Measured Access-Error Cross-Section Versus LET @ 5 MHz.......................76

xii

Figure 44. Measured Access-Error Cross-Section Versus LET @ 625 kHz76
Figure 45. Measured Control-Error Cross-Section Versus LET @ 5 MHz......................77
Figure 46. Measured Control-Error Cross-Section Versus LET @ 625 kHz....................77
Figure 47. Measured Program-Address-Error Cross-Section Versus LET @ 5 MHz......78
Figure 48. Measured Program-Address-Error Cross-Section Versus LET @ 625 kHz....78
Figure 49. Measured and Predicted Access-Error Cross-Section Versus LET.................79
Figure 50. Onset-LET Cross-Section Reduction...81
Figure 51. Photograph of KDLX Processor ..93
Figure 52. KDLX Layout ..93
Figure 53. KDLX Block Diagram...95
Figure 54. General-Purpose Register File Block Diagram..96
Figure 55. Pipeline Module Block Diagram ...97
Figure 56. PC Control Module Block Diagram ..97
Figure 57. Arithmetic Logic Unit (ALU) Module Block Diagram...................................98
Figure 58. Nand2 Schematic (after [50])...109
Figure 59. Nand3 Schematic (after [51])...111
Figure 60. Nand4 Schematic (after [52])...113
Figure 61. Nor2 Schematic (after [53]) ...116
Figure 62. Nor3 Schematic (after [54]) ...117
Figure 63. Nor4 Schematic (after [55]) ...119
Figure 64. Xor2 Schematic (after [46]) ...122
Figure 65. Mux2 Schematic (after [56])..124
Figure 66. Buf4 Schematic (after [57]) ...127

xiii

LIST OF TABLES

Table 1. Relationship Between Transitional Probabilities and Modeling Areas13
Table 2. MOSIS Parametric Test Results [38]...32
Table 3. Derived Parameters..32
Table 4. DFFC Sensitive Transistor Critical Charge, LET, and Cross-Section.............35
Table 5. Cross-Section and LET for Standard-Cell Inverter ...38
Table 6. SET on Output Driver..39
Table 7. SET Propagation - Inverter ..43
Table 8. Probability of Logic Propagation...44
Table 9. Clock-Edge Effects Modeling Results ...46
Table 10. Effective Cross-Section of AND Datapath..49
Table 11. SET Propagation – Output Buffer..50
Table 12. Critical Registers for ADD Rd, Rs1, Rs2 Instruction......................................51
Table 13. Critical Registers and Clock Cycles for Add Rd, Rs1, Rs2 Instruction52
Table 14. Sensitive Bits in Pipeline Registers ...53
Table 15. Critical Bits and Clock Cycles for ADD Rd, Rs1, Rs2 Instruction.................55
Table 16. Average Number of Sensitive Bits per Clock Cycle57
Table 17. Comparison of Memory-Element Versus Logic-Element Saturated Access

Error Cross-Sections ..58
Table 18. Laser Test #1 Results ...68
Table 19. Laser Test #2 Results ...69
Table 20. Laser Test #3 Results ...73
Table 21. Heavy-Ions Used for Heavy-Ion Testing ...74
Table 22. Measured and Predicted Onset LET and Saturated Cross-Section..................81
Table 23. Measured and Predicted Access-Error Cross-sections for Test Program #3 ...82
Table 24. Nand2 Simulation Results..110
Table 25. Nand3 Simulation Results..112
Table 26. Nand4 SET Generation Modeling Results...114
Table 27. Nand4 SET Generation Results (Continued)...115
Table 28. Nor2 SET Generation Results..116
Table 29. Nor3 SET Generation Results..118
Table 30. Nor4 SET Generation Results..120
Table 31. Nor4 SET Generation Results (Continued) ...121
Table 32. Xor2 SET Generation Results..123
Table 33. Mux2 SET Generation Results ..125
Table 34. Mux2 SET Generation Results (Continued) ..126
Table 35. Buf4 SET Generation Results ..127
Table 36. SET Analog Propagation Results...128
Table 37. SET Analog Propagation Results (Continued) ..129
Table 38. Effective Cross-Section for AND and ANDUI Logic Datapaths130
Table 39. ADD and ADDUI Logic Datapath Effective Cross-section..........................131
Table 40. LHI Logic Datapath Effective Cross-Section..131
Table 41. SUB and SUBUI Logic Datapath Effective Cross-Section...........................132
Table 42. XOR and XORI Logic Datatpath Effective Cross-Section............................132

xiv

Table 43. SUBI Logic Datapath Effective Cross-Section..133
Table 44. OR and ORI Logic Datapath Effective Cross-Section133
Table 45. SLL, SLLI, SRL, SRLI, SRA, SRAI Logic Datapath Effective Cross-

Section..134
Table 46. SEQ and SEQI Logic Datapath Effective Cross-Section135
Table 47. SNE and SNEI Logic Datapath Effective Cross-Section136
Table 48. SLT and SLTI Logic Datapath Effective Cross-Section137
Table 49. SGE and SGEI Logic Datapath Effective Cross-Section138
Table 50. SLE and SLEI Logic Datapath Effective Cross-Section139
Table 51. SGT and SGTI Logic Datatpath Effective Cross-Section140
Table 52. BEQZ and BNEZ Logic Datapath Effective Cross-Section..........................141
Table 53. RFE Logic Datapath Effective Cross-Section ...141
Table 54. Critical Bits and Clock Cycles for ADDI Instruction....................................142
Table 55. Critical Bits and Clock Cycles for ADDUI Instruction.................................142
Table 56. Critical Bits and Clock Cycles for AND Instruction143
Table 57. Critical Bits and Clock Cycles for ANDI Instruction....................................143
Table 58. Critical Bits and Clock Cycles for BEQZ Instruction143
Table 59. Critical Bits and Clock Cycles for BNEZ Instruction144
Table 60. Critical Bits and Clock Cycles for J Instruction ..144
Table 61. Critical Bits and Clock Cycles for JAL Instruction.......................................144
Table 62. Critical Bits and Clock Cycles for JALR Instruction145
Table 63. Critical Bits and Clock Cycles for JR Instruction..145
Table 64. Critical Bits and Clock Cycles for LHI Imm Instruction...............................145
Table 65. Critical Bits and Clock Cycles for LW Instruction..145
Table 66. Critical Bits and Clock Cycles for NOP Instruction......................................145
Table 67. Critical Bits and Clock Cycles for OR Instruction ..146
Table 68. Critical Bits and Clock Cycles for ORI Instruction.......................................146
Table 69. Critical Bits and Clock Cycles for RFE Instruction.......................................146
Table 70. Critical Bits and Clock Cycles for SEQ Rd, Rs1, Rs2...................................147
Table 71. Critical Bits and Clock Cycles for SEQI Instruction.....................................147
Table 72. Critical Bits and Clock Cycles for SGE Rd, Rs1, Rs2...................................147
Table 73. Critical Bits and Clock Cycles for SGEI Instruction.....................................148
Table 74. Critical Bits and Clock Cycles for SGT Instruction148
Table 75. Critical Bits and Clock Cycles for SGTI Instruction148
Table 76. Critical Bits and Clock Cycles for SLE Instruction.......................................149
Table 77. Critical Bits and Clock Cycles for SLEI Instruction149
Table 78. Critical Bits and Clock Cycles for SLL Instruction.......................................149
Table 79. Critical Bits and Clock Cycles for SLLI Instruction150
Table 80. Critical Bits and Clock Cycles for SLT Instruction.......................................150
Table 81. Critical Bits and Clock Cycles for SLTI Instruction150
Table 82. Critical Bits and Clock Cycles for SNE Instruction151
Table 83. Critical Bits and Clock Cycles for SNEI Instruciton.....................................151
Table 84. Critical Bits and Clock Cycles for SRA Instruction......................................151
Table 85. Critical Bits and Clock Cycles for SRAI Instruction.....................................152
Table 86. Critical Bits and Clock Cycles for SRL Instruction.......................................152
Table 87. Critical Bits and Clock Cycles for SRLI Instruction152

xv

Table 88. Critical Bits and Clock Cycles for SUB Instruction......................................153
Table 89. Critical Bits and Clock Cycles for SUBI Instruction.....................................153
Table 90. Critical Bits and Clock Cycles for SUBUI Instruction..................................153
Table 91. Critical Bits and Clock Cycles for SW Instruction..154
Table 92. Critical Bits and Clock Cycles for Trap Instruction154
Table 93. Critical Bits and Clock Cycles for XOR Instruction154
Table 94. Critical Bits and Clock Cycles for XORI Instruction....................................155

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGEMENTS

This dissertation has proven to be one of the most challenging endeavors I have

attempted. It is also among my proudest accomplishments. There are many people who

have helped me along the way. They have provided technical guidance, encouragement

and support.

I would like to thank the members of my dissertation committee. First and

foremost, this would not have been possible without the patience of my committee and

their willingness to participate in numerous teleconferences along the way. Herschel

Loomis, as the Dissertation Chairman and Co-Advisor, has provided me with excellent

feedback and comments during the process. Alan Ross, also a Co-Advisor, has helped

me to “stay the course,” making sure that the research did not get off- track from what we

set out to accomplish. He also provided valuable critique during the drafting of the

manuscript, which resulted in a much better final product. The same could be said of

Douglas Fouts, who also gave me advice during the integrated circuit design process of

the KDLX processor. Todd Weatherford provided excellent technical guidance in the

area of semiconductor physics and, as a result, this dissertation is much more complete in

that area. George Price, who was my supervisor at the Naval Research Laboratory when

I returned from the Naval Postgraduate School, provided the initial suggestion for the

subject of this dissertation and supported my research at the Lab.

I would like to thank my colleagues presently or formerly at the Naval Research

Laboratory that helped me in my research. Steve Buchner provided encouragement,

valuable technical feedback and was indispensable during the laser tests. Dale

McMorrow also assisted in the laser tests. Paul Marshall and Art Campbell assisted me

during the heavy- ion testing. Tim Meehan provided valuable technical advice and

assistance as I was designing the KDLX processor and test system.

I am also grateful to my family. This dissertation would not have been possible

were it not for the willingness of my wife, Lynn, to move our young family to Monterey,

CA to begin my studies. Mary Lynn, Kevin and Justin, my children, have helped to keep

my work on this dissertation in proper perspective with the rest of my life.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. ON-BOARD PROCESSING REQUIREMENTS OF SATELLITES

The planned capabilities of many satellites under development today are creating

tremendous requirements for on-board processing. The Astrolink and DIAMANT

satellites are good examples of this. The Astrolink satellites will provide an “ATM1

router in space” [1]. Each satellite will be capable of providing 100 Mbits/sec access for

each user and an aggregate bandwidth of 6 Gbits/sec. For each received ground

transmission, the on-board processing circuitry must extract the ATM cells, create a

virtual connection, and route the cells to the appropriate modulator and antenna beam

aimed at the desired destination. This is a very ambitious level of complexity for satellite

electronics. The total gate count for the electronics is approximately 750 million [2].

The DIAMANT satellites will provide high-resolution multi-spectral images of

the earth. At the heart of the satellites is the Multi-Spectral high-Resolution-System

(MSRS) sensor. This advanced sensor will provide imagery from 12 narrow-spectral

bands in the very-near- infrared (VNIR) spectral range. The spatial resolution of the

imagery is approximately 5 meters [3]. At this resolution, a scene of size 50x700 km

requires 84 Gbits of on-board data storage per band. Additionally, the downlink data rate

is limited to about 280 Mbits/sec. As a result, on-board processing is necessary to

compress the imagery data [4]. Greater on-board processing directly improves the total

number of images the satellite will be able to handle. Thus, for the DIAMANT satellites,

it is desirous to have the maximum amount of on-board processing as allowed by the size,

mass, and power capabilities of the satellite.

B. TECHNICAL PROBLEM DESCRIPTION

 These on-board processing requirements create a challenge to the satellite

electronics designers: they must balance the processing requirements with the

requirement to operate reliably in the space radiation environment. To do this, the

designers not only must provide the necessary processing capability, but they also must

1 ATM stands for Asynchronous Transfer Mode.

 2

assure that the potential effects of radiation will not prevent proper operation of the

electronics.

The risks associated with the effects of radiation in space are well understood.

These risks come from total-dose degradation, dose-rate effects, and single-event-

transient effects. An accepted characterization method for total-dose testing of

electronics devices exists [5]. The same can be said about dose-rate-effects testing [6, 7].

Most areas of single-event-transient testing are also well understood. For example,

testing for single-event latchup and single-event upsets in simple devices (e.g., memories)

has a standard approach agreed upon in the radiation-effects community [8]. The missing

piece to the puzzle, though, is the characterization of single-event transients (SETs) in

complex digital systems.

 C. OBJECTIVE OF RESEARCH

The objective of this research is to formulate, verify, and validate a methodology

to characterize the single-event-transient tolerance of complex digital systems. A

complex digital system is defined as a system that contains more than one functional

mode and is comprised of both combinational logic and memory elements. By this

definition, a complex digital system can range from a state machine to the latest

processor. The system may be a single chip, or it may consist of many chips. This

methodology must be applicable to this range of systems. It must be suitable to all

implementations of digital systems, which include field-programmable gate arrays,

standard-cell application-specific integrated circuits, and off-the-shelf processors. In all

cases, the methodology must account for the two key aspects of a complex digital system:

that it contains multiple functional modes, and that it contains both combinational logic

and memory elements.

D. TECHNICAL APPROACH

The formulation of this methodology is based on an SET-state-transition model

that accounts for the unique aspects of a complex digital system. The model defines the

transitional probabilities necessary to go from a fault- free state to a failure state. These

transitional probabilities are predicted by a combination of modeling and simulation. The

verification of the methodology was accomplished by determining the transitional

 3

probabilities for a candidate complex digital system. Once the transitional probabilities

had been determined, the SET-state-transition model was used to determine the

probability of the system going from the fault- free state to the failure state.

A 16-bit, 5-stage-pipeline RISC2 microprocessor was the candidate complex

digital system. It was fabricated through the MOSIS integrated-circuit fabrication service

using standard-cell design techniques. This approach provided a hardware-description-

language (HDL) definition of the microarchitecture of the processor, a SPICE transistor-

level description of the individual elements, and the parametric test results of the MOSIS

foundry run. This allowed for thorough simulations to determine the transitional

probabilities.

Validation was accomplished by performing radiation testing to compare the

predicted upset rates with the measured upset rates. Figure 1 summarizes the steps taken

to validate the methodology. First the methodology was formulated. It was verified by

predicting the system upset rate of the RISC processor. Radiation testing was then

performed on the device. The methodology was validated by agreement between the

measured upset rate and the predicted upset rate.

Formulate
Methodology

Predict
System
Upset
Rate

Radiation
Testing on

System

Validated
Methodology

Figure 1. Methodology Validation Path

E. DISSERTATION ORGANIZATION

This dissertation is organized in a similar manner to the steps shown in Figure 1.

Chapter II – Methodology Description introduces the SET-state-transition model to

develop the methodology. Chapter III – Modeling Approach describes in more detail

how the various transitional probabilities are modeled and determined. This includes

SET generation, SET analog propagation, SET logic propagation, SET clock-edge

effects, and SEU propagation. In Chapter IV – Modeling and Simulation, the

 4

methodology and modeling approach described in previous chapters are performed on the

RISC microprocessor. A system-level prediction of the microprocessor is provided.

Chapter V – Modeling Validation documents the results of the radiation testing. This

testing includes both laser testing and heavy-ion testing. A comparison between the

measured upset rate and the predicted upset rate is discussed. Chapter VI –Conclusion

summarizes the formulation, verification, and validation of the methodology. It describes

how the methodology can be simplified to provide the “90% solution.” It also shows

how this methodology can be extended to other implementations of complex digital

systems. Original contributions to the state-of-the-art are discussed, and areas for further

investigation are suggested for future research.

2 RISC stands for Reduced Instruction Set Computer.

 5

II. MODELING METHODOLOGY

A. OBJECTIVE

The objective of this chapter is to describe a methodology to characterize the SET

tolerance of complex digital systems. Methodologies currently used by both the

radiation-effects community and the fault-tolerant-computing community are reviewed.

An SET-state-transition model is then defined, and the methodology is developed from

this model.

B. PREVIOUS WORK

Methodologies for determining the SET tolerance of complex digital systems

generally approach the problem from two different perspectives: either injecting

transients at the device level (through irradiation) and measuring the system impact, or

injecting transients at the circuit level (through simulation) and tracing error propagation

to the system level. The radiation-effects community has largely been responsible for

developing the injection-by- irradiation methodology, and the fault-tolerant-computing

community has been largely responsible for the injection-by-simulation methodology.

There have been many papers from the radiation-effects community about the

SET tolerance of complex digital systems. Deb Newberry has written several papers on

the results of testing a spaceborne 1750A processor system [9, 10, 11]. In these papers,

the system consisted of processors, memory, and peripheral logic. One of twenty

software programs was run. The results of the tests showed that it is possible for an error

to propagate from one device to another in the system. It was also shown that the error

rate for a processor system is a strong function of the test software used.

In Label [12], a different approach was used: the actual flight software was run on

the system during the radiation test. In this case, the test methodology focused more on

the validation of the planned flight configuration than on the full characterization the SET

tolerance of the system.

In Kimbrough [13], the single-event-upset (SEU) performance of several R3000-

based RISC processors was characterized. This paper acknowledged the difficulty of

characterizing processors: “Determining the cross-section of a processor is complicated

 6

by device architecture and test software. Physically, the microprocessor is made of

different functional blocks with varying architecture. The cross-section is dependent

upon how extensively the software checks the functional blocks.” In spite of this

acknowledgement, no attempt was made to provide these various cross-sections that are a

function of the test software.

The methodology used in Koga [14] is the most thorough. A test plan is provided

to determine the individual sensitivities of the functional elements of a processor system:

“If we can test the SEU vulnerability of each functional element, the combined rate of

SEU in space can be estimated from the program execution pattern. This ‘macroscopic’

(functional element as opposed to individual circuit) testing of many functional elements

can be accomplished externally using the standard instruction sets (i.e., there is no need

to obtain test circuits especially fabricated for microscopic SEU testing).” The three

stages of testing a microprocessor are:

1. “... select an appropriate test method, using selection criteria, such as

 microprocessor architecture, operating speed, instruction formats, circuit design,

 and application software.”

2. “... deduce the SEU cross-section as a function of LET for various memory

elements and any other elements (using appropriate ground-test procedures and

microprocessor element utilization factors during software executions).”

3. “ ... using an appropriate physical model, we can combine data from step 2

with a radiation environmental model to compute upset rate in the environment.”

For step 3, it is suggested that “... at the system level, power weights must be assigned to

the individual element cross-sections when arriving at an overall system cross-section.”

In summary, the methodologies from the radiation-effects community focus on

injecting transients at the system level with radiation. In each case, it is recognized that

the upset rate is a function of the software that is run during the test, but Koga [14] is the

only one that provides a method to determine the cross-sections of the various functional

elements within processors.

 7

Papers from the fault-tolerant-computing community tend to focus on fault

injection through simulation. The typical methodology is to inject a fault in the circuit

design and determine if it propagates to the output. In Ghosh [15], a fault- injection

methodology using a VHDL model is described. The approach allows for fault injection

at various levels in a VHDL design: from the behavioral models down to the logic-gate-

level VHDL descriptions. This methodology “involves the interception of signals and the

corruption of the information present on the signal according to fault-injection times and

error types.”

In Cha [16], transient faults are injected at the analog level, where they propagate

to the logic level. This paper defined a methodology that bridges the gap from an analog

transient to the logic level. However, there was no attempt to tie the analog transient to a

probability of occurrence.

In general, methodologies from the radiation-effects community seek to

characterize the single-event-effect tolerance of a device given a fluence of incident ions.

This characterization is usually made without much insight into the design of the device.

The methodologies used by the fault-tolerant-computing community generally seek to

evaluate how well a design operates given a transient fault has occurred. This transient

fault can be at the analog level or the logic level, but the likelihood of a transient fault

occurring is not considered. These methodologies from the two communities can

complement each other. By combining the determination of the likelihood that an SET

will occur from the radiation-effects community with the precise fault-propagation

modeling from the fault-tolerant-computing community, a more complete methodology

can be created.

C. SET-STATE-TRANSITION MODEL

1. Objective

The objective of the SET-state-transition model is to define the framework

necessary to develop the methodology. It is a state-transition diagram that shows how an

SET can cause the device or system to go from a fault- free state to a failure state. It is

applicable to synchronous, asynchronous, and mixed-signal systems. In this dissertation,

it is applied to a synchronous digital system.

 8

 2. Definitions

Prior to describing the SET-state-transition model, it is necessary to define some

key terms. An SET, or single-event transient, is an unintended analog pulse. This

dissertation focuses on SETs that are the result of incident heavy ions; however, the SET-

state-transition model can apply to SETs resulting from other sources such as

electromagnetic interference or power supply noise. A single-event upset, or SEU,

occurs when an SET causes a bit- flip error in a memory element. Failure occurs when

the component of interest causes an error in the external system.

3. Description

The SET-state-transition model is shown in Figure 2. It shows the states and

transitional probabilities necessary to go from the fault- free state of the system to the

failure state. The propagation states are described below:

S1: No SETs or SEUs: This is the normal, fault-free state of the system. The

system will operate perfectly for as long as it remains here. From this state, an SET can

cause a transition to states S2, S3, or S4. An SET on a memory element occurs with a

transitional probability of β1, causing the system state to be S3. An SET on a logic gate

occurs with a transitional probability of β2, causing the state to go to S2. Finally, an SET

on an output driver occurs with a transitional probability of β3 and causes the system

state to be S4.

S2: Logic Gate Transient(s): In this state, one or more transients are

propagating in the combinational logic. The transient or transients are the result of a

single initial transient. If the fan-out of the logic gates in the path of propagation is

greater than one, multiple transients may result. These transients can do three things:

they can die out (transitional probability α2), be latched into a memory element (with

transitional probability δ1), or propagate to an output driver (with transitional probability

δ2). This assumes that the length of the pulse is less than one clock cycle.

S3: SEU: In this state, one or more SEUs are present in the system. This means

that at least one of the memory elements in the system is in error. This can happen two

ways: a transient can occur on the transistors that make up the memory element (causing

 9

it to go directly from S1 to S3 with transitional probability β1), or the transient can be

latched after propagating in the logic (causing a transition from S2 to S3 with transitional

probability β2). Two state transitions are possible from S3: the SEU can be overwritten,

bringing the state back to S1 (transitional probability α1), or the SEU can propagate to

the output and cause an error to the external system, bringing the system state to S5

(transitional probability ε1). It should be emphasized that an SEU can propagate to the

output without causing an error to the external system. A good example of this is an SEU

in the address register of a processor that occurs when the processor is neither reading nor

writing memory.

S2 : Logic
Gate
Transient(s)

S1: No
SETs or
SEUs

S3 : SEU

S5 :
Failure

β2 : SET On
 Logic Gate

α2: Not Latched or
Propagating

δ1
:

La
tc

he
d

ε1: Causes Error to External System

 β1:
:

SE
T o

n M
em

ory
 El

em
en

t

(La
tch

, R
eg

iste
r, M

em
ory

 C
ell)

α1
:

Ove
rw

ritte
n

S4 :
Output
Driver
Transient

δ2
:

P
ro

pa
ga

te
s

to

O
ut

pu
t D

riv
er

ε2:
 Caus

es
Err

or t
o E

xte
rna

l Sy
ste

m

β3 : SET On Output Driver

α3:
Does Not Cause Error to External System

Figure 2. SET-state-transition Model

S4: Output Driver Transient : In this state, there is a transient on an output driver. If

the transient does not cause an error to the external system, the state returns to S1

(transitional probability α3). If the transient does create an error in the external system

(transitional probability ε2), the state goes to S5. It should be emphasized that whether or

 10

not failure occurs depends on how the external system uses this output. For example, an

output driver transient on an asynchronous-control signal of a processor, such as Write*,

can immediately cause an error to the external system. In contrast, a transient on a data

bus output driver that occurs when the processor is not reading or writing will not cause

an error to the external system.

S5: Failure: In this state, the SET or resulting SEU has propagated to the output

and caused an error in the external system. This marks the end of the simulation.

D. METHODOLOGY DEVELOPMENT

The transition model described in the previous section provides the basis for

developing the methodology to characterize system level effects of SETs. Determining

the overall system upset rate requires three steps:

Step 1: Determine Transitional Probabilities.

a. βn – SET generation probabilities – these probabilities are determined by

modeling SET generation.

b. δn – SET propagation probabilities – these probabilities are determined by the

three components SET propagation: SET analog propagation, SET logic

propagation, and SET clock-edge effects.

c. εn – propagation to output – these probabilities are modeled with SEU

Propagation Modeling (for ε1) and SET analog propagation (for ε2).

Step 2: Determine transitional probabilities for the given application.

Once the transitional probabilities have been determined for each functional state,

the overall transitional probabilities for the given application can be determined with the

equation below (for example, ε1):

ε1 = Σ ε1(in mode n) x (mode n duty cycle), for all n. (2.1)

Step 3: Combine these transitional probabilities to account for the four possible

paths from S1 to S5.

 11

These are:

1. S1 -> S3 -> S5 [Probability = (β1)(ε1)],

2. S1 -> S2 -> S3 -> S5 [Probability = (β2)(δ1)(ε1)],

3. S1 -> S2 -> S4 -> S5 [Probability = (β2)(δ2)(ε2)],

4. S1 -> S4 -> S5 [Probability = (β3)(ε2)].

The overall probability of going from S1 to S5, which is the probability of failure,

is the union of the above probabilities:

P(failure) = (β1)(ε1) + (β2)(δ1)(ε1) + (β2)(δ2)(ε2) + (β3)(ε2). (2.2)

E. METHODOLOGY APPLICATION

This methodology can apply to a wide range of complex systems, but first, several

important aspects of the system must be considered. The output boundary of the system

must be defined. There must be an exact definition of failure. The functional modes of

the system must be well understood, because each functional mode must be considered in

the determination of the transitional probabilities.

For a complex system that consists of complex subsystems, this SET

methodology must first be applied to the subsystems. The results of the subsystem

analyses are then used to determine the transitional probabilities at the system level.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. MODELING APPROACH

A. OBJECTIVE

The objective of this chapter is to develop the modeling approach to determine the

transitional probabilities described in Chapter II. The modeling effort can be divided into

five different areas: SET generation, SET analog propagation, SET logic propagation,

SET clock-edge effects, and SEU propagation. Table 1 shows the relationship between

the transitional probabilities and these modeling areas.

Transitional Probabilities Modeling Areas
β1, β2, β3 SET Generation

δ1, α1 SET Analog Propagation,
SET logic Propagation,
SET Clock-Edge Effects

δ2 SET Analog Propagation,
SET Logic Propagation

ε1 SEU Propagation
ε2, α2, α3 SET Analog Propagation,

SET Clock-Edge Effects

Table 1. Relationship Between Transitional Probabilities and Modeling Areas

B. SET GENERATION MODELING

1. Objective

The objective of SET Generation Modeling is to determine the transitional

probabilities β1, β2, and β3. For β1 (SET on memory element), it is necessary to

determine the probability of an incident ion depositing enough energy to cause the

contents of the memory element to change. For β2 and β3, it is necessary to calculate the

probability that an incident ion will result in an SET pulse with amplitude equal to a and

pulsewidth equal to pw. This is denoted as Pg(a, pw).

2. Underlying Theory

The probability of SET Generation is a function of how the electrical

characteristics of a device are affected by the environment it is operating in. A CMOS

inverter is shown in Figure 3. The input to the inverter is Gnd, and the output is driven to

 14

Vdd. In this logical state, the NFET is in the “off” state and the PFET is in the “on” state.

The drain voltage of the NFET is driven to Vdd volts by the PFET. This creates the

depletion region shown at the drain of the NFET. The depletion region extends

horizontally approximately one depletion layer width, W, to each side of the drain. For

uniform doping, W is given by:

W = [(2ε(V0-V)/q)(Na + Nd)/NaNd]1/2 [17], (3.1)

where ε is the permittivity of silicon, V0 is the contact potentia l, V is the applied potential,

Na is the acceptor concentration, Nd is the donor concentration. This creates a region that

is sensitive to charge collection.

N+ N+ P+ P+ N+P+

P Substrate N Well

Output: Vdd

Input: Gnd

Depletion Region:
Sensitive Volume

Vdd
Gnd

Figure 3. CMOS Inverter Cross-Section

The probability that an ion will strike this sensitive volume is a function of both

the effective cross-section of this volume and the environment. The environment is often

specified in terms of particle fluence versus Linear Energy Transfer (LET). The LET of

an ion is the amount of energy that is transferred to the device per unit length. It is

specified in units of MeV*cm2/mg. For particles with a particular LET, the probability of

an SET occurring within the sensitive region is given by:

 P(SET occurring with given LET) = σΦ(LET), (3.2)

 15

where σ is the cross-section of the sensitive region, specified in units of cm2, and

 Φ(LET) is the fluence of particles with the given LET, specified in units of particles/cm2.

If a particle strikes the sensitive region, a funnel of electron-hole pairs is created,

as shown in Figure 4. The funnel length, Lf, is the linear distance of charge collection in

the ion track. It is given by the following two equations:

NFET: Lf = (1 + (µn/µp)k)n, (3.3)

PFET: Lf = (1 + (µp/µn)k)n, (3.4)

where µn is the electron mobility, µp is the hole mobility, and the exponents k and n are

determined empirically [18]. The number of electron-hole pairs created per unit length in

silicon is given by the equation:

N = LET (MeV*cm2/mg) x (density of Si(mg/cm3))/3.6 eV [19]. (3.5)

N+ N+ P+ P+ N+P+

P Substrate N Well

Funnel of
electron-hole

pairs

Vdd
Gnd Ion Strike

h+ e-
 e- h+
h+ e-

 e- h+
h+ e-

 e- h+

Figure 4. Charge Generation

Charge collection occurs as the free electrons are drawn to the drain (which is at

Vdd), and the holes are drawn to the body (which is at Gnd) through the substrate. This

is shown in Figure 5. At any particular plane within the funnel, the sum of the electron

and hole drift currents is the net current flowing from the NFET drain to the substrate.

This current reduces the NFET drain voltage (and output node voltage) below Vdd volts.

 16

From Messenger[19], this charge deposition can be modeled as a double-exponential

current pulse:

I(t) = I0 [e-αt - e-β t], (3.7)

where 1/α is the collection time constant for the junction, and 1/β is the time constant for

initially establishing the ion track, and I0 is given by

I0 = qµNE, (3.8)

where q is the charge of electron or hole, µ is the ambipolar mobility of carriers, N is the

number of electron-hole pairs generated per unit length (from equation 3.5), and E is the

electric field component in the direction of the funnel. This assumes that diffusion and

recombination are negligible during this time frame. Combining these equations and

dividing by the funnel cross-section A and rearranging terms, gives:

I(t)/A = qµ(N/A) [e-αt - e-β t] E, (3.9)

Since I(t)/A gives current density, J(t), and N/A = n = p (i.e., the carrier concentrations in

units of electrons/cm3 or holes/cm3), then equation 3.9 can be rewritten as

J(t) = q(nµ + pµ) [e-αt - e-β t] E. (3.10)

This has form similar to that of the drift current density equation from Streetman[17]:

Jx = q(nµn + pµp)εx. (3.11)

 N+

Vdd
Ion Strike

P Substrate

Depletion Region

h+ e-
 e- h+
h+ e-
 e- h+
h+ e-
 e- h+

Funnel
Figure 5. Charge Collection

 17

This shows that the key funneling equation is simply the drift current density

equation with two main differences. The first difference is the [e-αt - e-β t] term, which

describes the carrier concentrations decreasing as a function of time. The second

difference is that equation 3-10 uses the ambipolar mobility for the electrons and holes.

This assumes the carrier concentrations are ambipolar, which means the electron and hole

concentrations within the funnel are changing at the same rate.

3. Previously Used Electrical Models

In previous papers [16, 20, & 21], the current pulse from equation 3.7 is modeled

in SPICE with an independent current source with the output tied to the output node of a

logic gate, as shown in Figure 6. The primary drawback with this method is that it

represents the charge collection in a constant biased p+n junction. The problem, in this

case, is that the bias of the p+n junction in question (the drain of the NFET) is not

constant. It varies because the injection node voltage is changing as a result of the charge

collection. A current source that is a function of the injection node voltage would be an

improvement.

NFET

PFET

Gnd

Vdd

NFET

PFET

Vdd

GndGnd

Inverter Inverter

Independent
Current
Source

Figure 6. Current Source SET Injection

The injection source from Buchner[22] uses an NFET connected to Vdd with a

resistor, as shown in Figure 7. The gate of the NFET is pulsed to inject charge onto the

node. In practice, it is difficult to make the resulting current waveform look like the

 18

desired double-exponential pulse. This is because the NFET has three modes of

operation: cut-off, linear, and saturated; the transconductance of the NFET is different for

each mode, making control of the current waveform difficult.

W ~ 10 υm
L ~ 0.1 υm

To Sensitive Node
(transistor drain)

Substrate or Well

Potential

Model: NMOS
 LEVEL = 3
 VTO = 1.0
 TOX= 0.027
 NSUB = 1.5E16
 U0 = 2E3
 JS = 0.0

R~500 Ω

Figure 7. NFET SET Injection

4. SET Generation Modeling Approach

a. Determining the PSET(σ ,Φ)

As described above, the probability of a particle with a given LET striking

the sensitive region of a device is a function of both the device characteristics and the

environment. Since a device often is used in multiple environments, the LET-dependent

cross-section of the device alone is frequently used to define the SET susceptibility of the

device. While it is necessary to multiply the particle fluence by the cross-section to

determine the absolute PSET(σ,Φ), determining the cross-section alone allows for relative

 19

assessments of various devices independent of the environment. For this reason, the SET

generation transition probabilities will be defined as LET-dependent cross-sections.

The cross-section of this sensitive region is the effective cross-sectional

area of the depletion region of the drain of the sensitive MOSFET. The length (ld) and

width (wd) dimensions of the drain are calculated from the drain area (AD) and drain

perimeter (PD) parameters extracted from the layout of the device using the following

equations:

AD = ld wd, (3.12)

PD = 2ld + 2wd. (3.13)

These dimensions are then used to determine the sensitive cross-section of the device

using the following equations[23]:

cross-section length: l = ld + 2W, (3.14)

cross-section width: w = wd + 2W, (3.15)

cross-section: σ = l w, (3.16)

where W is the depletion width from equation 3.1. These equations assume that diffusion

does not add to the sensitive cross-section.

b. Electrical Modeling Approach

To overcome the shortcomings in the previous electrical models, the

injection model must inject charge such that the amount of charge collected (injected) is

not independent of the voltage on the node. Additionally, it is desired to have sufficient

control of the current injection waveform. The model used is similar to that described in

[16, 20, and 21], except Io is not treated as a constant. Instead, it is modeled as a function

of the node injection voltage using equations 3.7 and 3.8. This requires expressing the

electric field, E, as a function of the node injection voltage.

Two cases must be considered: low-level injection and high- level

injection. Low-level injection occurs when the excess carrier concentration within the

funnel is lower than the majority carrier concentration yet higher than the equilibrium

minority-carrier concentration. In contrast, high- level injection occurs when the excess

 20

carrier concentration within the funnel exceeds the extrinsic doping levels and minority

carrier concentrations [24]. The crossover point between low-level injection to high- level

injection occurs when the excess carrier density within the funnel is equal the sum of the

extrinsic doping level and the minority carrier concentration.

In low-level injection, the electric field is still defined by the junction. The

electric field for equation 3.8 is given by the equation for the maximum value of the

electric field within the junction [19, 25]:

E0 = [(2q/ε)* (Vnode – V0)*(NaNd)/(Na+Nd)]1/2 , (3.17)

where ε is the permittivity of the material and Vnode = voltage of injection node.

Substituting equation 3.17 into equations 3.7 and 3.8 gives:

I(t) = qµΝ [(2q/ε)* (Vnode – V0)*(Na*Nd)/(Na+Nd)]1/2 [e-αt - e-β t]. (3.18)

For the purposes of SPICE modeling, all terms other than the (Vnode - Vo)1/2 term are

combined into a single constant K. The value used for 1/α is 164 picoseconds, and for

1/β is 50 picoseconds from [26].

+
- VEXP = (e-αt - e-βt)

G5

G5: I = K*V EXP*V(Control_Node)

C = 1F

a. Double Exponential Voltage Source

G1

G1: I = [V(SEU_Node) - Φ]
G2: I = V(Control_Node)
G3: I = V 2(Control_Node)
V(Control_Node) = [V(SEU_Node) - Φ]^0.5

G2 G3 R = 1 Ω

Control_Node

b. Square Root Circuit

c. Charge Integration Circuit

To SEU_Node
(NFET Drain)

G4
G4: I = K*VEXP*V(Control_Node)

d. Charge Injection Circuit
Figure 8. SET Injection Circuit (Low-Level)

 21

The circuits used in SPICE are shown in Figure 8. Figure 8a shows the

voltage source that provides the double-exponential factor in the equation. Figure 8b

shows the circuit that derives the (V node– Vo)1/2 term. This circuit is based on the Div

and Sqrt circuits from [27]. The voltages from 8a and 8b are used as control voltages for

the voltage-dependent current source in the Charge Injection Circuit of Figure 8d. These

same control voltages drive the dependent current source G5 in Figure 8c to charge the

1F capacitor. At the end of the simulation, the voltage on this capacitor shows the total

charge injected.

 In high- level injection, the electric field of the junction has collapsed, and

thus can no longer be modeled using equation 3.17. Instead, the electric field across the

funnel is modeled as the field across a semiconductor bar with constant conductivity

respect to the length, where the length is equal to the funnel length, Lf. Then,

E = (Vnode – Vsub)/Lf. (3.19)

Substituting equation 3.18 into equation 3.7 and 3.8 gives:

I(t) = [qµΝ (Vnode – Vsub)/Lf] [e-αt - e-β t]. (3.20)

G2

G2: I = K*VEXP*V(SEU_Node)

C = 1F

+
- VEXP = (e-αt - e-βt)

a. Double Exponential Voltage Source

b. Charge Integration Circuit

To SEU_Node
(NFET Drain)

G3
G3: I = K*VEXP*V(SEU_Node)

c. Charge Injection Circuit
Figure 9. SET Injection Circuit (High-Level)

 22

Figure 9 shows the SPICE circuit used to implement equation 3.20 for

injection onto the drain of an NFET. The independent voltage source in Figure 9a

provides the double-exponential term describing the carrier densities. The dependent

current source, G3 is set equal to the product of a constant K, the double-exponential

pulse from Figure 9a, and the SEU_Node voltage (Vsub = 0 for an NFET injection). K is

constant for a single simulation run. It represents the product of qµN/Lf. Ions with

different LETs are injected from one run to the next by changing K. This is equivalent to

changing N from equation 3.4.

b. Conversion of Charge Collected (fC) to LET(MeV*cm2/mg)

After the injection circuits described above have been used to simulate the

SET, the charge collected on the 1F capacitor must be converted to LET in units of

MeV*cm2/mg. This is accomplished by assuming that each electron-hole pair created by

the incident ion results in a charge equal to q, or 1.6e-19C. q is multiplied by equation 3.5

to give the total charge collected per unit length. By multiplying the constants in the

equation, it can be determined that an ion with LET equal to 1 MeV*cm2/mg will result

in 10.35 fC/µm of collected charge. Then, combining this result with the funnel length,

the simulated LET can be determined:

LET(MeV*cm2/mg) = (total injected charge in fC)/(Lf*10.35). (3.21)

Equation 3.21 shows how critical the funnel length, Lf, is to the determination of

the LET of the incident ion. In Dodd[28], 3-dimensional simulations were performed on

a biased Si p+n junction with three different substrate doping levels. For doping levels

similar to the KDLX processor modeled in Chapter IV, the simulations showed that a

100-MeV Fe ion strike (LET ~ 29.4 MeV*cm2/mg or 0.306 pC/µm) will result in a total

charge collection of 2.7 pC. The simulations also showed that the charge collection

exhibited a breakpoint at 400 picoseconds. This is called the substrate breakpoint, and

represents the breakpoint between funnel collection and diffusion collection. The

diffusion collection is neglected because these simulations focus on the one to ten

nanosecond timeframe, and diffusion does not add significantly to the charge collection

during that time. At the end of the funnel collection timeframe, 1.2 pC had been

 23

collected. This equates to a funnel length of 3.9 µm, which will be used in the modeling

in Chapter IV.

C. SET CLOCK-EDGE EFFECTS MODELING

1. Objective

The objective of SET clock-edge effects modeling is to determine the probability

that a transient pulse with amplitude = a and pulsewidth = pw will be latched into the

memory element, or Platch(a, pw). The modeling focuses on determining the temporal

relationship between the transient’s arrival at the memory element and the edge of the

control signal that latches it. The modeling also accounts for the effect of the amplitude

of the transient pulse.

2. Underlying Theory

There are two timing parameters for memory elements that are key in modeling clock-

edge effects: setup time (tsu) and hold time (th). Figure 10 shows a schematic for a pass-

gate-type master-slave D-flip-flop and its associated timing diagram. The setup time is

defined as the time data must be stable prior to the active edge of the clock (in this case,

the positive edge). Smith [29] defines the hold time as the time data must be kept stable

after the active edge of the clock. The setup time is determined by the time required for

the input to propagate from D through inverter Inv1 to the input of Inv2. This

propagation must occur before the passgate PG1 is turned off. The hold time (th) is

determined by the minimum amount of time the data must be valid after PG1 has been

turned off for the data to stabilize in the latch, which is created with inverters Inv2 and

Inv3. The minimum pulsewidth (tpw,min) required at the input D is given by:

tpw,min = tsu + th. (3.21)

Thus, two criteria must be met for an SET to be latched: the pulsewidth must be

greater than tpw,min , and it must arrive at a time at least tsu prior to the active edge of the

clock.

 24

D Q

D Q

CLK = 0

CLK = 1

Inv1 Inv2

CLK

D

tsu th

Inv3

Inv4

Inv5

Inv6

Inv1 Inv2

Inv3

Inv4

Inv5

Inv6

PG1

PG2

PG3

PG4

PG1

PG2

PG3

PG4

Figure 10. Setup and Hold Time

3. Previous Approaches

In Cha [16], SPICE simulations are used to determine the “latching window.” A

logic pulse is used as the input to a flip-flop. A logic pulse is defined as a pulse that

makes the full rail- to-rail transition. The latching window for 0-1-0 and 1-0-1 pulses are

determined as a function of the pulsewidth. The drawback with this approach is that the

amplitude information of the SET is ignored.

In Buchner [30], the “window of vulnerability” is determined using laser pulses to

inject transients. It is shown that the width of this window is a function of the energy of

the laser pulse. This work is expanded on in Buchner[31]. It is shown, again using laser

pulses, that there is a linear dependence on the probability of a transient being latched

into the flip-flop.

4. Clock-Edge Effects Modeling Approach

The approach to modeling clock-edge effects uses SPICE to determine the

latching window. However, unlike Cha[16], the pulse used is not a logic pulse. The

 25

transient is injected in the circuit shown in Figure 11. It is injected one logic cell away

from the input of the memory element at various times. The width of the transient is

controlled by varying the amount of charge deposited. This approach maintains the

appropriate transient-pulse shape going into the memory element.

 To determine the latching window for a specific pulsewidth and amplitude of the

transient pulse, the arrival time of the SET is varied to determine the maximum-setup

time, tsu, max, and the minimum-setup time, tsu,min , for this particular pulse. These values

are shown in Figure 12. The maximum setup time for a given amplitude and pulsewidth

SET is the maximum time the SET can arrive prior to the active edge of the clock signal

(CLK) and still be successfully latched. The signal D1 in Figure 12 shows an SET whose

arrival time is equal to tsu, max. Similarly, the minimum setup time for a given amplitude

and pulsewidth SET is the minimum time the SET can arrive prior to the active

D

CLK

Q

D Flip-Flop
InverterInverter

Output

Clock

Input

SET Injection
Node

From SEU
Injection Circuit

Figure 11. Clock-Edge Effects Simulation Circuit

edge of the clock signal (CLK) and still be successfully latched. Signal D2 in Figure 12

shows an SET whose arrival time is equal to tsu, min,. The latching window is then

determined using the following equation:

tlw(a, pw) = tsu, max – tsu,min (3.22)

Because the SET can only be latched once per clock cycle, the probability that the SET

is latched is given by:

Platch(a, pw) = tlw(a, pw)/(clock period). (3.23)

 26

CLK

tsu,min

D1

D2

tsu,max

Figure 12. Latching Window Determination

D. SET ANALOG PROPAGATION MODELING

1. Objective

The purpose of analog propagation modeling is to determine what happens to the

amplitude and pulsewidth of an SET as it propagates through a sensitized combinational-

logic path. A sensitized combinational- logic path is defined as a path in which the

propagation of the SET is not blocked by the other inputs to the logic in the path. For

example, if an SET has propagated to input A of a 2- input AND gate, and input B is a

logic “1,” the logic path is sensitized. If input “B” had been a logic “0,” the SET could

not have passed through no matter what its amplitude and pulsewidth had been because

the logic path was blocked (input B forces the output to logic “0”).

2. Previous Approaches

Previous work in analog propagation has focused on SPICE simulations. The

primary purpose of Cha [16] was to speed up SPICE-only transient simulation. SPICE is

used to determine the resulting pulsewidth at the output of an inverter as a function of the

quantity of charge injected and fan-out. This analog pulse is converted to a logic pulse

using a threshold of Vdd/2. The logic pulse is then used for further simulations. While

this approach succeeds in speeding up the simulation, it loses some fidelity by using the

Vdd/2 threshold.

 27

 In Baze[32], the analog-simulation fidelity is maintained by performing a SPICE

simulation of an SET propagating through a chain of inverters to the input of the flip-

flop. This represents a high-fidelity approach, but also is very time consuming for a

complex digital circuit.

3. SET Analog Propagation Approach

The approach used in this research is an improved version of the approach used in

Cha [16]. The main difference with this approach is that the threshold is not arbitrarily

chosen to be Vdd/2. Instead, the analog information is recorded, resulting in a higher

fidelity simulation. An SET is injected into series of logic gates. The pulsewidth and

amplitude are recorded as it propagates. From these values, a gate attenuation factor is

determined in terms of pulsewidth and amplitude. Additionally, the propagation

threshold is determined for a logic gate. The propagation threshold is the point at which

the amplitude and pulsewidth of the SET is large enough such that it is not attenuated as

it propagates. If an SET is at or above the propagation threshold, the attenuation factor

is set to 1 (i.e., no attenuation).

E. SET LOGIC PROPAGATION MODELING

1. Objective

The objective of SET logic propagation modeling is to determine the probability

that a sensitized combinational- logic path exists from the point of the SET generation to

the input of the memory element. This probability is denoted as Pscl.

2. Previous Approaches

Baze [32] describes a method of determining the probability of error propagation

in a complex circuit. The approach “uses a detailed cell level design description of a

circuit to form a probabilistic mathematical model for static bit error propagation … The

logic simulator performs a single simulation to obtain vector frequency distributions for

all circuit cells and blocks … The propagation probability routine combines cell and

block logic functions with state frequencies to calculate the numerical values of the

propagation probabilities.” This is a very thorough approach and requires a significant

software effort.

 28

Massengill [33] describes the SEUTool, which uses VHDL simulations to

determine the likelihood that an SET will propagate to the input of a latch. These

simulations are used to create an Error Probability Matrix, in which “each entry

represents the probability, that, given a random SE3 strike of strength Qcoll anywhere in

the circuit of interest, that node N will cause an observable output error during clock

cycle C.” As with Baze [32], this approach is very thorough, but it requires a large

VHDL simulation effort.

 3. SET Logic Propagation Modeling Approach

The approach used in this dissertation is an improved version of the Baze

approach. It is more efficient and reduces the computational complexity of the analysis.

Logic is divided into two types: control logic and datapath logic. Control logic refers to

logic that steers the flow of data through the possible datapaths. An example of control

logic is a multiplexer that steers the flow of data from the output of the register file to the

input of the arithmetic logic unit (ALU). Datapath logic is used in computations, but

does not steer the flow of the data. An example is an OR gate used to create a fast adder

in the ALU.

For control logic, the probability of logic propagation is assigned based on the

how the datapath is steered. This is based on the functional mode of the system. For

datapath logic, a random input is assumed. For example, for a 4- input AND gate, the

probability that a transient will propagate through input “A” is 1/8. This is the likelihood

that the other three inputs (B, C, and D) are equal to a logic “1.”

F. SEU PROPAGATION MODELING

1. Objective

The purpose of SEU propagation modeling is to determine the probability that an

SEU will propagate to the output and cause an output error. This addresses the ε1

transitional probability on the SET-state-transition model. This transitional probability is

very dependent on the functional mode of the digital system. A key aspect of SEU

propagation modeling is the ability to express ε1 as a mode-conditional probability.

3 SE stands for Single Event.

 29

2. Underlying Theory

When an SEU has occurred in a complex digital system, one of the internal

memory elements is corrupted. From this point, four things can occur:

1. The SEU can be overwritten.

2. The SEU can remain.

3. The SEU can propagate internally creating multiple corrupted memory
elements.

4. The SEU can propagate to the output.

3. Previous Approaches

There have been two primary approaches to determining which of these four

possible outcomes will occur to the system. The first approach focuses on breaking the

system into functional blocks (e.g., register file, ALU). Through testing, an attempt is

made to determine the cross-section of the individual blocks. This is done by running

different programs that stress different functional blocks. This is the approach used in

Koga [14] and Asenek [34]. Asenek uses a “Duty Cycle Prediction Tool” to determine

the duty cycle of each functional block. Heavy- ion testing and software simulations

using an instruction-set simulator are then performed. The results from the testing and

the simulations are the software-dependent upset rate. Each test program stresses a

different functional block. Thus, the upset rate of a specific test program can be assigned

to a specific functional block.

The second approach focuses on fault injection with hardware-description

languages (HDL). This is the subject of Yount [35], Li [36], and Czeck[37]. In these

papers, a fault is injected by changing the value of a single bit in an internal register

during an HDL simulation. The output of the system is monitored to determine if any

errors have propagated to the output.

4. SEU Modeling Approach

The SEU modeling approach used in this dissertation borrows from the two

approaches described above. The duty-cycle approach is useful in that it provides a

method of breaking down a complex digital system into functional blocks. The drawback

is that more precise cross-section determination is desired. The second approach

 30

described provides much greater fidelity of modeling, but the complexity of the

simulation grows and becomes prohibitive as the complexity of the system grows.

The SEU modeling approach of this dissertation uses a combination of register-

usage analysis and VHDL simulation. Register-usage analysis is used to reduce the

complex digital system to a reasonable number of functional modes. For each possible

mode, the registers that are necessary for proper execution within that mode are

determined. These registers form the mode-dependent cross-section. For a processor, the

complexity reduction is accomplished by considering each assembly language instruction

as a unique mode. These instructions specify which registers within the functional blocks

of the processor are being used. These instructions can be further broken down into the

pipeline stages. For each pipeline stage of each instruction, the number of registers that

must not be in error for proper instruction execution is determined. If a register is used,

the number of clock cycles since it was last written is recorded. This provides a

conditional probability of SEU propagation for each pipeline stage of each instruction.

In some cases, it is not apparent which bits of a register in a functional block add

to the mode-dependent cross-section. In this case, fault injection in a VHDL simulation

is used to provide additional insight. This is accomplished by injecting an error into

each possible bit in the functional block and recording the resulting output errors. These

results are then included in the higher- level register-usage analysis.

 31

IV. MODELING AND SIMULATION

A. OBJECTIVE

The objective of this chapter is to verify the modeling methodology and approach

described in Chapters II and III. This is accomplished by determining the previously

defined transitional probabilities and using the SET-state-transition model (Figure 2) to

determine the system-level upset rate for the KDLX processor, which is described in

Appendix A. This processor was implemented in a custom layout with a standard-cell

library and fabricated using the MOSIS prototyping service. As a result, the following

information is available for modeling: parametric test results from the foundry run, an

extracted transistor- level SPICE description, and a complete logic-gate- level VHDL

description of the microarchitecture. This information is used for the SET generation

modeling, SET propagation modeling, and SEU propagation modeling. The modeling

results are combined to predict the system-level upset rate, which will be validated with

measured upset rates in Chapter V.

B. SET GENERATION MODELING

1. Objective

The objective of the SET generation modeling is to determine the transitional

probabilities β1, β2 and β3. As discussed in Chapter 3, β1 will be described as cross-

section versus LET curves. β2 and β3 will be described as cross-section versus LET,

resulting pulsewidth, and resulting amplitude tables.

2. Determination of Key Parameters

The first step in SET Generation modeling is to determine key parameters from

the MOSIS parametric test results and the extracted layout information. These

parameters are necessary to determine the sensitive cross-section versus LET curves from

the SPICE modeling. Specifically, these parameters are the depletion width, contact

potential, doping levels, and low-level/high- level- injection crossover point.

Table 2 shows the parameters that are given in the MOSIS parametric test results

for the wafer run used in the fabrication of the KDLX device. Table 3 shows the derived

parameters. The doping levels of the n-channel and p-channel devices were

 32

Parameter Value
N-Channel Electron Mobility 400.02 cm2/(V*s)
P-Channel Hole Mobility 136.52 cm2/(V*s)
Measured N-Channel to Substrate Area Capacitance 494 aF/µm2

Measured P-Channel to N-well Area Capacitance 943 aF/µm2

Table 2. MOSIS Parametric Test Results [38]

determined using the measured low-field mobility of the n-channel and p-channel devices

with the mobility-versus-doping- level charts from Jacobini [39]. The n-well and

substrate doping levels are determined by using the channel doping levels and the

measured area capacitance values for measured n-channel- to-substrate area capacitance

and the measured p-channel-to-n-well area capacitance with the equation for junction

capacitance from Streetman[40]:

Cj = εA{q*Nd*Na/[(V0-V)(Nd+Na)]}1/2 , (4.1)

where V is the voltage applied during the parametric test (in Volts).

Parameter Value
N-Channel Doping 5e17 donors/cm3

P-Channel Doping 5e17 acceptors/cm3

N-channel to Substrate Contact Potential (Φ) 0.82 Volts
P-channel to N-well Contact Potential (Φ) 0.86 Volts
Calculated Substrate Doping Level 2.51e16 acceptors/cm3

Derived Substrate Hole Mobility 325 cm2/(V*s)
Calculated N-well Doping Level 1.12e17 donors/cm3

Derived N-well Electron Mobility 780 cm2/(V*s)
NFET Depletion Depth (W) 0.474 µm
PFET Depletion Depth (W) 0.244 µm
Low-Level/High-Level Injection Crossover-Point LET 0.245 MeV*cm2/mg

Table 3. Derived Parameters

The low-level/high- level injection crossover-point was calculated to determine

which of the SET injection circuits to use (Figure 8 or Figure 9). Table 3 shows that the

crossover LET is 0.245 MeV*cm2/mg. When the corresponding value of charge (~ 10

 33

femto-coulombs) was injected on the standard-cell inverter in a SPICE simulation, the

result was nearly imperceptible – only several millivolts. This is because the quantity of

charge injected was too small. To see any effect, the simulated LET must be increased

significantly above the crossover LET. Therefore, high- level injection was modeled for

all the SET-generation simulations.

3. Determination of Transitional Probability β 1

The transitional probability β1 is the likelihood that an SET occurs on a transistor

within a memory element with enough energy to directly cause an SEU. As described in

Chapter III, this probability will be modeled as a cross-section versus LET curve. The

only memory element in the KDLX design is the D-Flip-Flop-with-asynchronous-clear

(DFFC) standard cell. The schematic for the DFFC is shown in Figure 13. Determining

the cross-sections and LETs for β1 requires four input cases to be simulated: Clk=0,

Data=0; Clk=0, Data=1; Clk=1, Data=0; Clk=1, Data=1. The ClB Input was set to logic

“1” to simulate normal operation. For each input case, the sensitive transistors were

determined. For each sensitive transistor, several SETs were injected using the high-

level- injection circuit. The amount of charge deposited from the SETs was varied until

the minimum charge necessary to cause an SEU was determined. Table 4 shows this

minimum charge (also known as the critical charge) and corresponding LET required to

cause an upset for each sensitive transistor for each input case. It also shows the cross-

section area of the sensitive transistors. Figure 14 shows the cross-section-versus-LET

curve for a single DFFC standard cell.

Table 4 and Figure 14 show that the onset LET for the DFFC should occur at 8.4

MeV*cm2/mg, which corresponds to 339 fC deposited on the drain of PFET T17. The

effective cross-section of T17 is 2.31 µm. As the LET is increased, the critical charge of

all the transistors is reached. This occurs when the LET is equal to 23 MeV*cm2/mg. At

this point, the effective-saturated cross-section of the DFFC is 33.66 µm.

 34

Data ClB

QB

Q

Data

Clk

ClB

ClB

ClB

CB C

C

CB

CB

C

CB

C

CB C

CB

9

4_1

13

10_1

7

14

11

8
6

12_1

10

12

T5_1

T23T28T21T22 T4

T19
T20

T25

T29

T26

T24

T27

T18

T17

T0

T0

T0T0

T0

T0
T0

T0

T0

T0

T0

T0

T0

T0

Figure 13. DFFC D-Flip-Flop Schematic (after [41])

 35

Input
State

Sensitive
Transistor

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Critical
Charge
(fC)

LET
(MeV*cm2/mg)

Data =0
Clk =0

T15
NFET

8.72 2.18 439 10.9

Data =0
Clk =0

T3_1
NFET

12.46 3.11 930 23.0

Data =0
Clk =0

T4
PFET

10.06 2.51 834 20.7

Data =0
Clk =1

T13
NFET

8.72 2.18 376 9.3

Data =0
Clk =1

T12
NFET

4.72 1.18 421 10.4

Data =0
Clk =1

T23
PFET

10.06 2.51 619 15.3

Data =1
Clk =0

T2_1
NFET

28.19 7.05 588 14.6

Data =1
Clk =0

T26
PFET

7.56 1.89 373 9.2

Data =1
Clk =0

T20
PFET

11.19 2.80 717 17.8

Data =1
Clk =0

T5_1
PFET

16.55 4.14 717 17.8

Data =1
Clk =1

T11
NFET

11.03 2.76 473 11.7

Data =1
Clk =1

T17
PFET

9.24 2.31 339 8.4

Table 4. DFFC Sensitive Transistor Critical Charge, LET, and Cross-Section

 36

1.00E-08

1.00E-07

1.00E-06

0 5 10 15 20 25 30

LET (MeV*cm 2/mg)

C
ro

ss
-s

ec
ti

o
n

 (c
m

2)

Figure 14. DFFC Cross-Section Versus LET Curve

4. Determination of Transitional Probability β 2

The transitional probability β2 is the likelihood that an SET occurs on a

combinational- logic gate. As defined in Chapter III, β2 will be listed as a cross-section,

LET, and resulting amplitude and resulting pulsewidth. Thus, to determine β2, the

injection circuit is used to inject an SET into the sensitive regions of each of the standard

cells. The charge injected is converted to LET, and the output pulsewidth and amplitude

are recorded. In Section C5 of this chapter, these resulting output pulsewidths and

amplitudes are coupled with the results of the SET analog propagation, logic propagation

and clock-edge effects modeling to determine the probability that the SET will become

latched. The standard-cell inverter is described as an example.

Figure 15 shows the schematic of the inverter and the test circuit. The output of

the inverter is connected to the input of another inverter. This insures proper output

loading. If the input is equal to logic ‘0’, the NFET is sensitive. If the input is logic ‘1’,

the PFET is sensitive. Figure 16a shows the current waveform from the high- level

injection circuit and Figure 16b, the resulting voltage on the injection node. Figure 17

 37

shows this resulting voltage for various LETs for the injected pulse. This figure shows

that an LET of approximately 13.89 MeV*cm2/mg is necessary for the SET to make the

full voltage swing. As the LET is increased beyond 13.89 MeV*cm2/mg, the pulsewidth

of the SET increases. Table 5 shows the cross-section, LET, resulting amplitude and

resulting pulsewidth for the inverter.

OutA

T1

T2

InverterInverter

A

SET Injection
Node

Vdd

Gnd

Figure 15. Inverter Standard-Cell Schematic and Test Circuit

 0 . 0 0 .5 1 .0 1 . 5 2 .0 2 .5 3 . 0
T i m e (n s)

 0

 5

 10

 15

C
ur

re
nt

 (m
A

)

a . I n j e c t i o n C u r r e n t

 0 . 0 0 .5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
T i m e (ns)

 1 . 0

 1 . 5

 2 . 0

 2 . 5

 3 . 0

V
ol

ta
ge

 (V
)

b . I n j e c t i o n N o d e V o l t a g e

Figure 16. Injection Current and Node Voltage

 38

 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (ns)

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0
V

ol
ta

ge
 (V

)

LET = 23.46 MeV*cm2/mg

LET=19.12 MeV*cm2/mg

LET=13.89 MeV*cm2/mg

LET=8.77 MeV*cm2/mg

LET=3.41 MeV*cm2/mg

Figure 17. SET Pulse Shape Versus LET

Input
State

Sensitive
Transistor

Charge
(fC)

LET
(MeV*cm2/
mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Amplitude
(Volts)

Output
Pulse-
Width
(ps)

A=0 T2 (NFET) 137.6 3.41 41.59 20.80 -0.83 140
A=0 T2 (NFET) 353.9 8.77 41.59 20.80 -2.44 180
A=0 T2 (NFET) 423.7 10.50 41.59 20.80 -3.0 190
A=0 T2 (NFET) 560.8 13.89 41.59 20.80 -3.3 260
A=0 T2 (NFET) 771.9 19.12 41.59 20.80 -3.3 400
A=0 T2 (NFET) 880.3 21.81 41.59 20.80 -3.3 470
A=0 T2 (NFET) 947 23.46 41.59 20.80 -3.3 490
A=1 T1 (PFET) 140 3.47 29.98 14.99 0.474 90
A=1 T1 (PFET) 477.3 11.82 29.98 14.99 1.91 100
A=1 T1 (PFET) 621 15.38 29.98 14.99 2.69 120
A=1 T1 (PFET) 907.6 22.48 29.98 14.99 3.2 200
A=1 T1 (PFET) 1260 31.22 29.98 14.99 3.3 300
A=1 T1 (PFET) 1530 37.90 29.98 14.99 3.3 390
A=1 T1 (PFET) 1670 41.37 29.98 14.99 3.3 440
A=1 T1 (PFET) 1720 42.61 29.98 14.99 3.3 460

Table 5. Cross-Section and LET for Standard-Cell Inverter

 39

5. Determination of Transitional Probability β 3

The transitional probability β3 is the likelihood that an SET occurs on an output

driver. This simulation is similar to modeling the inverter to determine β2, except the

output driver is connected to an output pad plus an 8 pF capacitor. The 8 pF capacitor is

the input capacitance of a Xilinx XCV300 Field Programmable Gate Array (FPGA) [42],

which is the device connected to the KDLX in the test system. The results of the

simulation are shown in Table 6.

Input
State

Sensitive
Tran-
sistor

Charge
(fC)

LET
(MeV*cm2

/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Amplitude
(Volts)

Output
Pulse-
Width
(ps)

A=0 T1
(PFET)

12960 347.83 84.47 42.24 1.13 800

A=0 T1
(PFET)

25730 690.55 84.47 42.24 2.37 1050

A=0 T1
(PFET)

30530 819.38 84.47 42.24 2.87 1210

A=0 T1
(PFET)

33060 887.28 84.47 42.24 3.08 1280

A=0 T1
(PFET)

33860 908.75 84.47 42.24 3.18 1290

A=0 T2
(NFET)

12830 344.34 127.04 63.52 -1.27 1970

A=0 T2
(NFET)

25250 677.67 127.04 63.52 -2.47 2470

A=0 T2
(NFET)

29870 801.66 41.59 20.80 -2.93 2690

A=0 T2
(NFET)

31600 848.09 41.59 20.80 -3.14 2750

A=0 T2
(NFET)

32280 866.34 41.59 20.80 -3.22 2820

Table 6. SET on Output Driver

Comparing the results in Table 6 to the results Table 5 shows that an SET on an

output driver requires a much greater quantity of charge to reach a given amplitude than

an SET on an internal node. This is a direct result of the larger capacitance of the output

device relative to the capacitance of an internal node. As shown in the table, an ion

incident upon the PFET requires an LET greater than 347 MeV*cm2/mg to result in a

transient with an amplitude greater than 1.13 Volts. Similarly, an ion incident upon the

NFET requires an LET greater 343 MeV*cm2/mg to cause a transient with an amplitude

 40

greater than 1.27 Volts. From Ziegler[43], the largest linear energy transfer in silicon

from a heavy ion is ~ 120 MeV*cm2/mg. Since 343 >> 120, β3 can be set to 0, and the

output drivers of the KDLX are modeled as not susceptible to SETs.

C. SET PROPAGATION MODELING

1. Objective

The objective of SET propagation modeling is to determine the propagation

transitional probabilities δ1, δ2, and ε2. This can be broken down into three parts: SET

analog propagation, SET logic propagation, and clock-edge effects. The results of these

simulations are coupled with the results of the SET generation modeling.

2. SET Analog Propagation Modeling

a. Objective

The objective of the SET analog propagation modeling is to determine

what happens to the amplitude and pulsewidth of an SET as it propagates through the

logic gates used in the KDLX. The results are used to determine the probability of

analog propagation through a sensitized logic path.

b. Modeling Configuration

The circuit shown in Figure 18 is used to model the analog propagation

through the standard cell inverter. Using the SET injection circuit, the transient is

injected at the node named SET_Node. The injection circuit is used (as opposed to a logic

pulse) to insure that the rise and fall times are consistent with an SET. The propagating

transients are observed at Prop_Node1, Prop_Node2, Prop_Node3, Prop_Node4 and

Prop_Node5.

Test_Input

 SET_Node

Prop_Node1

Prop_Node2

Prop_Node3

Prop_Node4

Test_Output

Prop_Node5

Figure 18. Inverter Propagation Circuit

 41

c. Modeling Results

Figure 19 shows the propagation of a small transient. As it passes through

each inverter, the transient attenuates significantly. In fact, by the time it has propagated

to Prop_Node4, the amplitude is less than 100 mV. Figure 20 shows the propagation of a

slightly larger transient. In this case, attenuation is also occurring through each inverter,

but it is not as rapid as in Figure 19. In both cases, there is not enough energy in the

transient to propagate without attenuation. In contrast, Figure 21 shows the propagation

of a transient that does not attenuate at all as it propagates. At some point between the

size of the transients in Figures 20 and 21, there is a threshold above which transients will

propagate without attenuation. This is defined as the propagation threshold.

 0.0 0.5 1.0 1.5 2.0 2.5

Time (ns)

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

V
ol

ta
ge

 (
V

)

SET at
SET_Node

Voltage at
Prop_Node2

Voltage at
Prop_Node4

 0.0 0.5 1.0 1.5 2.0 2.5

Time (ns)

 0.0

 0.5

 1.0

 1.5

V
ol

ta
ge

 (V
) Voltage at

Prop_Node1
Voltage at
Prop_Node3

Figure 19. Propagation of Small SET

The propagation threshold is an important concept in SET propagation

modeling. This is because the probability of SET analog propagation through a path of

logic gates can be set to 1 if the SET is above the propagation threshold. Furthermore, if

the latching threshold (to be determined in the Clock-Edge Effects section) is greater than

the propagation threshold, and the SET meets or exceeds the latching threshold, then it

 42

 0.0 0.5 1.0 1.5 2.0 2.5
Time (ns)

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0
V

ol
ta

ge
 (V

)

SET at
SET_Node

Voltage at
Prop_Node2

Voltage at
Prop_Node4

 0.0 0.5 1.0 1.5 2.0 2.5
Time (ns)

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

V
ol

ta
ge

 (V
) Voltage at

Prop_Node1

Voltage at
Prop_Node3

Voltage at
Prop_Node5

Figure 20. Propagation of Medium SET

 0.0 0.5 1.0 1.5 2.0 2.5
Time (ns)

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

V
ol

ta
ge

 (V
)

SET at
SET_Node

Voltage at
Prop_Node2

Voltage at
Prop_Node4

 0.0 0.5 1.0 1.5 2.0 2.5
Time (ns)

 -0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

V
ol

ta
ge

 (V
) SET at
SET_Node

Voltage at
Prop_Node3

Voltage at
Prop_Node5

Figure 21. Propagation of Large SET

 43

must also exceed the propagation threshold, and the probability of SET analog

propagation can be set to 1.

To determine the propagation threshold, the simulation is run with multiple SETs

injected into the circuit. The amplitude and pulsewidth are measured at each node.

Table 7 shows the results of these simulations. The propagation threshold for a 0-1-0

SET pulse is approximately an amplitude of 3 V and a pulsewidth of 400 picoseconds.

The propagation threshold for at 1-0-1 SET pulse is an amplitude of 3.3V and a

pulsewidth of 460 picoseconds. These propagation simulations are repeated for the other

standard cells, and the results are shown in Appendix B.

SET_Node Prop_Node1 Prop_Node2 Prop_Node3 Prop_Node4

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

-2.9 240 1.36 200 NA NA NA NA NA NA

-3.25 290 2.2 260 -2.58 250 1 140 -.08 180

-3.27 300 2.45 280 -3.11 280 2.16 210 -2.05 220

-3.28 330 2.6 300 -3.26 310 2.59 250 -3.18 270

-3.3 400 2.96 380 -3.3 400 3.06 340 -3.3 390

-3.3 450 3.15 410 -3.3 460 3.22 400 -3.3 460

Amp = Amplitude in Volts (V), PW = pulsewidth in picoseconds (ps)

Table 7. SET Propagation - Inverter

3. SET Logic Propagation Modeling

SET logic propagation modeling determines the probability that an SET will

propagate through the logic gate, given that the amplitude and pulsewidth are large

enough for analog propagation. Table 8 shows the probability of logic propagation for

each of the standard-cell logic gates used in the KDLX design. For multiple- input logic

gates that are not instruction-dependent, the inputs are modeled as random. For the

Mux2, the probability is modeled as being instruction-dependent. This is because the

 44

Mux2 is used throughout the KDLX to direct the data path as a function of the

instruction, whereas the other multiple logic gates have inputs that are not direct

functions of the instruction. This is critical because it causes δ1 to be instruction-

dependent (if there is a Mux2 in the datapath). Additionally, the gates that are used in the

decoding logic of the pipeline are modeled as instruction-dependent.

Standard Cell Probability of Logic Propagation
Inv 1

Buf4 1
Nand2 0.5 (Non-Pipeline)

Instruction-Dependent (Pipeline)
Nand3 0.25
Nand4 0.125 (Non-Pipeline)

Instruction Dependent (Pipeline)
Nor2 0.5 (Non-Pipeline)

Instruction-Dependent (Pipeline)
Nor3 0.25
Nor4 0.125 (Non-Pipeline)

Instruction-Dependent (Pipeline)
Xor2 1
Mux2 Instruction-Dependent

Table 8. Probability of Logic Propagation

4. Clock-Edge Effects Modeling

a. Objective

The objective of the clock-edge effects modeling is to determine the

latching window as a function of the amplitude and pulsewidth of the SET, denoted as

tlw(a, pw). The latching window will be used to determine the probability that the SET is

latched as a function of the amplitude and pulsewidth: Platch(a, pw). This probability will

be combined with the analog propagation and logic propagation modeling results to

determine the transitional probability δ1 in the following section.

 b. Modeling Configuration

 The circuit in Figure 22 is the simulation circuit used to model the clock-

edge effects. The SET injection circuit is used to inject the SET to the node named

“SET_Node.” As with the SET analog propagation modeling, the SET injection circuit is

 45

used to insure that only amplitudes and pulsewidths that can result from an SET are used.

The resulting amplitude and pulsewidth as the SET propagates to the node named

“DATA” is recorded. To determine the latching window for an SET with a specified

amplitude and pulsewidth, the time the SET is injected onto SET_Node is varied to

determine the minimum setup time (tsu,min) and maximum setup time (tsu, max) for the

specified amplitude and pulsewidth. The latching window for the specified amplitude

and pulsewidth is determined using equation 3.22:

tlw(a, pw) = tsu, max – tsu,min. (3.22)

This is process is repeated for other amplitude and pulsewidth combinations to determine

the latching window as a function of amplitude and pulsewidth.

DATASET_Node

Data_In

Clk_In

CLK

ClB

Q
Cl

D Q
Clk

Figure 22. Clock-Edge Effects Modeling Circuit

c. Modeling Results

Table 9 shows the latching window as a function of the SET amplitude

and pulsewidth. If the SET pulse arrives during the latching window and has sufficient

energy, it will be latched. The probability of the SET pulse being latched is given by the

equation below:

Platch = (latching window)/(clock period) (4.2)

 46

SET
Amplitude
(V)

SET
Pulse-
width
(ps)

Latching
Window
(ps)

Platch
(1/MHz)

Platch
@ 625 KHz

Platch
@ 5 MHz

-3.3 480 60 6.00E-05 3.75E-05 3.00E-04
-3.3 490 80 8.00E-05 5.00E-05 4.00E-04
-3.3 500 180 1.80E-04 1.13E-04 9.00E-04
-3.3 510 190 1.90E-04 1.19E-04 9.50E-04
-3.3 520 230 2.30E-04 1.44E-04 1.15E-03
-3.3 530 270 2.70E-04 1.69E-04 1.35E-03
-3.3 550 340 3.40E-04 2.13E-04 1.70E-03
-3.3 560 360 3.60E-04 2.25E-04 1.80E-03
3.3 510 70 7.00E-05 4.38E-05 3.50E-04
3.3 520 140 1.40E-04 8.75E-05 7.00E-04
3.3 560 210 2.10E-04 1.31E-04 1.05E-03
3.3 580 240 2.40E-04 1.50E-04 1.20E-03
3.3 600 280 2.80E-04 1.75E-04 1.40E-03
3.3 640 330 3.30E-04 2.06E-04 1.65E-03
3.3 670 370 3.70E-04 2.31E-04 1.85E-03
3.3 690 400 4.00E-04 2.50E-04 2.00E-03

Table 9. Clock-Edge Effects Modeling Results

Because of the relationship between this probability and the clock frequency, Platch is

listed in units of 1/MHz and also as a probability at two specified clock frequencies: 625

KHz and 5 MHz.

The table shows that there is an SET latching threshold. For a 1-0-1 transition, the

SET must have an amplitude of 0V (full –3.3V transition) and a pulsewidth of 480

picoseconds. For a 0-1-0 transition, the threshold is an amplitude of 3.3V and a

pulsewidth of 510 picoseconds. Below these thresholds, the SET will not be latched. In

comparison, the propagation threshold (from Table 7) requires a 400 picosecond SET

pulsewidth. A close look at the SET propagating within the flip-flop shows the reason

the latching threshold is higher than the propagation threshold. Node 4_1 of the DFFC

schematic shown in Figure 13 is the critical node in the determination of the latching

threshold. Figure 23 shows this node voltage for an SET that is slightly above threshold.

Figure 24 shows this voltage for an SET that is slightly below threshold. In both cases,

the SET arrives at the DATA input. With the clock low, transistor T13 is turned on. The

transient is attenuated as it passes to Node 4_1. This is because the on-resistance of T13

 47

coupled with the capacitance at node 4_1 form a low-pass filter that removes the high

frequency components of the transients. Transients with wider pulsewidths have more

energy at lower frequencies and more energy is passed through the low-pass filter. In

Figure 23, the transient has enough energy (which is to the produc t of charge and voltage)

after this attenuation to keep the voltage at Node 4_1 at logic “0” when the rising edge of

the clock occurs. In Figure 24, the transient is able to pass some energy to Node 4_1.

However, not enough energy is passed through for the voltage at Node 4_1 to be latched

in. Thus, the smaller transient is not latched.

 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time (ns)

 -1.0
 -0.5
 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 3.5

V
ol

ta
ge

 (V
)

Rising
Edge of
CLK

SET at
D A T A
Input

Voltage at
Node 4_1

Voltage at
Q Output

Figure 23. SET Above Latching Threshold

 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time (ns)

 -0.5
 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 3.5

V
ol

ta
ge

 (V
)

SET at
D A T A
Input

Rising
Edge of
CLK

Voltage at
Node 4_1

Voltage at
Q Output

Figure 24. SET Below Latching Threshold

 48

Because the latching threshold is greater than the propagation threshold, the

latching threshold defines the minimum amplitude and pulsewidth for an SET in logic to

be latched and become an SEU. This simplifies the determination of δ1, because if the

SET meets the latching threshold requirements, the probability of analog propagation is

equal to one. If an SET does not meet the latching threshold requirements, δ1 is set to

zero because it will not be latched.

5. Determination of the Transitional Probability δ 1

From Figure 2, δ1 is the probability that an SET will propagate from the sensitive

region of a logic gate where generation occurred to the input of the memory element

AND be latched in. Thus, δ1 is the product of the Platcch (a, pw) * Pscl* Pap(a, pw), and δ1

can be multiplied by the cross-section of the logic gate to give the effective cross-section:

σeff = σ δ1. (4.3)

The total effective cross-section of a logic path is the sum of the effective cross-

sections of each of the sensitive regions in the logic path. For a logic path with m

sensitive regions:

σeff, logic path = Σσn δ1n, n= 1 to m. (4.4)

Figure 25 shows the logic path from the output of registers A and B in the register

file to the input of the ALU register for the AND instruction. The importance of modeling

the logic propagation of the Mux2 is apparent in this figure. The sensitive regions are

determined by the datapath steered by the Mux2s, which are controlled by the instruction

being executed. Table 10 shows δ1 and the effective cross-section evaluated at each

logic block in the path. Appendix B shows this analysis for other logic paths in the

KDLX.

Inv_1

Mux2_7 Mux2_8

Mux2_3 Mux2_4

Mux2_5 Mux2_6 Mux2_9 Mux2_10

Mux2_1 Mux2_2

Nand2_1
To
ALU_Out
Register

From
Register A

From
Register B

Figure 25. AND Combinational-Logic Datapath

 49

Logic
Block

Cross-
section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) Effective Cross-
Section

σ*δ1 (µm2/Mhz)

Effective
Cross-
Section

@ 625 KHz

Effective
Cross-
Section

@ 5 MHz
Mux2_1 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Mux2_2 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Mux2_3 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Mux2_4 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Nand2_1 41.75 1 1 1.50E-04 1.50E-04 6.26E-03 2.09E-03 1.67E-02

Inv_1 35.79 1 1 1.50E-04 1.50E-04 5.37E-03 1.79E-03 1.43E-02
Mux2_6 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_7 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_8 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_9 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_10 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02

Total 1.50E-01 4.99E-02 4.00E-01

Table 10. Effective Cross-Section of AND Datapath

5. Determination of the ε2 Transitional Probability

The ε2 transition was determined in a similar manner as the analog propagation

simulations. An SET pulse was used to drive the input of the output buffer, which was

connected to an 8 pF capacitor (similar to the β3 simulations). The resulting pulsewidth

and amplitude are shown in Table 11.

Table 11 shows that it takes a very long SET pulse (1430 picoseconds) to

propagate to the output with an amplitude of –1.37 volts (with respect to Vdd, or 3.3

Volts). The maximum input voltage that the Xilinx Virtex FPGA will read as a logic “0”

is 0.8 Volts [42]. The resulting output of the KDLX is 1.93 Volts (3.3 – 1.37), thus the

transient will not be read as logic “0” by the FPGA. Similarly, the minimum voltage that

the Xilinx Virtex FPGA will read as a logic “1” is 2.0 Volts, and the resulting amplitude

due to a 1370 picosecond length SET is 0.81 volts, so the FPGA will not read the SET as

a logic “1.” These two cases indicate that even very long SETs will not cause the SET to

be read incorrectly by the external system. Thus, ε2 is set to “0.”

 50

Input Amplitude

(Volts)

Input Pulsewidth

(picoseconds)

Output Amplitude

(Volts)

Output Pulsewidth

(picoseconds)

-3.3 780 -0.46 1850

-3.3 1010 -0.78 2020

-3.3 1120 -0.93 2150

-3.3 1230 -1.08 2290

-3.3 1320 -1.22 2320

-3.3 1430 -1.37 2380

3.3 750 0.41 1130

3.3 960 0.55 1250

3.3 1080 0.62 1320

3.3 1180 0.69 1430

3.3 1290 0.76 1440

3.3 1370 0.81 1520

Table 11. SET Propagation – Output Buffer

D. SEU PROPAGATION MODELING

1. Objective

The objective of the SEU propagation modeling is to determine the probability

that an SEU will propagate to cause an output error. Specifically, it addresses the ε1

transitional probability. Instruction-based register-usage analysis is used to determine

which internal registers are sensitive to an SEU during the execution of an instruction. In

most internal registers, it is obvious when an SEU will prevent the proper execution of an

instruction. This is not the case for the pipeline registers. Depending on the instruction

decoding, an SEU in a pipeline register may or may not prevent proper execution of an

instruction. Because of this, VHDL fault- injection modeling is used to determine the

effect of an SEU in the pipeline registers.

2. Instruction-Based Register-Usage Analysis

The purpose of instruction-based register-usage analysis is to determine which

internal registers are necessary for the proper execution of an instruction. Proper

 51

execution is defined as follows: for each pipeline stage, if all internal registers and

external signals that are affected by the instruction are correct at the end of that stage,

then proper execution of that stage has occurred. For example, in the register add

instruction (ADD Rd, Rs1, Rs2), the contents of source register 1, Rs1, is added to source

register 2, Rs2, and stored in the destination register, Rd. Table 12 shows the critical

registers for each pipeline stage.

Pipeline Stage Critical Registers
Fetch Program_Counter
Decode Decode_Instr_Reg

Rs1
Rs2

Execute Execute_Instr_Reg
RA
RB

Memory Memory_Instr_Reg
ALU_Out

Writeback WB_Instr_Reg
Delayed_ALU_Out

Table 12. Critical Registers for ADD Rd, Rs1, Rs2 Instruction

 If an error occurs in one of the registers during a particular pipeline stage,

improper instruction execution will occur. This approach is complete for all registers that

are updated every clock cycle, but not all registers are updated every clock cycle. The

Rs1 and Rs2 registers (which correspond to registers R1 to R15 in the KDLX) are

examples of this. If an error has occurred in either of these registers since they were last

written to, improper execution will occur: the result in Rd will not be correct. Thus, it is

also necessary to determine the number of clock cycles that have occurred since the

register was last updated. Table 13 shows a revised version of Table 12 that includes the

number of sensitive clock cycles given register Rs1 was last updated n clock cycles ago,

and Rs2 was last updated m clock cycles ago.

 52

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter: 1 clock cycle
Decode Decode_Instr_Reg: 1 clock cycle

Rs1: n clock cycles since Rs1 was last written
Rs2: m clock cycles since Rs1 was last written

Execute Execute_Instr_Reg: 1 clock cycle
RA: 1 clock cycle
RB: 1 clock cycle

Memory Memory_Instr_Reg: 1 clock cycle
ALU_Out: 1 clock cycle

Writeback WB_Instr_Reg: 1 clock cycle
Delayed_ALU_Out: 1 clock cycle

Table 13. Critical Registers and Clock Cycles for Add Rd, Rs1, Rs2 Instruction

 3. VHDL Fault-Injection Modeling

The pipeline module of the KDLX processor decodes the 8-bit opcode and

provides control signals to the rest of the processor during the decode, execute, memory,

and writeback pipeline stages. Depending on the decoding, an SEU may cause an error

in these control signals. The purpose of the fault-injection modeling is to determine

exactly which bits of the opcode in each pipeline stage can tolerate an SEU without

causing an error in the control signals. These results will then be used to further refine

Table 13.

The VHDL fault- injection circuit is shown in Figure 26. The blocks labeled

“Pipeline_A” and “Pipeline_B” are gate- level VHDL descriptions of the KDLX pipeline

module. The block labeled “Opcode_Error_Inject” outputs the byte-wide exclusive-or of

the signal Opcode_A_In (the input to Pipeline_A) and the signal Mask_In. This allows

errors to be injected into the opcode by changing the bits of Mask_In. The block labeled

“Pipeline_Error_Check” compares the outputs of Pipeline_A to the outputs of

Pipeline_B. If the injected bit error does not cause a miscompare, all outputs of Pipeline

Error Check will be a logic ‘0’. If the injected error does cause a miscompare, the

outputs of Pipeline_Error_Check show which pipeline signal the error occurs in; it also

shows what type of error is caused: a PC_Error, a Control_Error, or an Access_Error.

 53

AVHDL test bench works as follows: for every KDLX opcode, the Mask_In signal

cycles through the following sequence:

1. “00000001”

2. “00000010”

3. “00000100”

4. “00001000”

5. “00010000”

6. “00100000”

7. “01000000”

8. “10000000”.

Thus, for every opcode, the simulation is run with a single-bit error occurring at

each bit location of the opcode. A single-bit error is assumed, because the transistors of

the flip-flops are separated enough spatially such that a single particle will not cause a

multiple-bit error. By summing the number of bit errors that cause an output error, the

cross-section of the opcode register during a particular pipeline stage can be determined.

Table 14 shows the results for seven opcodes of this simulation. For each pipeline stage,

the number of bit errors that resulted in an output error is shown. The “P” in each

column refers to a program address error. The “C” refers to a control error. The “A”

refers to an access error.

Decode
Stage

Execute
Stage

Memory
Stage

Writeback
Stage

Instruction Opcode P C A P C A P C A P C A
SW 0x45 0 0 8 0 0 7 0 8 0 0 0 8
LW 0x44 0 0 1 0 0 7 0 8 0 0 0 8
J 0xC8 0 0 0 6 0 8 0 0 0 0 0 7
JAL 0xE8 0 0 0 6 0 8 0 0 0 0 0 8
BEQZ 0xC1 0 0 0 7 0 8 0 0 0 0 0 6
BNEZ 0xC0 0 0 0 7 0 8 0 0 0 0 0 5
ADD 0x01 0 0 0 0 0 7 0 0 0 0 0 2

Table 14. Sensitive Bits in Pipeline Registers

 54

u1

opcode_error

opcode_in[7..0]

mask_in[7..0]

opcode_out[7..0]

u2

modified_pipeline

dec_opcode[7..0]

mem_opcode[7..0]

ex_opcode[7..0]

wb_opcode[7..0]

alu_op[4..0]

a_mux[1..0]

b_mux[1..0]

clock

opcode_in[7..0]
pc_sel[1..0]

rd_enable

reg_in_sel[1..0]

resetn

rs2_sel

wb_enable

iar_enable

wr_enable

zero_flag

u0

modified_pipeline

dec_opcode[7..0]

mem_opcode[7..0]

ex_opcode[7..0]

wb_opcode[7..0]

alu_op[4..0]

a_mux[1..0]

b_mux[1..0]

clock

opcode_in[7..0]
pc_sel[1..0]

rd_enable

reg_in_sel[1..0]

resetn

rs2_sel

wb_enable

iar_enable

wr_enable

zero_flag

u3

Pipeline_Error_Check

alu_op_a[4..0]

a_mux_a[1..0]

b_mux_a[1..0]

pc_sel_a[1..0]

rd_enable_a

reg_in_sel_a[1..0]

rstwo_sel_a

wb_enable_a

iar_enable_a

wr_enable_a

alu_op_b[4..0]

a_mux_b[1..0]

b_mux_b[1..0]

pc_sel_b[1..0]

rd_enable_b

reg_in_sel_b[1..0]

rstwo_sel_b

wb_enable_b

iar_enable_b

wr_enable_b

dec_error

dec_pc_error

dec_control_error

dec_access_error

ex_error

ex_pc_error

ex_control_error

ex_access_error

mem_error

mem_pc_error

mem_control_error

mem_access_error

wb_error

wb_pc_error

wb_control_error

wb_access_error

Dec_Opcode_A[7..0]

Mem_Opcode_A[7..0]

Ex_Opcode_A[7..0]

Wb_Opcode_A[7..0]

Dec_Opcode_B[7..0]

Mem_Opcode_B[7..0]

Ex_Opcode_B[7..0]

Wb_Opcode_B[7..0]

Opcode_B_In[7..0]

A_Mux_A[1..0]

B_Mux_A[1..0]

Reg_In_Sel_A[1..0]

RS2_Sel_A

WR_Enable_B

Rd_Enable_B

Rd_Enable_A

RS2_Sel_B

WR_Enable_A

Reg_In_Sel_B[1..0]

WB_Enable_A

ALU_Op_B[4..0]

IAR_Enable_B

B_Mux_B[1..0]

PC_Sel_A[1..0]

A_Mux_B[1..0]

WB_Enable_B

ALU_Op_A[4..0]

IAR_Enable_A

PC_Sel_B[1..0]

Dec_Opcode_B[7..0]

Mem_Opcode_B[7..0]

Ex_Opcode_B[7..0]

Wb_Opcode_B[7..0]

Clock

Resetn

Opcode_A_In[7..0]

Mask_In[7..0]

Dec_Error

Dec_PC_Error

Dec_Control_Error

Dec_Access_Error

Ex_Error

Ex_PC_Error

Ex_Access_Error

Ex_Control_Error

Mem_Access_Error

Mem_PC_Error

Mem_Error

Mem_Control_Error

Wb_Control_Error

Wb_Error

Wb_Access_Error

Wb_PC_Error

Dec_Opcode_A[7..0]

Mem_Opcode_A[7..0]

Ex_Opcode_A[7..0]

Wb_Opcode_A[7..0]

Dec_Opcode_B[7..0]

Mem_Opcode_B[7..0]

Ex_Opcode_B[7..0]

Wb_Opcode_B[7..0]

Figure 26. VHDL Fault-Injection Circuit

 55

Table 15 merges the results of the fault- injection modeling with Table 13. This

gives the exact number of bits that are sensitive to an SEU during the execution of this

instruction.

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg12 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(6 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 15. Critical Bits and Clock Cycles for ADD Rd, Rs1, Rs2 Instruction

4. Determination of the Transitional Probability ε1

As previously discussed, the transitional probability ε1 is the probability that an

SEU will propagate to the output of the component under test and cause an error in the

external system. It is determined by using the results of the preceding two sections

applied to the programs of interest. A simple example will illustrate how this is

accomplished. Figure 27 shows a simple KDLX program. Using this program, the

transitional probability that an SEU in register R1 will propagate to the output (ε1R1) is

determined. Figure 28 shows the sensitive window for register R1. It is labeled tsw. The

transitional probability ε1 is the product of two probabilities:

1. The probability that an SEU occurs in register R1 during the time tsw..
2. The probability that R3 is written to memory.

The probability that an SEU occurs in register R1 during the time tsw is equal to

the ratio of tsw/time period of interest. Since the SW instruction comes after the ADD

instruction, the probability in 2 is set to 1. Then,

 56

ε1R1 = (tsw/time of interest) * 1. (4.5)

Figure 27. Example Program

LW
 R

0(
0)

, R
1

LW
 R

0(
1)

, R
2

N
O

P

N
O

P

N
O

P

N
O

P

A
D

D
 R

3,
 R

1,
 R

2

N
O

P

N
O

P

N
O

P

N
O

P

SW
 R

0(
2)

, R
3

t

tsw

Program Execution
Figure 28. Sensitive Window for R1

E. SYSTEM-LEVEL PREDICTION

The results of the SET propagation simulations and SEU propagation modeling

are applied to determine the effective cross-sections of three test programs. The

effective cross-section for a given program is the product of the SET transitional

probabilities, the SEU transitional probabilities and the cross-sections determined in the

SET generation modeling. Test Program #1 is a program that loads all the registers,

writes them out immediately, waits for approximately 240 clock cycles, and repeats the

LW R0(0), R1; (Loads R1 with Memory[0])
LW R0(1), R2; (Load R2 with Memory[1])
NOP
NOP
NOP
NOP
ADD R3, R1, R2; (Adds R1+R2, writes the sum to R3)
NOP
NOP
NOP
NOP
SW R0(2), R3; (Stores contents of R3 to Memory[2])

 57

process. Test Program #2 is similar, except it loads all registers, waits for 240 clock

cycles, and writes them out. Test Program #3 is a functionality test program, similar to

the program used for verification of the processor design prior to fabrication. Test

Program #3 loads the registers, performs an operation (e.g., ADD, XOR) on the register,

and writes the result to the output. All operations are exercised in this manner in Test

Program #3. Table 16 shows the average number of sensitive bits per clock cycle for

each program. Table 17 shows the contribution of the memory elements and logic

elements to the effective saturated access error cross-sections for Test Program #1 and

Test Program #2. The crossover point in the table is the frequency at which the

contribution due to logic elements is equal to the contribution due to memory elements.

The table shows that the effective cross-section due to the logic elements is negligible at

625 kHz and 5 MHz. Figure 29 shows the predicted access-error cross-section as a

function of LET. Figure 30 shows the predicted control-error cross-section as a function

of LET, and Figure 31 shows the predicted program-address-error cross-section as a

function of LET.

Test
Program

Access-Errors
Sensitive Bits per

Clock Cycle:

Control-Errors
Sensitive Bits per

Clock Cycle:

Program-Address-
Errors

Sensitive Bits per
Clock Cycle:

1 10.7 1.2 15.94
2 231.0 1.2 15.94
3 272.0 7.13 19.24

Table 16. Average Number of Sensitive Bits per Clock Cycle

 58

Test
Program

Effective
Cross-section

Due to
Memory
Elements

(cm2/device)

Effective
Cross-section
Due to Logic
@ 625 kHz
(cm2/device)

Effective
Cross-section
Due to Logic

@ 5 Mhz
(cm2/device)

Cross-over
Frequency

1 3.59e-6 9.375e-10 7.5e-9 2.393 GHz
2 7.77e-5 9.375e-10 7.5e-9 51.8 GHz

Table 17. Comparison of Memory-Element Versus Logic-Element Saturated Access Error

Cross-Sections

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0 10 20 30

LET (MeV*cm2/mg)

C
ro

ss
-S

ec
ti

o
n

 (
cm

2)

Test Program 1
Test Program 2
Test Program 3

Figure 29. Predicted Access-Error Cross-Section Versus LET

 59

1.00E-07

1.00E-06

1.00E-05

0 10 20 30
LET (MeV*cm2/mg)

C
ro

ss
-s

ec
ti

o
n

 (c
m

2)

Test Program 1
Test Program 2
Test Program 3

Figure 30. Predicted Control-Error Cross-Section Versus LET

1.00E-07

1.00E-06

1.00E-05

0 10 20 30

LET (MeV*cm2/mg)

C
ro

ss
-s

ec
tio

n
(c

m
2)

Test Program 1
Test Program 2
Test Program 3

Figure 31. Predicted Program-Address-Error Cross-Section Versus LET

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

V. MODELING VALIDATION

A. OBJECTIVE

The objective of this chapter is to document the validation of the modeling results

from Chapter IV. This was accomplished by performing laser and heavy- ion testing on

the KDLX processor. The laser provides the means to inject an SET directly on a

particular transistor. This allows for direct validation of the key transitional probabilities

δ1 and ε1. Heavy-ion testing provides SET injection that is both spatially and temporally

random. It is not known exactly which transistor will have an SET. This provides the

means to validate the system-level predictions. Additionally, it provides the opportunity

to evaluate some of the predicted physical parameters: saturated cross-section and onset

LET. This chapter describes the test system, the laser testing results, and the heavy- ion

testing results.

B. TEST SYSTEM

1. Objective

The objective of the test system is to provide a means of capturing all required

information during a test. This information must describe an error that has occurred in

the KDLX processor during laser and heavy- ion testing. The address bus, the data bus,

the program address bus, and the read and write control signals are the required

information.

2. Description

Figure 32 shows the configuration of the test system. It consists of the laser or

heavy- ion beam source, a personal computer (PC), and the test board. The details of the

laser and heavy- ion beam source will be discussed in later sections. The PC controls the

operation of the test board and records the test results. The test board is described below.

Figure 33 shows a block diagram of the test board. Conceptually, it consists of

two pieces, the KDLX device under test and the KDLX_Tester FPGA. The

KDLX_Tester FPGA provides test control and implements the “golden chip” method of

processor testing described in Koga [14]. The FPGA contains a functionally-equivalent

VHDL description of the KDLX, the Golden Chip KDLX. The program and data

 62

memories are provided in the FPGA. The Comparison Logic Module captures the

program address bus, the address bus, the data bus, the read signal and the write signal

from both the KDLX under test and the Golden Chip KDLX on every clock cycle. These

values are compared. If there is a difference between the KDLX under test and the

Golden Chip KDLX, an error flag goes high and the captured values are written to the

Error FIFO. The Error FIFO provides temporary storage for the error data. The Error

Counters Module contains three counters: the access error counter, the program address

error counter, and the control error counter. These counters are incremented depending

on the type of error. The Universal Asynchronous Receiver/Transmitter (UART)

provides the interface to the PC.

Test Board

KDLX (Device Under Test) Laser or
Heavy-Ion
Beam

PC (Control &
Data Recording)

Mounting
Fixture

RS-232 Cable

KDLX_Tester FPGA

Figure 32. Test Configuration

 63

Program
Memory

Comparison Logic Module

KDLX
(Device
Under Test)

Program
Address
Bus

Instruction Bus Data Bus

ReadWrite

Golden
Chip
KDLX
(Internal)

Program
Address
Bus

Instruction Bus Data Bus

Address Bus

ReadWrite

Address Bus

Error FIFO

UART
Interface

Test Control
Test Number

Test Number

Clk

Resetn

Test
Complete
Flag

Clk Resetn

Data
Memory

KDLX_Tester FPGA

To RS-232

Clk Resetn

Error Counters
Error Flags

Error Data

Figure 33. Test-Board Block Diagram

3. Operation

The test board is placed in a position such that the laser or heavy- ion beam will be

incident upon the KDLX under-test. The beam is turned on. The PC sends the test

command. This specifies the test number, clock speed, and test length. Once this

command has been completely received, the Test Control block pulls the Resetn signal to

a logic level “0,” synchronously resetting both the device-under-test and the Golden

Chip. The Test Control block also provides the Clk signal to both processors at the

commanded clock speed. The Test Number specifies which of the test programs is used

during a particular test. The Test Number drives the upper two address bits of the

Program Memory to choose the test program.

 64

When the Resetn signal goes to a logic “1,” both processors begin executing the

first instruction from the chosen test program in Program Memory. On every clock cycle,

the program addresses, read signals and write signals are checked. If the program

addresses do not match, a Program-Address Error has occurred. The Program-Address

Error Counter is incremented and the outputs of both processors are saved in the Error

FIFO. Both processors are then reset to resynchronize their program counters. If the

read or write signal does not agree, the Control-Error Counter is incremented and the

outputs of both processors are saved in the Error FIFO. Because the processors are still

synchronized, they are not reset. If either both read signals or both write signals are

active (which indicates an access to the data memory without a control error), the address

and data buses are checked. If they do not agree, then an access error has occurred. The

Access Error Counter is incremented and the outputs are saved. The Error FIFO passes

the data to the UART, which sends it to the PC. This process continues until the number

of clock cycles specified in the Test Length has occurred. This marks the end of the test.

At this point, the Error Counters block sends the values of its counters to the PC via the

UART. The test is complete when the PC receives the counter values. Another test can

be run immediately by sending another command from the PC.

C. LASER TESTING

1. Objective

The objective of the laser testing is to validate the predicted transitional

probabilities δ1 and ε1. The laser provides the opportunity to inject an SET on a specific

transistor within the KDLX. Focusing the laser on a transistor of a logic gate allows

direct insertion into state S2. This provides for validation of the two critical element s of

δ1: clock-edge effects modeling and the probability of logic propagation. Similarly,

focusing the laser on a transistor within a flip-flop provides direct insertion into state S3.

This provides for validation of the instruction-based register-usage analysis used to

predict ε1.

2. Test Configuration

The laser tests were performed at the Naval Research Laboratory’s Pulsed-Laser

Facility for Single-Event-Effects Investigation. A block diagram of the test configuration

 65

is shown in Figure 34. The laser source is a 590 nm wavelength pulsed dye laser. The

laser pulses are nominally 1 picosecond in length. Optics between the laser source and

the device-under-test focus the beam to a spot size of approximately 1.2 to 1.5 µm [44].

This allows the targeting of a single transistor.

 Computer

Test Board

TV Monitor CCD Camera

Objective Illuminator

Reflected Energy
Meter

Incident Energy
Meter

Picosecond
Dye Laser

Wavelength/Polarizer
Combination

Figure 34. Laser Test Configuration (after [44])

3. Test #1

The purpose of Test #1 is to validate the logic propagation modeling.

Specifically, it validates the modeling of logic propagation for the Mux2 standard-cell

multiplexer. Table 8 defines this probability as being “Instruction-Dependent.” This is a

critical concept in the determination of the effective cross-section of a logic path; it says

that logic elements that are not in the logic path do not contribute to the effective cross-

section. To validate this, the functionality test program, Test Program #3, was executed

with the laser beam focused on the combinational- logic elements of the

ALU_Logic_Slice module. This module performs the logic operations of the arithmetic

logic unit (ALU). Figure 35 shows its schematic. The module consists of an AND gate,

an OR gate, an XOR gate, and three multiplexers that determine the output. For logical

 66

AND instructions, Sel0=1 and Sel1=0, steering the output of the AND gate to the output

of the module. Similarly, for logical-OR instructions, Sel0=0 and Sel1=1, steering the

output of the OR gate to output of the module. The output of the XOR gate is steered to

the module output with Sel0=1 and Sel1=1 for exclusive-or instructions.

Figure 36 shows the layout of the ALU_Logic_Slice module. The red circles

show the targeted regions (also shown in Figure 35). For Test Run #1, the beam was

focused on the output of the AND gate. Ten errors were observed at the output: six

occurred during the ANDI instruction execution, and four occurred during the execution

of the AND instruction. None occurred during the logical-or (OR, ORI) or the

exclusive-or (XOR, XORI) instructions during Test Run #1. In Test Run #2, the beam

was focused on the output of the OR gate. Errors occurred only during the execution of

the logical-or instructions. Similarly, Test Run #3 focused the beam on the output of the

XOR gate. Errors occurred only during the execution of the exclusive-or instructions. The

results of these three test runs are summarized in Table 18. These results validate the

premise that the combinational- logic elements that are not in an instruction’s data path do

not contribute to the effective cross-section for that instruction.

A

B

Sel0

Sel1

Out

Sel0

Target
Regions:

And

Or

Xor
Sel0

Figure 35. Target Regions for ALU_Logic_Slice

 67

Target Regions

Xor Or And

Figure 36. Target Regions for ALU_Logic_Slice – Layout (after [45])

 68

Test Run Target Cell Number of
Errors

Corresponding
Instructions

1 AND Gate 10 ANDI(6)
AND(4)

2 OR Gate 11 ORI(5)
OR(6)

3 XOR Gate 9 XORI(4)
XOR(5)

Table 18. Laser Test #1 Results

4. Test #2

The purpose of Test #2 is to validate the clock-edge effects modeling.

Specifically, the relationships among the clock frequency, SET pulsewidth, and the

probability that an SET is latched (Platch) are validated. This was accomplished by

injecting an SET on a transistor in the second XOR gate of the Full_Adder module, as

shown in Figures 37 and 38. In the first group of tests, the output energy detector voltage

was 14 mV. In the second group, the laser energy was decreased; the output energy

detector voltage was 8 mV. This resulted in a reduced length SET pulse. For each group

of tests, the KDLX executed Test Program #2 at four clock frequencies: 625 kHz, 1.25

MHz, 2.5 MHz, and 5 MHz. Table 19 shows the results of these tests. Figure 39 shows a

plot of the number of upsets versus the clock frequency. The linear relationship between

the clock frequency and the number of upsets is clearly evident, particularly at the higher

energy (where the statistics are better). This validates the predicted linear relationship

between clock frequency and Platch.

 69

A

B

CI

S

CO

B
A

Out

T10

T8

T10B

T7T4

T3 T9

T5

T6

T2T1

Target
Region

Figure 37. Target Region of Full Adder – Schematic (after [46])

Clock Speed Laser Energy
Detector Output

Voltage (mV)

Number of
Upsets

Platch

5 MHz 14 138 1.15e-3
2.5 MHz 14 78 6.5e-4

1.25 MHz 14 34.3 2.86e-4
0.625 MHz 14 17.3 1.44e-4

5 MHz 8 16 1.33e-4
2.5 MHz 8 12 1.00e-4

1.25 MHz 8 4 3.33e-5
0.625 MHz 8 2 1.67e-5

Table 19. Laser Test #2 Results

 70

Targeted
Region

Figure 38. Target Region of Full Adder – Layout (after [45])

 71

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

KDLX Clock Speed (MHz)

A
ve

ra
g

e
N

u
m

b
er

 o
f U

p
se

ts

Energy
Detector Output
Voltage: 14 mV

Energy
Detector Output
Voltage: 8 mV

Figure 39. Laser Test #2 Results: Clock-Edge Effects

Validation of the absolute quantitative relationship between the length of the SET

pulse and Platch requires an accurate measurement of the SET pulsewidth at the injection

node. Unfortunately, this is not possible with the KDLX chip. This is because the SET

must propagate through multiple logic gates prior to reaching the output; it is shaped and

attenuated during this propagation and thus cannot be accurately measured. However, it

is clear from the data that for a given clock rate, a longer SET pulse results in a larger

Platch.

5. Test #3

The purpose of Test #3 is to validate the predicted transitional probability ε1.

Validation requires injecting an SEU into a register and observing the resulting number

of output errors as a function of the program. To accomplish this, the laser beam was

focused on the least-significant bit of register R1 as shown in Figures 40 and 41. This

transistor is sensitive only when the clock is high, so the probability of a laser pulse

directly causing an SEU is 0.5 (i.e., β1 = .5). The pulse repetition frequency of the laser

was set at 1 KHz, and Test Program #1 was executed. Each test run lasted two minutes,

causing an estimated 60,000 SEUs. This was repeated for Test Program 2, but the laser

pulse repetition frequency needed to be reduced to 100 Hz because the test system could

not keep up with the error rate. This resulted in an estimated 6000 SEUs. Table 20

shows the test results. The measured transitional probability ε1 for Test Program 1 was

 72

0.00397. This shows very good agreement with the predicted ε1: 0.00391. For Test

Program 2 the measured ε1 was 0.931. This also shows good agreement with the

predicted ε1: 0.922. These results validate the modeling approach for the transitional

probability ε1.

Data ClB

QB

Q

Data

ClB

ClB

ClB

C

CB

CB

C

CB

C

C B C

CB

9

4_1

13

10_1

7

14

11

8
6

12_1

10

12

T5_1

T23T28 T4

T19 T20

T25

T29

T26

T24

T27

T18

T17

T11

T8 T3_1

T2_1

T14

T1

T15

T16

T6

T12

T13

T7

Target
Region

Figure 40. Laser Target Region for DFFC D-Flip-Flop – Schematic (after [41])

Target
Region

Figure 41. Laser Target Region for DFFC D-Flip-Flop – Layout (after [45])

 73

Program Laser
PRF

Number
of Pulses

Estimated
Number of

SEUs

Average
Number

of Output
Errors

Transitional
Probability

ε1
(Measured)

Transitional
Probability

ε1
(Predicted)

Test
Program

1

1 kHz 120,000 60,000 238.4 0.00397 0.00391

Test
Program

2

100
Hz

12,000 6000 5479.8 0.9133 0.922

Table 20. Laser Test #3 Results

D. HEAVY-ION TESTING

1. Objective

The objective of the heavy- ion testing is to validate the system-level predictions

in Chapter IV. In laser testing, the SET generation is controlled by focusing the beam on

the transistor of interest. In heavy- ion testing, the LET and fluence of particles are

controlled, but the exact location of ion impact is not. The SET generation is governed

by the relationship for equation 3.2:

P(SET occurring with given LET) = σΦ(LET) (3.2).

Since Φ(LET) is controlled, the heavy-ion testing provides a measure of the device cross-

section as a function of LET. By executing the three different test programs used for the

system predictions in Chapter IV, the program-dependent cross-sections can be validated.

The predicted saturated cross-section and onset LET can also be validated.

2. Test Operation

The heavy- ion tests were performed at the Texas A & M University Cyclotron

Institute Radiation Effects Facility. The same test board and computer used in the laser

testing were used. Figure 42 shows a close-up of the output of the beam and the device

under test. Three different species of ions were used to provide six different LET values.

These are shown in Table 21.

 74

Figure 42. Heavy-Ion Test Configuration

Ion Energy (MeV) Angle of Incidence
(Degrees)

LET
(MeV*cm2/mg)

Argon 933 0 5.69
Argon 933 45 8.08

Krypton 1862 0 20.6
Krypton 1862 45 28.9
Xenon 2730 0 40.9
Xenon 2730 45 57.8

Table 21. Heavy-Ions Used for Heavy-Ion Testing

For each of the LETs shown in Table 21, two test runs were performed: one with

KDLX #1, and the other with KDLX #2. Two different KDLX devices were used to

 75

obtain better statistics. Each test run lasted twelve minutes and consisted of the following

sequence of test programs:

1. Test Program #1 @ 5 MHz

2. Test Program #2 @ 5 MHz

3. Test Program #3 @ 5 MHz

4. Test Program #1 @ 625 kHz

5. Test Program #2 @ 625 kHz

6. Test Program #3 @ 625 kHz.

Each program lasted exactly two minutes and was run at both the highest and lowest

clock frequencies available on the test system. During the execution of each program, the

number of access, program address, and control errors was recorded, as was all the error

information.

3. Test Results

The test results are divided into three cross-section versus LET plots: access

errors, control errors, and program address errors. Figures 43 and 44 show the access-

error cross-section versus LET. Figures 45 and 46 show the program-address- error

cross-section versus LET. Figures 47 and 48 show the control-error cross-section versus

LET.

 76

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0 10 20 30 40 50 60

LET (MeV*cm2/mg)

C
ro

ss
-S

ec
ti

o
n

 (c
m

2)

Test Program #1 @ 5 MHz

Test Program #2 @ 5 MHz

Test Program #3 @ 5 MHz

Figure 43. Measured Access-Error Cross-Section Versus LET @ 5 MHz

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0 10 20 30 40 50 60
LET (MeV*cm2/mg)

C
ro

ss
-S

ec
ti

o
n

 (c
m

2)

Test Program #1 @
625 kHz
Test Program #2 @
625 kHz
Test Program #3 @
625 KHz

Figure 44. Measured Access-Error Cross-Section Versus LET @ 625 kHz

 77

1.00E-08

1.00E-07

1.00E-06

1.00E-05

0 10 20 30 40 50 60

LET (MeV*cm
2
/mg)

C
ro

ss
-s

ec
tio

n
(c

m
2
)

Test Program #1 @ 5 MHz

Test Program #2 @ 5 MHz
Test Program #3 @ 5 MHz

Figure 45. Measured Control-Error Cross-Section Versus LET @ 5 MHz

1.00E-08

1.00E-07

1.00E-06

1.00E-05

0 10 20 30 40 50 60

LET (MeV*cm
2
/mg)

C
ro

ss
-s

ec
tio

n
(c

m
2
)

Test Program #1 @ 625 kHz

Test Program #2 @ 625 kHz
Test Program #3 @ 625 KHz

Figure 46. Measured Control-Error Cross-Section Versus LET @ 625 kHz

 78

1.00E-08

1.00E-07

1.00E-06

1.00E-05

0 10 20 30 40 50 60

LET (MeV*cm2/mg)

C
ro

ss
-s

ec
tio

n
(c

m
2)

Test Program #1 @ 5 MHz

Test Program #2 @ 5 MHz

Test Program #3 @ 5 MHz

Figure 47. Measured Program-Address-Error Cross-Section Versus LET @ 5 MHz

1.00E-08

1.00E-07

1.00E-06

1.00E-05

0 10 20 30 40 50 60

LET (MeV*cm
2
/mg)

C
ro

ss
-s

ec
tio

n
(c

m
2)

Test Program #1 @ 625 kHz

Test Program #2 @ 625 kHz

Test Program #3 @ 625 KHz

Figure 48. Measured Program-Address-Error Cross-Section Versus LET @ 625 kHz

 79

E. COMPARISON BETWEEN SYSTEM PREDICTIONS AND TEST RESULTS

Figure 49 shows a comparison between the predicted access-error cross-sections

and the measured access-error cross-sections from the heavy-ion testing. The Measured

Test Program #1 cross-section is the average of the cross-sections of the 625 kHz and 5

MHz tests. This is also true for Test Program #2 and Test Program #3. The predicted

cross-sections track the measured values well, especially at the higher LETs.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0 10 20 30 40 50 60

LET(MeV*cm
2
/mg)

C
ro

ss
-s

ec
ti

o
n

 (
cm

2)

Measured Test Program #1

Measured Test Program #2

Measured Test Program #3

Predicted Test Program #1

Predicted Test Program #2

Predicted Test Program #3

Figure 49. Measured and Predicted Access-Error Cross-Section Versus LET

Table 22 compares the measured and the predicted saturated cross-section and

onset LETs for each of the test programs. The predicted saturated cross-sections match

the measured cross-sections very well. For each of the test programs, the predicted

values are within one standard deviation of the measured cross-section.

Table 22 also shows that the predicted onset LET is slightly higher than the

measured onset LET. This illustrates the sensitivity of the prediction to the funnel length

value. It also appears that the predicted cross-sections are greatly overestimated at low

LETs. This shows that modeling the sensitive cross-section of a transistor as the drain

area surrounded by one depletion width is too large for LET values near the onset

threshold. One possible explanation for this is that the charge-collection process is

hindered as the charge has to travel farther to get to the drain contact. Figure 50 shows

the cross-section of two sensitive NFET drains. In 50a, the ion is incident directly upon

 80

the drain contact. This creates a funnel directly below the contact (shown in white). The

red arrow indicates the flow of electrons to the drain. The entire path for an electron is

within the funnel, which has extremely high conductivity during the charge-collection

process. In contrast, the ion strike and funnel formation are away from the drain contact

(but still in the sensitive region) in Figure 50b. In this case, the electrons must travel

some distance through the depletion region, where the conductivity is much lower than

the conductivity of the funnel. This reduced conductivity reduces the charge-collection

efficiency. For low-LET ions, the reduced charge-collection efficiency prevents enough

charge to be collected at the drain contact to cause an upset. Larger-LET ions have

enough charge that the charge collected at the drain contact is enough, in spite of the

reduced collection efficiency.

To support this hypothesis, the prediction for the effective cross-section of Test

Program #3 was modified using the drain contact area as the sensitive area for the

transistor. Table 23 compares the measured effective cross-section for Test Program #3

with the predicted effective cross-section using the drain contact area as the cross-section

and the predicted effective cross-section using the drain area plus depletion width. This

comparison shows that the using the drain contact area matches much more closely to the

measured value for the cross-section. This indicates that this may be a viable

explanation.

 81

Program Onset LET
(MeV*cm2/mg)

Saturated Cross-
Section (cm2/device)

Measured Test Program
#1

< 20.7 3.23e-6
+/- 2.11e-6

Predicted Test Program
#1

8.4 3.59e-6

Measured Test Program
#2

< 5.69 8.20e-5
+/- 8.44e-6

Predicted Test Program
#2

8.4 7.77e-5

Measured Test Program
#3

< 5.69 8.9e-5
+/- 1.49e-5

Predicted Test Program
#3

8.4 9.16e-5

Table 22. Measured and Predicted Onset LET and Saturated Cross-Section

N+

P Substrate

Vdd

N+

P Substrate

Vdd

Funnel

Direction of
electrons

Funnel

Direction of
electrons

Drain
Contact

a. Ion incident
 upon drain contact

b. Ion incident away
from drain contact

Drain
Contact

Figure 50. Onset-LET Cross-Section Reduction

 82

Measured Cross-

section @ Onset LET

(cm2)

Predicted Effective Cross-

section @ Onset LET

using Active Contact Area

(cm2)

Predicted Effective

Cross-section @ Onset

LET using Drain Area

(cm2)

1.55e-7 1.67e-7 5.93e-6

Table 23. Measured and Predicted Access-Error Cross-sections for Test Program #3

 F. CONCLUSION

The modeling and simulations documented in Chapter IV were used to predict the

transitional probabilities of the SET-state-transition model. These probabilities were

combined to predict the test-program-dependent effective cross-section of the KDLX

processor. The results of the laser testing described in this chapter show very good

agreement with the clock-edge effects modeling (which is a key element of the

transitional probability δ1) and the predicted transitional probability ε1. The results from

the heavy-ion testing also show very good agreement between the predicted and

measured system-level cross-sections. The combination of the results from the laser

testing and the heavy- ion testing validates both the transitional-probability modeling as

well as the system-level predictions from Chapter IV. This, in turn validates the

modeling approach defined in Chapter III.

 83

VI. CONCLUSION

A. SUMMARY OF RESEARCH

This dissertation formulated, verified and validated a methodology to determine

the single-event transient (SET) tolerance of a complex digital system. A 16-bit RISC

microprocessor, the KDLX, was the candidate complex digital system.

The formulation of the methodology was based on the SET-state-transition model

of Figure 2. State S1 is the error/transient- free state. From this state, three transitional

probabilities, β1, β2, and β3 bring the system to states S3 (SEU), S2 (Logic Gate

Transient), and S4 (Output Driver Transient), respectively. These transitional

probabilities are SET generation probabilities. From state S2, δ1 is the probability that

the transient becomes latched to become an SEU (state S3); δ2 is the probability that the

transient propagates to an output driver (state S4). From state s4, ε2 is the probability

that the transient causes an error to the external system (state S5 - failure). These

transitional probabilities are SET propagation probabilities. From state S3, ε1 is the

transitional probability that the SEU will propagate to the output and cause an error to the

external system (also state S5). This is the SEU propagation probability.

Determination of the SET generation probabilities is based on three key

parameters: critical charge, funnel length, and cross-section. For transitional probability

β1, the critical charge is the minimum quantity of charge that causes an SEU to the

memory element. For β2 and β3, the critical charge is the minimum quantity of charge

that causes a given amplitude and pulsewidth for an SET. It is determined with SPICE

simulations by injecting a double-exponential current pulse onto the node of interest and

observing the results. The funnel length is the linear distance of charge collection in the

ion track. It is a necessary parameter to convert the critical charge to an equivalent linear

energy transfer (LET). The cross-section of a transistor is the sensitive region that the ion

must hit to cause the SET. It is determined from the layout and the depletion width.

Determination of the SET propagation probabilities is based on SET analog

propagation, SET logic propagation, and clock-edge effects modeling. SET analog

 84

propagation modeling determines if a transient has enough energy to propagate, given a

sensitized logic path. It is modeled in SPICE. SET logic propagation modeling

determines the probability of a sensitized logic path. Clock-edge effects modeling

determines the probability that a transient is latched into a memory element. It is

accomplished using SPICE simulations.

The probability of SEU propagation is determined by instruction-based register-

usage analysis and VHDL-based fault injection. Instruction-based register-usage analysis

is top- level analysis to determine which registers are used in a particular functional mode.

VHDL-based fault injection is used when the top- level analysis does not provide enough

insight into the propagation of SEUs in the design.

To verify this methodology, the SET tolerance of a candidate complex digital

system was determined. The candidate system was the 16-bit KDLX RISC processor.

This processor was implemented using the MOSIS prototyping service. Using the design

information available, the SET generation modeling, SET propagation modeling, and

SEU propagation modeling were performed.

The funnel length was estimated to be 3.9 µm based on the 3-dimensional

semiconductor simulation results in Dodd[28]. For β1, the total effective saturated cross-

section of the DFFC standard-cell (the only type of memory element used in the KDLX)

was 33.66 µm. The critical charge was 339 fC, or an ion with an LET equal to 8.4

MeV*cm2/mg. The effective cross-section of the transistor that defined the critical

charge was 2.18 µm. For β2, the sensitive effective cross-section of the inverter was

determined to be 35.79 µm. The critical charge to provide a 3V amplitude, 190 ps length

of the SET pulse was determined to be 423.7 fC. This was incident on the NFET and

requires an ion with an LET equal to 10.5 MeV*cm2/mg. For β3, it was determined that

the capacitance at the output of the KDLX is so la rge that an ion with an LET greater

than 340 MeV*cm2/mg was necessary to provide a small effect at the output. Ions with

LETs that large do not exist, thus β3 was set to 0.

The SET propagation modeling was necessary to determine δ1, δ2 and ε2

transitional probabilities. The analog propagation was modeled using SPICE. The

 85

modeling showed that there is a propagation threshold. If the amplitude and pulsewidth

of the SET are below the threshold, propagation without attenuation will not occur. For

inverters, this threshold was determined to be an amplitude of 3.0V and pulsewidth of

400 picoseconds for a 0-1-0 SET and 3.3V, 460 picoseconds for a 1-0-1 SET. For SET

logic propagation, it was determined that the multiplexer was critical in determining the

logic cross-section. This was because the logic datapath is largely determined by the how

the instruction being executeded controls the mulitplexers to steer the data. The clock-

edge effects modeling revealed that an SET must have equal amplitude and longer pulse

than is required for the propagation threshold (480 picoseconds vs. 400 picoseconds for a

1-0-1 SET). This simplified the SET propagation modeling, because if an SET was large

enough (both in amplitude and pulsewidth) to be latched, then it must also be large

enough to propagate without attenuation.

The SEU propagation modeling focused on determining the sensitive window for

an SEU to occur during the execution of an instruction to cause improper execution. For

most registers, this was accomplished by performing instruction-based register-usage

analysis for each instruction. The sensitive windows for the pipeline registers were not

apparent from this analysis. As a result, VHDL-based fault injection was used to

determine the sensitive windows in the pipeline.

The results of the modeling were combined to provide a system-level prediction

for the KDLX processor for three different test programs. For Test Program #1, the

predicted effective saturated cross-section was 767.55 µm2. For Test Program #2 the

predicted effective saturated cross-section was 6841.22 µm2, and for Test Program #3, it

was 8226.06 µm2.

Laser testing and heavy- ion testing were performed to validate the results of the

modeling. Laser testing was used to validate key transitional probabilities. Heavy- ion

testing was performed to validate the system-level predictions.

The laser testing allowed direct injection into states S2 and S3. This way, the

predicted transitional probabilities δ1 and ε1 could be validated. The logic propagation

and clock-edge effects components of δ1 were validated. To validate logic propagation,

 86

it was shown that a logic gate that is not in the datapath defined by the instruction will not

contribute to the cross-section of the instruction. To validate the clock-edge effects

modeling, it was shown that the probability of an SET being latched is a linear function

of the clock frequency. It was also shown that a longer SET pulse results in a higher

probability of being latched. To validate ε1, the sensitive window concept was tested.

For Test Program #1, the predicted ε1(R1, bit 1) was 0.00391; the measured value was

0.00397. For Test Program #2, the predicted ε1(R1, Bit 1) was 0.922, and the measured

value was 0.931.

 The heavy- ion testing validated the system-level predictions. The testing used

six different LET values: 5.69, 8.08, 20.6, 28.9, 40.9, and 57.8 MeV*cm2/mg. In all

cases, the cross-section versus LET curves tracked the predicted values for each test

program. This was particularly true at LETs > 20 MeV*cm2/mg. The predicted onset

LET was 8.4 MeV*cm2/mg; the measured was < 5.69 MeV*cm2/mg (this was the lowest

LET tested). The predicted saturated cross-section of Test Program #1 was 3.59e-6

cm2/device; the measured value was 3.23e-6 cm2/device. For Test Program #2, the

predicted saturated cross-section was 7.77e-5 cm2/device; the measured value was 8.20e-

5 cm2/device. For Test Program #3, the predicted saturated cross-section was 9.16e-5

cm2/device; the measured value was 8.9e-5 cm2/device.

B. THE 90% SOLUTION

The methodology implemented in this dissertation demonstrates very good

agreement between predicted and measured values. A closer look at these results reveals

that the system-level cross-section is dominated by the S1-to-S3-to-S5 transition path.

This is largely due to the fact that the clock-edge effects minimize the δ1 transitional

probability.

The 90% solution uses this fact to simplify the methodology. All modeling and

simulations can focus on determining the transitional probabilities of the S1-to-S3-to-S5

transition path. The problem then reduces to determining the cross-section versus LET

curve of the memory elements (β1) and determining the probability of SEU propagation

 87

(ε1). The transitional probability β1 is determined using SPICE simulations and ε1 is

determined using the instruction–based register-usage analysis.

C. ORIGINAL CONTRIBUTIONS

The primary original contribution of this dissertation is the methodology to

determine the effective cross-section of a complex digital system. In particular, the use

of the SET-state-transition diagram is unique. This allows the combinational- logic

contribution of the cross-section to be determined separately from the static cross-section.

The instruction-based register-usage analysis approach to determine the

probability of SEU propagation is also unique, because it provides a precise measure of

the sensitive window for a register as a function of the instruction execution. This allows

the total number of modes of a processor to be reduced to something that is workable to

determine the cross-section for each functional mode.

The SPICE injection circuits are also contributions, because they allow for more

accurate SPICE simulations of SETs. While these injection circuits do not provide the

accuracy of a high-end mixed-mode simulation that uses 3-dimensional semiconductor

modeling, they do represent a significant improvement over the independent current pulse

injection approach. This improvement is due to the fact that the charge collected is a

function of the injection node voltage with the injection circuits used in this dissertation,

while the charge collected using the independent current pulse is not a function of the

node voltage.

D. EXTENSION TO OTHER IMPLEMENTATIONS

This dissertation documented the application of the methodology to the KDLX

RISC processor. It was validated with the laser and heavy- ion testing, which is

important, but for this dissertation to be complete, how the methodology can be applied

to other classes of complex digital systems must also be shown.

1. The Standard-Cell Application Specific Integrated Circuit (ASIC) 4

 The first alternate implementation considered is the standard-cell ASIC. Because

this is a standard-cell design, the designer has the same information available from the

 88

parametric test results of the foundry run, the extracted layout, and the gate- level

hardware-description language (HDL) definition of the design. Thus, the approach is the

same as the KDLX to determine the SET generation probabilities. The analog

propagation and clock-edge effects modeling are also the same. The difference between

the standard-cell ASIC and the KDLX processor is that the ASIC does not have an

instruction set. This means that the instruction-based register-usage analysis approach

does not apply. Thus, instead of determining the datapath and the ε1 transitional

probability for each instruction, these must evaluated for each functional mode. The total

effective device cross-section is then determined by the equation:

 σdevice = Σ σn* Dn , n = 1 to the total number of modes, where (6.1)

σn = mode-dependent cross-section for mode n,

 Dn = duty cycle of state n.

2. Field Programmable Gate Array (FPGA)

The next alternate implementation considered is an FPGA. This is fundamentally

different from the standard-cell ASIC because the engineer typically will not have the

parametric test results of the foundry run or a SPICE transistor- level model of the logic

modules. However, the designer will have a high- level description of the design, as well

as a synthesized logic-module description. It is also likely that the engineer has some

SEU data on the FPGA logic modules [47]. Assuming that there is SEU test data on the

logic modules, the problem becomes determining the functional-mode-dependent cross-

section. This requires a determination of the number of logic modules used for each

functional mode. The total device cross-section is then determined using equation 6.1.

3. Off-the-Shelf Processor

An off-the-shelf processor is the next implementation considered. In this case, the

only information likely to be available is an instruction-set architecture (ISA) description

of the processor. The information contained in an ISA description may be similar to the

information in a full HDL description of the microarchitecture, except that the ISA

4 While it is true that an ASIC can be a processor, here an ASIC is defined as a complex digital system that
does not contain an instruction set.

 89

description will be missing the hidden memory elements that are included in the HDL

description. Examples of hidden memory elements in the KDLX are the pipeline

memory elements, the ALU-buffer memory elements, and the data input/output buffer

memory elements. These hidden memory elements may create a very big difference

between the ISA description and the HDL microarchitecture description. These hidden

elements contribute to the effective cross-section, but are not apparent in looking at the

ISA description of the processor.

The approach for the processor focuses on determining the instruction-dependent

cross-section using a combination of what is known from the ISA description and what

can be determined about the microarchitecture from SEU testing. The procedure is as

follows:

1. For each instruction type, determine the sensitive memory elements using the

ISA description.

2. Add a variable to depict the additional hidden sensitive memory elements for

each instruction to the result in #1.

3. Create a test program for each instruction type to determine the mode-

dependent cross-section associated with that instruction type. Predict the cross-

section of the test program using #1 and #2.

4. Create a (or use an existing) program that uses many different instructions. This

is the validation program. Predict the cross-section using #1 and #2.

5. At a high LET (to insure the best statistics), run all programs to determine the

saturated cross-sections for each program.

6. Using the test program with the largest saturated cross-section, test the

processor at lower LETs to obtain a cross-section versus LET curve. The other

test programs should follow this same cross-section versus LET trend.

7. Determine the hidden number of memory elements for each instruction by

comparing the resulting saturated cross-sections with the cross-sections that were

predicted in #3.

 90

8. Update the instruction-dependent cross-sections by including the contribution

of the hidden memory elements.

9. Compare the measured cross-section of the validation program to the updated

predicted cross-section. If the two agree, the predicted instruction-dependent

cross-sections will be validated.

4. Off-the-Shelf ASIC

The final implementation considered is an off-the-shelf ASIC. In this case, the

device is not a processor, and the only information typically available is a block diagram

from the data sheet, which may be significantly different from the actual architecture. As

before, it is necessary to determine the cross-section for each of the operational modes of

the device. Each functional mode of the device should be tested at a high LET to

determine the relative cross-section of each mode. Then, as with the off- the-shelf

processor, the cross-section versus LET curve is determined by testing at lower LETs

with the device operating in the functional mode with the largest cross-section. The total

effective device cross-section is determined by using equation 6.1.

E. AREAS FOR FURTHER INVESTIGATION

There are two primary areas for further investigation. The first area is the

verification of the approaches defined in the previous section. This could be

accomplished by implementing the approach on a standard-cell ASIC, FPGA, off-the-

shelf processor, and off-the-shelf ASIC. This would demonstrate the versatility of the

methodology defined in this dissertation.

The second area is the determination of how the sensitive area of a transistor is

reduced as the LET approaches the onset LET. In this dissertation, it was assumed that

the sensitive area is ze ro if the LET is less than the onset LET and becomes the area

defined by equations 3.12 – 3.14 once the onset LET has been reached. At high LETs,

the test results in Chapter V show that this estimate is accurate; however at LETs less

than 10 MeV*cm2/mg, the measured cross-section is an order of magnitude less than the

predicted cross-section. This indicates that the assumption is not valid at lower LETs,

which is why further investigation is merited. The recommended approach is to perform

mixed-mode 3-dimensional simulations of the transistors in the DFFC standard-cell flip-

 91

flop. These simulations allow the precise control of the location that the incident ion

strikes the sensitive area. This would show if the charge-collection process is enhanced

as the location of the funnel moves closer to the drain contact (see Figure 50). The

simulation results could be validated with testing using heavy ions with low values of

LET.

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

APPENDIX A – KDLX PROCESSOR DESCRIPTION

A. INTRODUCTION

The KDLX processor is a 16-bit version of the DLX processor described in

Computer Architecture, a Quantitative Approach, by Hennessey and Patterson[48]. It

was implemented through the MOSIS prototyping service using the Hewlett-Packard 0.5

µm CMOS process. The processor was designed using the Tanner Tools Pro MOSIS

SCMOS Standard-cell library, with a gate length of 0.7 µm. This appendix describes the

functional blocks of the processor as well as the instruction set that was implemented.

Figure 51 shows a photograph of the device. Figure 52 shows the layout of the KDLX.

Figure 51. Photograph of KDLX Processor

Figure 52. KDLX Layout

 94

B. TOP-LEVEL FUNCTIONAL BLOCK DIAGRAM

Figure 53 shows the top- level block diagram of the KDLX processor. It consists

of the following functional blocks:

1. General-Purpose Register File – contains the general-purpose 16-bit registers (

 R0 – R16).

2. ALU (Arithmetic Logic Unit) – performs arithmetic and logical functions on

its inputs.

3. PC Control Module – controls the program counter.

4. Pipeline Module – implements the pipeline by providing the necessary control

signals to the other modules during each pipeline stage.

5. RW_Control – provides the Rd* and Wr* signals to control the input and

output of the processor.

6. ALU Out Buffer – buffers the output of the ALU to drive the ADDR_Out

signal and to feedback into the Delayed_ALU_Out_Buffer Register for writeback.

7. Delayed ALU Out Buffer – buffers the output of the ALU for writeback into

the general-purpose registers.

8. Data Out Buffer – buffers the output data when writing to memory.

9. Data In Buffer – buffers the input data when reading from memory.

10. Reg_In_Sel Multiplexer – selects the input to the general-purpose registers.

This input can be the Program_Addr+2 signal, the Data_In register, or the

Delayed_ALU_Out Buffer (from the ALU).

11. A_Mux – selects the A input for the ALU. This input can be the

Program_Addr+1(15:0) from the PC Control Module, the 16-bit immediate

(Immed[15:0]), the high 8-bit immediate (Immed[7:0]), or the register RA from

the general-purpose register file.

12. B_Mux – selects the B input for the ALU. This can the sign-extended

immediate (S_Immed), which is the sign-extended 8-bit immediate value, the

 95

Register
File

ALU ALU Out
Buffer

Delayed
ALU Out

Buffer

ADDR_Out(15:0)

Rb

Ra

Data Out
Buffer

Data In
Buffer

US_Imm(7:0)

S_Imm(7:0)

Data(15:0)

US_Imm(15:8)

Imm(15:0)

PC
Control

Program_Addr(15:0)

Program_Addr(15:0) + 1

Program_Addr(15:0) + 2

Pipeline Instr(23:0)

Control Signals

Imm(15:0)

RW_Control
Rd*

Wr*

Figure 53. KDLX Block Diagram

 96

unsigned- immediate (US_Immed) value, or the register RB from the general-

purpose register file.

C. GENERAL-PURPOSE REGISTER FILE

Figure 54 shows the block diagram of the general-purpose register file. The

general-purpose register selected by the Dest(3:0) signal is written through the

Reg_Data_In input when the WB_Enable signal is active. The registers RA and RB are

loaded with the registers selected by the RS1(3:0) and RS2(3:0) inputs.

Register
RA

Register
RB

RA(15:0)

RB(15:0)

RS2(3:0)

RS1(3:0)

Reg_Data_In(15:0)

Dest(3:0)

General-
Purpose
Registers
R0-R15

WB_Enable

Figure 54. General-Purpose Register File Block Diagram

D. PIPELINE MODULE

Figure 55 shows a block diagram of the Pipeline Module. The Fetch pipeline

cycle is not shown because it fetches the 24-bit instruction word, Instr(23:0). The

Decode stage provides the RS1 and RS2 multiplexer selections for the General-Purpose

Register File. The Execute stage is the stage in which the ALU operations are performed.

In this stage, the pipeline module provides the 8 or 16-bit immediate value (depending on

the instruction type). The ALU_Op(4:0) defines the operation of the ALU module. The

A_Mux and B_Mux signals are used to define the input to the ALU. The PC_Sel

controls the source of the next program counter for the PC Control module. The Memory

Stage provides the Rd_Enable and Wr_Enable to the RW_Control module to drive the

Rd* and Wr* outputs. The Writeback stage provides the WB_Enable, Dest(3:0), and

 97

Reg_In_Sel(1:0) to the General-Purpose Register File. Additionally, the Writeback

stage also provides the Interrupt Address Register Enable (IAR_Enable) to the PC

Control module to save the return address during a TRAP instruction.

Decode
Stage

Instr(23:0)

RS1(3:0)

RS2(3:0)

Immed(15:0)

B_Mux(1:0)

A_Mux(1:0)

ALU_Op(4:0)

Memory
Stage

Rd_Enable

Wr_Enable

WB_Enable

Reg_In_Sel(1:0)

IAR_Enable

PC_Sel(1:0)

Execute
Stage

Writeback
Stage

Dest(3:0)

Figure 55. Pipeline Module Block Diagram

PC_Sel(1:0)

16-bit
Register

Program_Addr(15:0)

+
1

16-bit
Register

16-bit
Register

+
1

16-bit
Register

16-bit
Register

16-bit
Interrupt
Address
Register

Program_Addr+1(15:0) Program_Addr+2(15:0)

IAR_Enable

ALU_Out(15:0)

Figure 56. PC Control Module Block Diagram

E. PC CONTROL MODULE DESCRIPTION

Figure 56 shows a block diagram of the PC Control module. The PC_Sel(1:0)

selects the source for the next program address. The sources can be the incremented

Program Address (normal operation), the Interrupt Address(for a return from exception,

or RFE, instruction) or the output of the ALU, ALU_Out (for Jump and Branch

instructions). The PC Control module provides the Program_Addr(15:0) output to

 98

perform the instruction fetch. The Program_Addr+1(15:0) output is used by the ALU to

determine the next program address for Branch instructions. The Program_Addr+2(15:0)

is the link address used in the jump and link instructions.

F. ARITHMETIC LOGIC UNIT (ALU) MODULE

Figure 57 shows a block diagram of the ALU Module. The adder module

performs addition and subtraction. The ALU logic module provides the capability to

perform the logical functions AND, OR, and exclusive-OR. The barrel shifter is used for

bit-wise shift operations. The conditional set module is used for the set-on conditional

functions.

+/-

ALU
Logic

Module

Barrel
Shifter

Set
Module

A(15:0)

B(15:0)

ALU_Out(15:0)

ALU_Op(4:0)

Figure 57. Arithmetic Logic Unit (ALU) Module Block Diagram

 99

G. INSTRUCTION SET DESCRIPTION

This section describes the instructions that were implemented in the KDLX. The

format of the instructions is based on the description in Sailer[49].

Instruction: ADD (Register Add)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x01 Rs1 Rd Rs2 Unused
Usage: ADD Rd, Rs1, Rs2

 Operation: (Rs1 + Rs2) = Rd

Instruction: ADDI (Add Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x41 Rs1 Rd Immed
 Usage: ADD Rd, Rs1, Rs2

 Operation: (Rs1 + [(Immed7)8 ||Immed])= Rd

Instruction: ADDUI (Add Unsigned Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x21 Rs1 Rd Immed
 Usage: ADD Rd, Rs1, Rs2

 Operation: (Rs1 + [(0)8 ||Immed])= Rd

Instruction: AND (Register AND)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x09 Rs1 Rd Rs2 Unused
 Usage: AND Rd, Rs1, Rs2

 Operation: (Rs1 (logical-and) Rs2) = Rd

 100

Instruction: ANDI (And Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x29 Rs1 Rd Immed
 Usage: AND Rd, Rs1, Immed

 Operation: (Rs1 logical-and [(Immed7)8 ||Immed])= Rd

Instruction: BEQZ (Branch if Equal to Zero)

23 16 15 12 11 8 7 0

Opcode: 0xC1 Rs1 Unused Immed
 Usage: BEQZ Rs1, Immed

 Operation: If Rs1 = 0,

then Program_Addr = (PC+1 + [(Immed7)8 ||Immed])

Instruction: BNEZ (Branch if Not Equal to Zero)

23 16 15 12 11 8 7 0

Opcode: 0xC0 Rs1 Unused Immed
 Usage: BNEZ Rs1, Immed

 Operation: If Rs1 != 0,

then Program_Addr = (PC+1 + [(Immed7)8 ||Immed])

Instruction: J (Jump)

23 16 15 0

Opcode:0xC8 Immed
 Usage: J Immed

 Operation: Program_Addr = Immed

Instruction: JAL (Jump and Link)

23 16 15 0

Opcode:0xE8 Immed
 Usage: JAL Immed

 Operation: Program_Addr = Immed;

 R15 = Link_Program_Address

 101

 Instruction: JALR (Jump Register and Link)

23 16 15 12 11 0

Opcode: 0x68 Rs1 Unused
 Usage: JALR Rs1

 Operation: Program_Addr = (Rs1)

 R15 = Link_Program_Address

Instruction: JR (Jump Register)

23 16 15 12 11 0

Opcode: 0x48 Rs1 Unused
 Usage: JALR Rs1

 Operation: Program_Addr = (Rs1)

Instruction: LHI (Load High Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x08 Unused Rd Immed
 Usage: LHI Rd, Immed

 Operation: Rd = Immed || (0)8

Instruction: LW (Load Word)

23 16 15 12 11 8 7 0

Opcode: 0x08 Unused Rd Immed
 Usage: LW Rd, Rs1(Immed)

 Operation: Rd = Mem{Rs1 + [(Immed7)8 ||Immed]}

Instruction: NOP (No Operation)

23 16 15 0

Opcode:0x00 Unused
 Usage: NOP

 Operation: None

 102

Instruction: OR (Register OR)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x0A Rs1 Rd Rs2 Unused
 Usage: OR Rd, Rs1, Rs2

 Operation: Rd = (Rs1 (logical-or) Rs2)

Instruction: ORI (OR Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x2A Rs1 Rd Immed
 Usage: OR Rd, Rs1, Immed

 Operation: (Rs1 logical-or [(Immed7)8 ||Immed])= Rd

Instruction: RFE (Return from Exception)

23 16 15 0

Opcode:0xF8 Unused
 Usage: RFE

 Operation: Program_Address = Interrupt_Address_Register

Instruction: SEQ (Set Equal)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x18 Rs1 Rd Rs2 Unused
 Usage: SEQ Rd, Rs1, Rs2

 Operation: If Rs1 = Rs2, then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SEQI (Set Equal Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x58 Rs1 Rd Immed
 Usage: SEQI Rd, Rs1, Immed

 Operation: If Rs1 = [(Immed7)8 ||Immed]), then Rd = 0x0001,

 Else, Rd = 0x0000

 103

Instruction: SGE (Set if Greater Than or Equal)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x19 Rs1 Rd Rs2 Unused
 Usage: SGE Rd, Rs1, Rs2

 Operation: If Rs1 >= Rs2, then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SGEI (Set if Greater Than or Equal Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x59 Rs1 Rd Immed
 Usage: SGEI Rd, Rs1, Immed

 Operation: If Rs1 >= [(Immed7)8 ||Immed]), then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SGT (Set if Greater Than)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x1A Rs1 Rd Rs2 Unused
 Usage: SGT Rd, Rs1, Rs2

 Operation: If Rs1 > Rs2, then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SGTI (Set if Greater Than Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x5A Rs1 Rd Immed
 Usage: SGTI Rd, Rs1, Immed

 Operation: If Rs1 > [(Immed7)8 ||Immed]), then Rd = 0x0001,

 Else, Rd = 0x0000

 104

Instruction: SLE (Set if Less Than or Equal)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x1B Rs1 Rd Rs2 Unused
 Usage: SLE Rd, Rs1, Rs2

 Operation: If Rs1 < Rs2, then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SLEI (Set if Less Than or Equal Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x5B Rs1 Rd Immed
 Usage: SLEI Rd, Rs1, Immed

 Operation: If Rs1 <= [(Immed7)8 ||Immed]), then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SLL (Shift Logic Left)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x11 Rs1 Rd Rs2 Unused
 Usage: SLL Rd, Rs1, Rs2

 Operation: Rd = (Rs1) shifted left by Rs2(3:0) bits

Instruction: SLLI (Shift Logic Left Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x51 Rs1 Rd Immed
 Usage: SLLI Rd, Rs1, Immed

 Operation: Rd = (Rs1) shifted left by Immed(3:0) bits

Instruction: SLT(Set if Less Than)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x1C Rs1 Rd Rs2 Unused
 Usage: SLT Rd, Rs1, Rs2

 Operation: If Rs1 < Rs2, then Rd = 0x0001,

 Else, Rd = 0x0000

 105

Instruction: SLTI (Set if Less Than Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x5C Rs1 Rd Immed
 Usage: SLTI Rd, Rs1, Immed

 Operation: If Rs1 < [(Immed7)8 ||Immed]), then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SNE (Set If Not Equal)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x1D Rs1 Rd Rs2 Unused
 Usage: SNE Rd, Rs1, Rs2

 Operation: If Rs1 != Rs2, then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SNEI (Set If Not Equal Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x58 Rs1 Rd Immed
 Usage: SNEI Rd, Rs1, Immed

 Operation: If Rs1 != [(Immed7)8 ||Immed]), then Rd = 0x0001,

 Else, Rd = 0x0000

Instruction: SRA (Shift Right Arithmetic)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x13 Rs1 Rd Rs2 Unused
 Usage: SRA Rd, Rs1, Rs2

Operation: Rd = (Rs1) shifted right by Rs2(3:0) bits,

with Rs1(15) shifted in from right (for sign extension)

 106

Instruction: SRAI (Shift Right Arithmetic Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x53 Rs1 Rd Immed
 Usage: SRAI Rd, Rs1, Immed

Operation: Rd = Rd = (Rs1) shifted right by Immed(3:0) bits, with
Rs1(15) shifted in from right (for sign extension)

Instruction: SRL (Shift Right Logical)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x12 Rs1 Rd Rs2 Unused
 Usage: SRL Rd, Rs1, Rs2

Operation: Rd = (Rs1) shifted left by Rs2(3:0) bits, with 0s shifted in
from right

Instruction: SRLI (Shift Right Logical Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x52 Rs1 Rd Immed
 Usage: SRLI Rd, Rs1, Immed

Operation: Rd = (Rs1) shifted left by Rs2(3:0) bits, with 0s shifted in

from right

Instruction: SUB (Register Subtract)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x01 Rs1 Rd Rs2 Unused
 Usage: Sub Rd, Rs1, Rs2

 Operation: Rd = (Rs1 - Rs2)

Instruction: SUBI (Subtract Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x43 Rs1 Rd Immed
 Usage: SUB Rd, Rs1, Rs2

 Operation: Rd = (Rs1 - [(Immed7)8 ||Immed])

 107

Instruction: SUBUI (Subtract Unsigned Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x23 Rs1 Rd Immed
 Usage: Sub Rd, Rs1, Rs2

 Operation: Rd = (Rs1 - [(0)8 ||Immed])

Instruction: SW (Store Word)

23 16 15 12 11 8 7 0

Opcode: 0x45 Rs1 Rs2 Immed
 Usage: SW Rs2, Rs1(Immed)

 Operation: Mem{Rs1 + [(Immed7)8 ||Immed]} = Rs2

Instruction: TRAP (Software Trap)

23 16 15 0

Opcode:0x28 Immed
 Usage: Trap Immed

 Operation: Program_Addr = Immed

 Interrupt Address Register = Link_Program_Address

Instruction: XOR (Register Exclusive-OR)

23 16 15 12 11 8 7 4 3 0

Opcode: 0x0B Rs1 Rd Rs2 Unused
 Usage: XOR Rd, Rs1, Rs2

 Operation: Rd = (Rs1 (exclusive-or) Rs2)

Instruction: XORI (Exclusive-OR Immediate)

23 16 15 12 11 8 7 0

Opcode: 0x2B Rs1 Rd Immed
 Usage: XORI Rd, Rs1, Immed

 Operation: (Rs1 (exclusive-or) [(Immed7)8 ||Immed])= Rd

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

APPENDIX B – SIMULATION RESULTS

A. OBJECTIVE

The objective of Appendix B is to document the simulation results that were not

documented in Chapter IV. These results are divided into four sections: SET generation

modeling, SET analog propagation modeling, logic path modeling and Instruction-based

register-usage analysis.

B. SET GENERATION MODELING

 1. Objective

This objective of this section is to document the simulation results of the SET

Generation Modeling. Chapter IV documents the results of the SET Generation

modeling on the DFFC standard cell, the INV standard cell, and the output driver. This

section documents the remaining standard cells: Nand2, Nand3, Nand4, Nor2, Nor3,

Nor4, Xor2, Mux2, and Buf4.

2. Nand2

The Nand2 (two input Nand gate) has four different input possibilities. Figure 58

shows the schematic, and Table 24 shows the cross-sections and LETs for each of the

sensitive regions with the resulting amplitude and pulsewidth at the output.

B

A

Out

1

T1 T2

T4

T3

Figure 58. Nand2 Schematic (after [50])

 110

Input

State

Senstive

Transistor

Charge

(fC)

LET

(MeV*cm2

/mg)

Cross-

Section

(µm2)

Effective

Cross-

Section

(µm2)

Output

Ampli-

tude

(Volts)

Output

Pulse-

Width

(ps)

531 14.32 41.59 10.40 -2.58 130

791 21.33 41.59 10.40 -3.25 200

921 24.88 41.59 10.40 -3.3 240

A=0

B=0

T5

(NFET)

973 26.24 41.59 10.40 -3.3 250

284 7.66 31.76 7.94 -1.36 200

477 12.86 31.76 7.94 -2.29 250

556 14.99 31.76 7.94 -2.59 270

A=0

B=1

T6

(NFET)

588 15.86 31.76 7.94 -2.69 280

402 10.84 41.59 10.40 -2.86 180

530 14.29 41.59 10.40 -3.27 250

593 15.99 41.59 10.40 -3.3 280

A=1

B=0

T5

(NFET)

618 16.67 41.59 10.40 -3.3 300

479 12.92 42.24 10.56 2.71 150

644 17.37 42.24 10.56 3.26 220

720 19.42 42.24 10.56 3.3 260

A=1

B=1

T11, T12

(PFETs)

755 20.36 42.24 10.56 3.3 270

Table 24. Nand2 Simulation Results

 111

3. Nand3

The Nand3 (three- input Nand gate) has eight different input possibilities. Figure

59 shows the schematic, and Table 25 shows the cross-sections and LETs for each of the

sensitive regions with the resulting amplitude and pulsewidth at the output.

A

A

B C

B

C

Out

1

2

T3T2T1

T6

T5

T4

Figure 59. Nand3 Schematic (after [51])

 112

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/m
g)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-
tude
(Volts)

Output
Pulse-
Width
(ps)

750 20.23 41.59 5.20 -2.34 130
1330 35.87 41.59 5.20 -3.24 210

1830 49.35 41.59 5.20 -3.3 320

A=0
B=0
C=0

T2
(NFET)

2200 59.33 41.59 5.20 -3.3 420
334 9.01 31.76 3.97 -0.8 180
692 18.66 31.76 3.97 -1.4 240
981 26.46 31.76 3.97 -1.77 330

A=0
B=0
C=1

T3
(NFET)

1200 32.36 31.76 3.97 -1.94 360
631 17.02 41.59 5.20 -1.36 200
1020 27.51 41.59 5.20 -2.29 250
1350 36.41 41.59 5.20 -2.59 270

A=0
B=1
C=0

T2
(NFET)

1590 42.88 41.59 5.20 -2.69 280
274 7.39 31.76 3.97 -0.83 270
484 13.05 31.76 3.97 -1.44 330
663 17.88 31.76 3.97 -1.82 410

A=0
B=1
C=1

T4
(NFET)

784 21.14 31.76 3.97 -2.02 460
631 17.02 41.59 5.20 -1.36 200
1020 27.51 41.59 5.20 -2.29 250
1350 36.41 41.59 5.20 -2.59 270

A=1
B=0
C=0

T2
(NFET)

1590 42.88 41.59 5.20 -2.69 280
330 8.90 31.76 3.97 -1.29 240
598 16.13 31.76 3.97 -2.25 330
774 20.87 31.76 3.97 -2.61 400

A=1
B=0
C=1

T3
(NFET)

895 24.14 31.76 3.97 -2.71 470
483 13.03 41.59 5.20 -2.84 220
682 18.39 41.59 5.20 -3.2 310
844 22.76 41.59 5.20 -3.3 420

A=1
B=1
C=0

T4
(NFET)

956 25.78 41.59 5.20 -3.3 480
526 14.19 62.71 7.84 2.73 220
713 19.23 62.71 7.84 3.25 320
853 23.0 62.71 7.84 3.3 420

A=1
B=1
C=1

T6, T7, T8
(PFET)

951 25.65 62.71 7.84 3.3 480

Table 25. Nand3 Simulation Results

 113

4. Nand4

The Nand4 (four input Nand gate) has sixteen different input possibilities. Figure

60 shows the schematic, and Tables 26 and 27 show the cross-sections and LETs for each

of the sensitive regions with the resulting amplitude and pulsewidth at the output.

A B C D

A

B

C

D
Out

1

2

3

T4T3T2T1

T8

T7

T6

T5

Figure 60. Nand4 Schematic (after [52])

 114

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-
tude
(Volts)

Output
Pulse-
Width
(ps)

1060 28.57 41.59 2.60 -2.61 130
1570 42.34 41.59 2.60 -3.28 200
1820 49.08 41.59 2.60 -3.3 240

A=0
B=0
C=0
D=0

T1
(NFET)

1920 51.78 41.59 2.60 -3.3 250
392 10.57 31.76 1.99 -0.61 180
624 16.83 31.76 1.99 -0.9 220
747 20.15 31.76 1.99 -1.04 250

A=0
B=0
C=0
D=1

T4_1
(NFET)

791 21.33 31.76 1.99 -1.11 260
932 25.13 41.59 2.60 -2.74 150
1310 35.33 41.59 2.60 -3.27 220
1500 40.45 41.59 2.60 -3.3 250

A=0
B=0
C=1
D=0

T1
(NFET)

1570 42.34 41.59 2.60 -3.3 260
325 8.76 31.76 1.99 -0.5 240
461 12.43 31.76 1.99 -0.72 260
533 14.37 31.76 1.99 -0.83 270

A=0
B=0
C=1
D=1

T5
(NFET)

557 15.02 31.76 1.99 -0.87 270
932 25.13 41.59 2.60 -2.74 150
1310 35.33 41.59 2.60 -3.27 220
1500 40.45 41.59 2.60 -3.3 250

A=0
B=1
C=0
D=0

T1
(NFET)

1570 42.34 41.59 2.60 -3.3 260
393 10.60 31.76 1.99 -0.82 200
623 16.80 31.76 1.99 -1.29 230
733 19.77 31.76 1.99 -1.55 240

A=0
B=1
C=0
D=1

T4_1
(NFET)

775 20.90 31.76 1.99 -1.65 250
796 21.47 41.59 2.60 -2.89 190
1040 28.05 41.59 2.60 -3.3 240
1170 31.55 41.59 2.60 -3.3 270

A=0
B=1
C=1
D=0

T1
(NFET)

1220 32.90 41.59 2.60 -3.3 290
307 8.28 31.76 1.99 -0.53 380
414 11.17 31.76 1.99 -0.78 370
462 12.46 31.76 1.99 -0.92 380

A=0
B=1
C=1
D=1

T6
(NFET)

504 13.59 31.76 1.99 -0.92 380

Table 26. Nand4 SET Generation Modeling Results

 115

Table 27. Nand4 SET Generation Results (Continued)

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-
tude
(Volts)

Output
Pulse-
Width
(ps)

932 25.13 41.59 2.60 -2.74 150

1310 35.33 41.59 2.60 -3.27 220

1500 40.45 41.59 2.60 -3.3 250

A=1
B=0
C=0
D=0

T1
(NFET)

1570 42.34 41.59 2.60 -3.3 260
393 10.60 31.76 1.99 -0.82 200

623 16.80 31.76 1.99 -1.29 230

733 19.77 31.76 1.99 -1.55 240

A=1
B=0
C=0
D=1

T4_1
(NFET)

775 20.90 31.76 1.99 -1.65 250
796 21.47 41.59 2.60 -2.89 190

1040 28.05 41.59 2.60 -3.3 240

1170 31.55 41.59 2.60 -3.3 270

A=1
B=0
C=1
D=0

T1
(NFET)

1220 32.90 41.59 2.60 -3.3 290
320 8.63 31.76 1.99 -0.79 310

458 12.35 31.76 1.99 -1.19 330

528 14.24 31.76 1.99 -1.4 330

A=1
B=0
C=1
D=1

T16
(NFET)

551 14.86 31.76 1.99 -1.44 350
796 21.47 41.59 2.60 -2.89 190

1040 28.05 41.59 2.60 -3.3 240

1170 31.55 41.59 2.60 -3.3 270

A=1
B=1
C=0
D=0

T1
(NFET)

1220 32.90 41.59 2.60 -3.3 290
389 10.49 31.76 1.99 -1.24 280

598 16.13 31.76 1.99 -1.97 320

695 18.74 31.76 1.99 -2.32 330

A=1
B=1
C=0
D=1

T4_1
(NFET)

725 19.55 31.76 1.99 -2.44 330
648 17.48 41.59 2.60 -3.03 260

771 20.79 41.59 2.60 -3.3 320

834 22.49 41.59 2.60 -3.3 360

A=1
B=1
C=1
D=0

T5
(NFET)

860 23.19 41.59 2.60 -3.3 380
687 18.52 62.71 3.92 3.0 260

795 21.44 62.71 3.92 3.3 320

839 22.63 62.71 3.92 3.3 360

A=1
B=1
C=1
D=1

T1, T2, T3,
T4

(PFET)

858 23.14 62.71 3.92 3.3 380

 116

5. Nor2

The Nor2 (two input Nor gate) has four different input possibilities. Figure 61

shows the schematic, and Table 28 shows the cross-sections and LETs for each of the

sensitive regions with the resulting amplitude and pulsewidth at the output.

A

B
Out

B

1

T1

T2

T3 T4

Figure 61. Nor2 Schematic (after [53])

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
378 10.19 63.52 15.88 -3.0 290
455 12.27 63.52 15.88 -3.3 360
482 13.00 63.52 15.88 -3.3 390

A=0
B=0

T1,T2
(NFETS)

488 13.16 63.52 15.88 -3.3 400
631 17.02 29.98 7.50 2.5 120
947 25.54 29.98 7.50 3.25 230
1030 27.78 29.98 7.50 3.3 260

A=0
B=1

T7
(PFET)

1080 29.13 29.98 7.50 3.3 270
222 5.99 21.12 5.28 0.341 180
350 9.44 21.12 5.28 0.467 230
400 10.79 21.12 5.28 0.508 240

A=1
B=0

T8
(PFET)

414 11.17 21.12 5.28 0.522 250
881 23.76 29.98 7.50 2.07 90
1550 41.80 29.98 7.50 3.2 180
1760 47.46 29.98 7.50 3.3 240

A=1
B=1

T7
(PFET)

1870 50.43 29.98 7.50 3.3 240

Table 28. Nor2 SET Generation Results

 117

6. Nor3

The Nor3(three input Nor gate) has eight different input possibilities. Figure 62

shows the schematic, and the Table 29 shows the cross-sections and LETs for each of the

sensitive regions with the resulting amplitude and pulsewidth at the output.

A

B

C

A B C

Out

1

2

T3

T2

T1

T6T5T4

Figure 62. Nor3 Schematic (after [54])

 118

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
504 13.59 45.56 5.70 -2.79 480
594 16.02 45.56 5.70 -3.27 570
626 16.88 45.56 5.70 -3.3 620

A=0
B=0
C=0

T2, T3_1,
T4_1

(NFETS)
639 17.23 45.56 5.70 -3.3 650
672 18.12 29.98 3.75 2.3 140
993 26.78 29.98 3.75 3.24 210
1150 31.01 29.98 3.75 3.3 250

A=0
B=0
C=1

T7
(PFET)

1220 32.90 29.98 3.75 3.3 280
229 6.17 21.12 2.64 0.3 190
353 9.52 21.12 2.64 0.43 240
422 11.38 21.12 2.64 0.49 250

A=0
B=1
C=0

T8
(PFET)

451 12.16 21.12 2.64 0.51 260
852 22.98 29.98 3.75 1.8 90
1500 40.45 29.98 3.75 3.21 160
1830 49.35 29.98 3.75 3.3 220

A=0
B=1
C=1

T7
(PFET)

1960 52.86 29.98 3.75 3.3 240
211 5.69 21.12 2.64 0.13 280
286 7.71 21.12 2.64 0.19 300
320 8.63 21.12 2.64 0.22 300

A=1
B=0
C=0

T6_1
(PFET)

335 9.03 21.12 2.64 0.23 300
852 22.98 21.12 2.64 1.8 90
1500 40.45 21.12 2.64 3.21 160
1830 49.35 21.12 2.64 3.3 220

A=1
B=0
C=1

T7
(PFET)

1960 52.86 21.12 2.64 3.3 240
231 6.23 21.12 2.64 0.17 170
357 9.63 21.12 2.64 0.22 220
427 11.52 21.12 2.64 0.24 240

A=1
B=1
C=0

T8
(PFET)

454 12.24 21.12 2.64 0.24 250
977 26.35 21.12 2.64 1.5 80
1990 53.67 21.12 2.64 3.15 150
2500 67.42 21.12 2.64 3.3 210

A=1
B=1
C=1

T7
(PFET)

2710 73.0 21.12 2.64 3.3 230

Table 29. Nor3 SET Generation Results

 119

7. Nor4

The Nor4 (four input Nor gate) has sixteen different input possibilities. Figure 63

shows the schematic, and Tables 30 and 31 shows the cross-sections and LETs for each

of the sensitive regions with the resulting amplitude and pulsewidth at the output.

A

B

C

D

A B C D
Out

1

2

3

T1

T5

T2

T3

T4

T6 T7 T8

Figure 63. Nor4 Schematic (after [55])

 120

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
660 15.83 127.04 7.94 -3.1 660
760 17.29 127.04 7.94 -3.3 760
810 17.93 127.04 7.94 -3.3 810

A=0
B=0
C=0
D=0

T5, T4_1,
T3_1, T1
(NFETS)

830 18.20 127.04 7.94 -3.3 830
392 10.57 29.98 1.87 0.61 180
624 16.83 29.98 1.87 0.9 220
747 20.15 29.98 1.87 1.04 230

A=0
B=0
C=0
D=1

T2
(PFET)

791 21.33 29.98 1.87 1.11 230
343 9.25 21.12 1.32 0.272 210
378 10.19 21.12 1.32 0.446 240
432 11.65 21.12 1.32 0.489 260

A=0
B=0
C=1
D=0

T8
(PFET)

448 12.08 21.12 1.32 0.505 260
1120 30.20 29.98 1.87 2.56 120
1660 44.77 29.98 1.87 3.3 190
1920 51.78 29.98 1.87 3.3 230

A=0
B=0
C=1
D=1

T2
(PFET)

2020 54.48 29.98 1.87 3.3 230
236 6.36 21.12 1.32 0.155 290
302 8.14 21.12 1.32 0.202 300
339 9.14 21.12 1.32 0.220 310

A=0
B=1
C=0
D=0

T9
(PFET)

349 9.41 21.12 1.32 0.227 310
1120 30.20 29.98 1.87 2.56 120
1660 44.77 29.98 1.87 3.3 190
1920 51.78 29.98 1.87 3.3 230

A=0
B=1
C=0
D=1

T2
(PFET)

2020 54.48 29.98 1.87 3.3 230
276 7.44 21.12 1.32 0.187 180
382 10.30 21.12 1.32 0.228 230
436 11.76 21.12 1.32 0.24 250

A=0
B=1
C=1
D=0

T8
(PFET)

453 12.22 21.12 1.32 0.245 260
1370 36.95 29.98 1.87 2.3 90
2210 59.60 29.98 1.87 3.23 180
2610 70.39 29.98 1.87 3.3 220

A=0
B=1
C=1
D=1

T2
(PFET)

2770 74.70 29.98 1.87 3.3 230

Table 30. Nor4 SET Generation Results

 121

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
249 6.72 21.12 1.32 0.062 500
284 7.66 21.12 1.32 0.107 460
306 8.25 21.12 1.32 0.120 430

A=1
B=0
C=0
D=0

T10_1
(PFET)

314 8.47 21.12 1.32 0.124 430
1120 30.20 29.98 1.87 2.56 120
1660 44.77 29.98 1.87 3.3 190
1920 51.78 29.98 1.87 3.3 230

A=1
B=0
C=0
D=1

T2
(PFET)

2020 54.48 29.98 1.87 3.3 230
276 7.44 21.12 1.32 0.187 180
382 10.30 21.12 1.32 0.228 230
436 11.76 21.12 1.32 0.24 250

A=1
B=0
C=1
D=0

T8
(PFET)

453 12.22 21.12 1.32 0.245 260
1370 36.95 29.98 1.87 2.3 90
2210 59.60 29.98 1.87 3.23 180
2610 70.39 29.98 1.87 3.3 220

A=1
B=0
C=1
D=1

T2
(PFET)

2770 74.70 29.98 1.87 3.3 230
234 6.31 21.12 1.32 0.083 270
293 7.90 21.12 1.32 0.105 280
321 8.66 21.12 1.32 0.113 300

A=1
B=1
C=0
D=0

T9
(PFET)

328 8.85 21.12 1.32 0.115 310
1370 36.95 29.98 1.87 2.3 90
2210 59.60 29.98 1.87 3.23 180
2610 70.39 29.98 1.87 3.3 220

A=1
B=1
C=0
D=1

T2
(PFET)

2770 74.70 29.98 1.87 3.3 230
275 7.42 21.12 1.32 0.129 180
390 10.52 21.12 1.32 0.152 230
438 11.81 21.12 1.32 0.158 250

A=1
B=1
C=1
D=0

T8
(PFET)

455 12.27 21.12 1.32 0.16 250
1570 42.34 29.98 1.87 2.08 80
2750 74.16 29.98 1.87 3.2 150
3310 89.27 29.98 1.87 3.3 210

A=1
B=1
C=1
D=1

T4
(PFET)

3520 94.93 29.98 1.87 3.3 230

Table 31. Nor4 SET Generation Results (Continued)

 122

8. Xor2

The Xor2 (two-input XOR gate) has four different input possibilities. Figure 64

shows the schematic, and Table 32 shows the cross-sections and LETs for each of the

sensitive regions with the resulting amplitude and pulsewidth at the output.

A
B

Out

T1

T3

T4

T2

T7

T10B

T8

T10

T6

T5

T9

Figure 64. Xor2 Schematic (after [46])

 123

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
346 9.33 55.27 13.82 2.48 330
392 10.57 55.27 13.82 2.93 400
407 10.98 55.27 13.82 3.02 430

A=0
B=0

T1, T2
(NFETS)

409 11.03 55.27 13.82 3.04 430
598 16.13 33.73 8.43 3.1 180
755 20.36 33.73 8.43 3.3 260
801 21.60 33.73 8.43 3.3 270

A=0
B=0

T10B, T10
(PFETS)

809 21.82 33.73 8.43 3.3 270
402 10.84 51.78 12.94 -3.15 340
447 12.06 51.78 12.94 -3.3 390
468 12.62 51.78 12.94 -3.3 420

A=0
B=1

T6_1, T9
(NFETS)

476 12.84 51.78 12.94 -3.3 420
619 16.69 24.50 6.13 -1.84 360
790 21.31 24.50 6.13 -3.08 440
870 23.46 24.50 6.13 -3.25 470

A=1
B=0

T3
(PFET)

893 24.22 24.50 6.13 -3.3 480
463 12.49 25.06 6.26 -3.09 410
519 14.00 25.06 6.26 -3.3 470
543 14.64 25.06 6.26 -3.3 510

A=1
B=0

T9
(NFET)

552 14.89 25.06 6.26 -3.3 530
318 8.58 20.43 5.11 -1.84 410
436 11.76 20.43 5.11 -2.65 440
473 12.76 20.43 5.11 -2.91 450

A=1
B=0

T5
(PFET)

483 13.03 20.43 5.11 -2.98 450
215 5.80 21.58 5.39 0.588 210
285 7.69 21.58 5.39 0.759 240
316 8.52 21.58 5.39 0.835 250

A=1
B=1

T6
(PFET)

324 8.74 21.58 5.39 0.866 250
215 5.80 21.58 5.39 0.588 210
285 7.69 21.58 5.39 0.759 240
316 8.52 21.58 5.39 0.835 250

A=1
B=1

T7
(PFET)

324 8.74 21.58 5.39 0.866 250

Table 32. Xor2 SET Generation Results

 124

9. Mux2

The Mux2 (2-to-1 Multiplexer) has three inputs: A, B, and Sel. Thus, there are

eight different input possibilities. Figure 65 shows the schematic, and Tables 33 and 34

show the cross-sections and LETs for each of the sensitive regions with the resulting

amplitude and pulsewidth at the output.

Sel
A

A

Sel

Sel

B

B
OutG

G

G

2

3

4

5

6

T2

T1

T3

T7

T4

T8

T5

T9

T6

T10

T12

T11

Figure 65. Mux2 Schematic (after [56])

 125

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
452 12.19 196.34 24.54 2.44 360
501 13.51 196.34 24.54 2.92 450
522 14.08 196.34 24.54 3.05 470

A=0
B=0

Sel=0

T14, T12
(NFETS)

530 14.29 196.34 24.54 3.08 480
718 19.36 29.98 3.75 2.95 150
962 25.94 29.98 3.75 3.27 220
1070 28.86 29.98 3.75 3.3 240

A=0
B=0

Sel=0

T1
(PFET)

1120 30.20 29.98 3.75 3.3 260
452 12.19 196.34 24.54 2.44 360
501 13.51 196.34 24.54 2.92 450
522 14.08 196.34 24.54 3.05 470

A=0
B=0

Sel=1

T14, T12
(NFETS)

530 14.29 196.34 24.54 3.08 480
559 15.08 16.15 2.02 -3.24 350
676 18.23 16.15 2.02 -3.3 440
727 19.61 16.15 2.02 -3.3 480

A=0
B=1

Sel=0

T6_1
(PFET)

747 20.15 16.15 2.02 -3.3 500
507 13.67 41.59 5.20 -3.1 220
619 16.69 41.59 5.20 -3.3 270
676 18.23 41.59 5.20 -3.3 300

A=0
B=1

Sel=0

T2
(NFET)

696 18.77 41.59 5.20 -3.3 310
462 12.49 24.54 3.07 2.61 420
523 14.10 24.54 3.07 3.03 500
542 14.62 24.54 3.07 3.11 530

A=0
B=1

Sel=1

T14
(NFET)

545 14.70 24.54 3.07 3.14 550
719 19.39 29.98 3.75 2.93 140
780 21.04 29.98 3.75 3.28 210
1080 29.13 29.98 3.75 3.3 250

A=0
B=1

Sel=1

T1
(PFET)

1120 30.20 29.98 3.75 3.3 260
552 14.89 29.98 3.75 0.067 140
707 19.07 29.98 3.75 0.68 210
780 21.04 29.98 3.75 1.45 250

A=0
B=1

Sel=1

T5_1
(PFET)

807 21.76 29.98 3.75 1.7 260

Table 33. Mux2 SET Generation Results

 126

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
464 12.51 24.54 3.07 2.63 410
514 13.86 24.54 3.07 3.04 500
536 14.46 24.54 3.07 3.11 540

A=1
B=0

Sel=0

T12
(NFET)

547 14.75 24.54 3.07 3.16 540
294 7.93 18.07 2.26 0.151 180
407 10.98 18.07 2.26 1.62 260
447 12.06 18.07 2.26 1.84 310

A=1
B=0

Sel=0

T10_1
(NFET)

462 12.46 18.07 2.26 2.03 340
179 19.39 29.98 3.75 2.93 150
963 25.97 29.98 3.75 3.28 210
1080 29.13 29.98 3.75 3.3 250

A=1
B=0

Sel=0

T1
(PFET)

1130 30.47 29.98 3.75 3.3 260
559 15.08 24.54 3.07 -3.26 360
674 18.18 24.54 3.07 -3.3 440
728 19.63 24.54 3.07 -3.3 480

A=1
B=0

Sel=1

T12
(NFET)

745 20.09 24.54 3.07 -3.3 490
507 13.67 41.59 5.20 -3.1 220
619 16.69 41.59 5.20 -3.3 270
676 18.23 41.59 5.20 -3.3 300

A=1
B=0

Sel=1

T2
(NFET)

696 18.77 41.59 5.20 -3.3 310
579 15.61 32.31 4.04 -3.23 360
686 18.50 32.31 4.04 -3.3 430
735 19.82 32.31 4.04 -3.3 470

A=1
B=1

Sel=0

T7, T6_1
(PFET)

752 20.28 32.31 4.04 -3.3 490
506 16.65 41.59 5.20 -3.11 210
619 16.69 41.59 5.20 -3.3 270
674 18.18 41.59 5.20 -3.3 310

A=1
B=1

Sel=0

T2
(NFET)

696 18.77 41.59 5.20 -3.3 320
579 15.61 32.31 4.04 -3.23 360
686 18.50 32.31 4.04 -3.3 430
735 19.82 32.31 4.04 -3.3 470

A=1
B=1

Sel=1

T7, T6_1
(PFET)

752 20.28 32.31 4.04 -3.3 490
506 13.65 41.59 5.20 -3.11 210
619 16.69 41.59 5.20 -3.3 270
674 18.18 41.59 5.20 -3.3 310

A=1
B=1

Sel=1

T2
(NFET)

696 18.77 41.59 5.20 -3.3 320

Table 34. Mux2 SET Generation Results (Continued)

 127

10. Buf4

The Buf4 (High-Drive Buffer) has two input possibilities. Figure 66 shows the

schematic, and Table 35 shows the cross-sections and LETs for each of the sensitive

regions with the resulting amplitude and pulsewidth at the output.

A Out
1

T3T1

T4T2

Figure 66. Buf4 Schematic (after [57])

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
713 19.23 30.05 7.51 3 340
837 22.57 30.05 7.51 3.3 470
888 23.95 30.05 7.51 3.3 520

A=0 T1
(NFET)

906 24.43 30.05 7.51 3.3 540
1650 44.5 168.94 42.24 1.91 90
3040 82.0 168.94 42.24 3.2 160
3750 101.1 168.94 42.24 3.3 220

A=0 T10
(PFET)

4010 108.1 168.94 42.24 3.3 230
1180 31.82 31.76 7.94 -2.45 140
1800 48.5 31.76 7.94 -3.24 210
2100 56.6 31.76 7.94 -3.3 240

A=1 T2
(NFET)

2220 59.9 31.76 7.94 -3.3 260
858 23.14 21.67 5.42 -3.3 310
1050 28.32 21.67 5.42 -3.3 420
1130 30.74 21.67 5.42 -3.3 470

A=1 T9
(PFET)

1170 31.55 21.67 5.42 -3.3 480

Table 35. Buf4 SET Generation Results

 128

C. ANALOG PROPAGATION

For each of the standard cells, the relationship between the input and output SET

amplitude and pulsewidth was determined. These results are summarized in Tables 36

and 37.

Standard
Cell

Transition Input
Amplitude

(Volts)

Input
Pulsewidth

(Picoseconds)

Output
Amplitude

(Volts)

Output
Pulsewidth

(Picoseconds)
2.6 110 -1.37 160
3.11 150 -2.35 220
3.25 190 -2.87 250

NAND2 0-1-0

3.3 240 -3.2 300
-2.92 180 0.89 160
-3.19 210 1.49 200
-3.3 240 2.0 220

NAND2 1-0-1

-3.3 290 2.63 260
1.54 150 -0.21 210
2.47 220 -1.43 210
3.0 2.8 -2.26 280

NAND3 0-1-0

3.3 440 -3.05 450
-2.39 180 0.38 190
-3.3 240 1.41 260
-3.3 360 2.34 350

NAND3 1-0-1

-3.3 490 3.09 440
1.5 160 -0.06 470
2.48 220 -0.54 350
2.77 250 -0.72 330

NAND4 0-1-0

2.84 250 -0.79 340
-2.65 220 0.43 330
-3.25 260 0.88 380
-3.3 290 1.08 410

NAND4 1-0-1

-3.3 340 1.28 440
2.64 120 -1.54 270
3.14 170 -3.11 330
3.3 220 -3.3 410

NOR2 0-1-0

3.3 250 -3.3 450
-2.93 190 0.49 130
-3.22 230 1.03 150
-3.28 260 1.43 160

NOR2 1-0-1

-3.3 310 1.7 190

Table 36. SET Analog Propagation Results

 129

Table 37. SET Analog Propagation Results (Continued)

Standard
Cell

Transition Input
Amplitude

(Volts)

Input
Pulsewidth

(Picoseconds)

Output
Amplitude

(Volts)

Output
Pulsewidth

(Picoseconds)
1.5 170 -0.30 480
2.11 200 -0.96 440
2.68 230 -1.90 610

NOR3 0-1-0

2.85 250 -2.36 560
-3.02 240 0.13 250
-3.3 280 0.16 240
-3.3 320 0.27 230

NOR3 1-0-1

-3.3 330 0.28 220
1.5 160 -0.33 540
2.1 200 -0.93 550
2.7 230 -1.8 630

NOR4 0-1-0

2.9 240 -2.2 700
-2.64 220 0.03 760
-3.26 260 0.07 450
-3.3 290 0.09 400

NOR4 1-0-1

-3.3 340 0.11 370
1.69 170 -0.4 280
2.34 200 -1.02 320
2.87 230 -1.84 370

XOR2 0-1-0

3.0 250 -2.23 390
-2.89 200 0.52 170
-3.3 250 1.0 190
-3.3 300 1.4 210

XOR2 1-0-1

-3.3 320 1.5 230
3.0 250 0.26 200
3.2 300 1.3 270
3.3 410 2.9 530

MUX2 0-1-0

3.3 420 3.0 490
-3.3 320 -0.07 260
-3.3 390 -0.3 210
-3.3 490 -1.15 240

MUX2 1-0-1

-3.3 690 -3.3 450
1.73 160 0.003 260
2.73 220 0.045 150
3.0 240 0.13 160

BUF4 0-1-0

3.1 260 0.18 170
-2.96 210 -0.02 210
-3.3 280 -0.13 180
-3.3 310 -0.24 180

BUF4 1-0-1

-3.3 320 -0.29 180

 130

D. EFFECTIVE CROSS-SECTIONS OF DATAPATHS

The purpose of this section is to show the effective cross-sections of the datapaths

that were not shown in Chapter IV (the AND instruction was shown in Chapter IV).

Tables 38 through 53 show the effective cross-section for the execute datapath for these

remaining instructions.

Logic Block cross-section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_5 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Xor2_1 63.48 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 41.7522 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 41.7522 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 41.7522 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 40.54 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 63.48 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_6 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.58E-01

Table 38. Effective Cross-Section for AND and ANDUI Logic Datapaths

 131

Logic

Block

cross-section

(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1

(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03

Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03

Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03

Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03

Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total

Effective

Cross-

Section

1.48E-01

Table 39. ADD and ADDUI Logic Datapath Effective Cross-section

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_2 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_3 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_4 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.18E-01

Table 40. LHI Logic Datapath Effective Cross-Section

 132

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_5 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Inv_1 3.58E+01 1 1 1.50E-04 1.50E-04 5.37E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.64E-01

Table 41. SUB and SUBUI Logic Datapath Effective Cross-Section

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.48E-01

Table 42. XOR and XORI Logic Datatpath Effective Cross-Section

 133

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Inv_1 3.58E+01 1 1 1.50E-04 1.50E-04 5.37E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

1.54E-01

Table 43. SUBI Logic Datapath Effective Cross-Section

Logic Block Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Nor2_1 3.62E+01 1 1 1.50E-04 1.50E-04 5.42E-03
Inv_1 3.58E+01 1 1 1.50E-04 1.50E-04 5.37E-03

mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.49E-01

Table 44. OR and ORI Logic Datapath Effective Cross-Section

 134

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_2 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_3 1.32E+02 0.15625 1 1.50E-04 2.34E-05 3.08E-03
mux2_4 1.32E+02 0.15625 1 1.50E-04 2.34E-05 3.08E-03
mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_12 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_13 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_14 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_15 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_16 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

2.83E-01

Table 45. SLL, SLLI, SRL, SRLI, SRA, SRAI Logic Datapath Effective Cross-Section

 135

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor4_1 3.61E+01 0.007813 1 1.50E-04 1.17E-06 4.23E-05
Nor4_2 3.61E+01 0.0625 1 1.50E-04 9.38E-06 3.38E-04
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_12 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

8.31E-02

Table 46. SEQ and SEQI Logic Datapath Effective Cross-Section

 136

Logic
Block

Cross-
Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor4_1 3.61E+01 0.007813 1 1.50E-04 1.17E-06 4.23E-05
Nor4_2 3.61E+01 0.0625 1 1.50E-04 9.38E-06 3.38E-04
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.19E-02

Table 47. SNE and SNEI Logic Datapath Effective Cross-Section

 137

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.15E-02

Table 48. SLT and SLTI Logic Datapath Effective Cross-Section

 138

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Inv_1 3.58E+01 0.0625 1 1.50E-04 9.38E-06 3.36E-04

Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

8.31E-02

Table 49. SGE and SGEI Logic Datapath Effective Cross-Section

 139

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor2_1 3.62E+01 0.0625 1 1.50E-04 9.38E-06 3.39E-04
Inv_2 3.58E+01 0.0625 1 1.50E-04 9.38E-06 3.36E-04

Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.34E-02

Table 50. SLE and SLEI Logic Datapath Effective Cross-Section

 140

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor2_1 3.62E+01 0.0625 1 1.50E-04 9.38E-06 3.39E-04
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.31E-02

Table 51. SGT and SGTI Logic Datatpath Effective Cross-Section

 141

Table 52. BEQZ and BNEZ Logic Datapath Effective Cross-Section

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_2 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_3 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

5.92E-02

Table 53. RFE Logic Datapath Effective Cross-Section

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Nor4_1 3.61E+01 0.0625 1 1.50E-04 7.32E-08 2.64E-06
Nor4_1 3.61E+01 0.5 1 1.50E-04 5.86E-07 2.12E-05
Inv_1 3.58E+01 0.5 1 1.50E-04 7.32E-08 2.62E-06

Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.88E-01

 142

E. INSTRUCTION-BASED REGISTER-USAGE ANALYSIS

The purpose of this section is to document the instruction-set register-usage

analysis that was not documented in Chapter IV. The register-usage analysis for the

ADD instruction was shown in Chapter IV. The remaining instructions are documented

in this section.

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle

Decode Decode_Instr_Reg(20 bits): 1 clock cycle
Rs1(16 bits): n clock cycles since Rs1 was last written

Execute Execute_Instr_Reg(20 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(6 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(6 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 54. Critical Bits and Clock Cycles for ADDI Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(6 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(6 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 55. Critical Bits and Clock Cycles for ADDUI Instruction

 143

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(19 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 56. Critical Bits and Clock Cycles for AND Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written

Execute Execute_Instr_Reg(24 bits): 1 clock cycle
RA(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(5 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(5 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 57. Critical Bits and Clock Cycles for ANDI Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last
written

Execute Execute_Instr_Reg(16 bits): 1 clock cycle
RA(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(7 bits): 1 clock cycle
Writeback WB_Instr_Reg(7 bits): 1 clock cycle

Table 58. Critical Bits and Clock Cycles for BEQZ Instruction

 144

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(5 bits): 1 clock cycle
Writeback WB_Instr_Reg(5 bits): 1 clock cycle

Table 59. Critical Bits and Clock Cycles for BNEZ Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle
Execute Execute_Instr_Reg(24 bits): 1 clock cycle
Memory Memory_Instr_Reg(6 bits): 1 clock cycle
Writeback WB_Instr_Reg(6 bits): 1 clock cycle

Table 60. Critical Bits and Clock Cycles for J Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle
Execute Execute_Instr_Reg(24 bits): 1 clock cycle
Memory Memory_Instr_Reg(2 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(2 bits): 1 clock cycle

Delay_ALU_Out(16 bits): 1 clock cycle

Table 61. Critical Bits and Clock Cycles for JAL Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(6 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(6 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(2 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(2 bits): 1 clock cycle

Delay_ALU_Out(16 bits): 1 clock cycle

 145

Table 62. Critical Bits and Clock Cycles for JALR Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(12 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(12 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(7 bits): 1 clock cycle
Writeback WB_Instr_Reg(7 bits): 1 clock cycle

Table 63. Critical Bits and Clock Cycles for JR Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(20 bits): 1 clock cycle
Execute Execute_Instr_Reg(20 bits): 1 clock cycle
Memory Memory_Instr_Reg(7 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(7 bits): 1 clock cycle

Delay_ALU_Out(16 bits): 1 clock cycle

Table 64. Critical Bits and Clock Cycles for LHI Imm Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(20 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(12 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(12 bits): 1 clock cycle

Load_Data_Reg(16 bits): 1 clock cycle

Table 65. Critical Bits and Clock Cycles for LW Instruction

Pipeline Stage Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode None
Execute None
Memory None

Table 66. Critical Bits and Clock Cycles for NOP Instruction

 146

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 67. Critical Bits and Clock Cyc les for OR Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(5 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(5 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 68. Critical Bits and Clock Cycles for ORI Instruction

Pipeline Stage Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle

Decode Decode_Instr_Reg(8 bits): 1 clock cycle

Execute Execute_Instr_Reg(8 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Table 69. Critical Bits and Clock Cycles for RFE Instruction

 147

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 70. Critical Bits and Clock Cycles for SEQ Rd, Rs1, Rs2

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(15 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(5 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(5 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 71. Critical Bits and Clock Cycles for SEQI Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 72. Critical Bits and Clock Cycles for SGE Rd, Rs1, Rs2

 148

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle

ecode
Decode_Instr_Reg(19 bits): 1 clock cycle
Rs1(16 bits): n clock cycles since Rs1 was last written

Execute Execute_Instr_Reg(15 bits): 1 clock cycle
RA(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 73. Critical Bits and Clock Cycles for SGEI Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle

ecode
Decode_Instr_Reg(19 bits): 1 clock cycle
Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 74. Critical Bits and Clock Cycles for SGT Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(15 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 75. Critical Bits and Clock Cycles for SGTI Instruction

 149

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 76. Critical Bits and Clock Cycles for SLE Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 77. Critical Bits and Clock Cycles for SLEI Instruction

Pipeline

Stage
Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(5 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(5 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 78. Critical Bits and Clock Cycles for SLL Instruction

 150

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 79. Critical Bits and Clock Cycles for SLLI Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 80. Critical Bits and Clock Cycles for SLT Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 81. Critical Bits and Clock Cycles for SLTI Instruction

 151

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 82. Critical Bits and Clock Cycles for SNE Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 83. Critical Bits and Clock Cycles for SNEI Instruciton

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(5 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(5 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 84. Critical Bits and Clock Cycles for SRA Instruction

 152

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 85. Critical Bits and Clock Cycles for SRAI Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(5 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(5 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 86. Critical Bits and Clock Cycles for SRL Instruction

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 87. Critical Bits and Clock Cycles for SRLI Instruction

 153

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 88. Critical Bits and Clock Cycles for SUB Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(11 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(11 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 89. Critical Bits and Clock Cycles for SUBI Instruction

Pipeline

Stage
Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 90. Critical Bits and Clock Cycles for SUBUI Instruction

 154

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 91. Critical Bits and Clock Cycles for SW Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle
Execute Execute_Instr_Reg(24 bits): 1 clock cycle
Memory Memory_Instr_Reg(8 bits): 1 clock cycle
Writeback WB_Instr_Reg(8 bits): 1 clock cycle

Table 92. Critical Bits and Clock Cycles for Trap Instruction

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(15 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

Table 93. Critical Bits and Clock Cycles for XOR Instruction

 155

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

Table 94. Critical Bits and Clock Cycles for XORI Instruction

 156

THIS PAGE INTENTIONALLY LEFT BLANK

 157

LIST OF REFERENCES:

1. Wilson, R., “ATM Router in Space Presents Unique Challenges to the TRW ASIC

Team,” Integrated System Design, pp. 54 – 57, August 2001.

2. Wilson, R. “Astrolink Reaches New Heights in Orbit Complexity,” Integrated

System Design, pp. 55, August 2001.

3. Ginati, A., Fuchs, M., Kassebom, M., “Commercial Earth Observation with Small

Satellites at OHB-System,” 13th Annual AIAA/USU Conference on Small Satellites,
1999.

4. Penne, B., Rathje, R., Hofers, H., Purnhagen, I., Koopman, O., “Advanced High

Speed Processing and DSP Technologies for Earth Observation Payloads,”
www.fuchs-gruppe.com/eo/msrs

5. MIL-STD-883E, “Test Methods and Procedures for Microcircuits,” Method 1019.4,

“Ionizing Radiation (Total Dose) Test Procedure,” 1991.

6. MIL-STD-883E, “Test Methods and Procedures for Microcircuits,” Method 1020.4,

“Dose Rate Induced Latchup Test Procedure,” 1991.

7. MIL-STD-883E, “Test Methods and Procedures for Microcircuits,” Method 1021.2,

“Dose Rate Upset Testing of Digital Microcircuits,” 1991.

8. EIA/JEDEC Standard, “Test Procedures for the Measurement of Single-Event Effects

in Semiconductor Devices from Heavy Ion Irradadition,” EIA/JESD57, December
1996.

9. Newberry, D.M., “Investigation of Single Event Effects at the System Level,”

RADECS: IEEE Proceedings from, pp. 113–120, Sept. 1993.

10. Newberry, D.M., “Single Event Upset Error Propagation Between Interconnected

VLSI Logic Devices”, IEEE Transactions on Nuclear Science, Vol. NS, pp. 446 –
449, June 1992.

11. Newberry, D.M., Kaye, D.H., Soli, G.A. , “Single Event Induced Transients in I/O

Devices: A Characterization,” IEEE Transactions on Nuclear Science, Vol. 37, No.
6, pp. 1974- 1980, December 1990.

 158

12. Label, K., Stassinopolus, E.G., Brucker, G.J., Stauffer, C.A., “SEU Tests of a 80386
Based Flight Computer/Data-Handling System and Discrete PROM and EEPROM
Devices and SEL Tests of Discrete 80386, 80387, PROM , EEPROM and ASICS,”
Workshop Record from the 1992 IEEE Radiation Effects Data Workshop, pp. 1-11,
1992.

13. Kimbrough, J.R., Colella, N.J., Denton, S.M., Shaeffer, D.L., Shih, D., Wilburn,

J.W., Coakley, P.W., Castenda, C., Koga, R., Clark, D.A., Ullmann, J.L., “Single
Event Effects and Performance Predictions for Space Applications of RISC
Processors,” IEEE Transactions on Nuclear Science, Vol. 41, No. 6, pp. 2706-2714,
December 1994.

14. Koga, R., Kolasinski, W.A., Marra, M.T., Hanna, W.A., “Techniques of

Microprocessor Testing and SEU-Rate Prediction,” IEEE Transactions on Nuclear
Science, Vol. NS-32, No. 6, pp. 4219-4224, December 1985.

15. Ghosh,A.K., DeLong, T.A., Johnson, B.W., Profeta, J.A., “Fault Injection in the

Design Process Using VHDL,” VHDL International Users' Forum Fall Conference,
October 15-19, 1995.

16. Cha, H., Rudnick, E.M., Patel, J.H., Iyer, R.K., Choi, G.S., “A Gate-Level Simulation
Environment for Alpha-Particle-Induced Transient Faults,” IEEE Transactions on
Computers, Vol. 46, No. 11, pp. 1248-1256, November 1996.

17. Streetman, B.G., Solid State Electronic Devices, Second Edition, p. 174, Prentice-

Hall, 1980.

18. Messenger, G.C., Ash, M.S., Single Event Phenomena, p.181, Chapman and Hall,

1997.

19. Messenger, G.C., “Collection of Charge on Junction Nodes from Ion Tracks,” IEEE

Transactions on Nuclear Science, Vol. NS-29, No. 6, December 1982, pp. 2024-
2031.

20. Yang, F.L., Saleh, R. A., “Simulation and Analysis of Transient Faults in Digital

Circuits,” IEEE Journal of Solid State Circuits, Vol. 27, No. 3, Mach 1992.

21. Hass, K.J., Gambles, J.W., “Single Event Transients in Deep Submicron CMOS,”

42nd Midwest Symposium on Circuits and Systems, Vol. 1, pp. 122-125, 2000.

22. Buchner, S., Baze, M. , “Single-Event Transients in Fast Electronic Circuits,” 2001

IEEE Nuclear and Space Radiation Effects Conference Short Course Notebook , pg.
V-67.

23. Ibid, pg. V-66.

 159

24. Kerns, S.E., “Transient-Ionization and Single-Event Phenomena,” from Ionizing

Radiation Effects in MOS Devices and Circuits, edited by Ma, T.P., and
Dressendorfer, P.V., p. 495.

25. Streetman, B.G., Solid State Electronic Devices, Second Edition, p. 140, Prentice-

Hall, 1980.

26. Carreno. V., Choi, G., Iyer, R.K. , “Analog-Digital Simulation of Transient-Induced

Logic Errors and Upset Susceptibility of an Advanced Control System,” NASA
Technical Memo 4241, Nov. 1990.

27. Kielkowski, Ron, Inside SPICE, Second Edition, p. 240 & 242, McGraw-Hill, 1995.

28. Dodd, P.E., Sexton, F.W., Winokur, P.S., “Three-Dimensional Simulation of Charge

Collection and Multiple-Bit Upset in Si Devices,” IEEE Transactions on Nuclear
Science, Vol. 41, No. 6, December 1994.

29. Smith, M. J. S., Application-Specific Integrated Circuits, p. 71-73, Addison-Wesley,

1999.

30. Buchner, S., Kang, K., Krening, D., Lannan, G., Schneiderwind, R., “Dependence of

the SEU Window of Vulnerability of a Logic Circuit on Magnitude of Deposited
Charge,” IEEE Transactions on Nuclear Science, Vol. 40, No. 6, December 1993.

31. Buchner, S., Baze, M., Brown, D., McMorrow, D, Mehlinger, J., “Comparison of

Error Rates in Combinational and Sequential Logic,” IEEE Transactions on Nuclear
Science, NS-44, 1999.

32. Baze, M.P., Buchner, S., Bartholet, W.G., Dao, T.A., “An SEU Analysis Approach

for Error Propagation in Digital VLSI CMOS ASICs,” IEEE Transactions on Nuclear
Science, Vol. 42, No. 6, December 1995.

33. Massengill, L.W., Baranski, A.E., Van Nort, D.O., Meng, J., Bhuva, B.L., “Analysis

of Single-Event Effects in Combinational Logic-Simulation of the AM2901 Bitslice
Processor,” IEEE Transactions on Nuclear Science, Vol. 47, No. 6, December 2000,
pg. 2609-2615.

34. Asenek, V., Underwood, C., Velazco, R., Rezgui, S., Oldfield, M., Cheynet, Ph.,

Ecoffet, R., “SEU Induced Errors Observed in Microprocessor Systems,” Nuclear
Science, IEEE Transactions on Nuclear Science, Vol. 45 , No. 6, Dec. 1998, pg.
2876-2883.

35. Yount, C.R., Siewiorek, D.P., “A Methodology for the Rapid Injection of Transient
Hardware Errors,” IEEE Transactions on Computers, Vol. 45, No. 8, pp. 881-891,
August 1996.

 160

36. Li, K.W., Armstrong, J.R., Trong, “An HDL Simulation of the Effects on Single

Event Upsets on Microprocessor Program Flow,” IEEE Transactions on Nuclear
Science, Vol. NS-31, No. 6, pp. 1139 – 1144, December 1984.

37. Czeck, E.W., Siewiorek, D.P., “Effects of Transient Gate-Level Faults on Program

Behavior,” Digest, 20th International Symposium on Fault-Tolerant Computing, pp.
236-243, June 1990.

38. MOSIS-Parametric-Test Results, run T06D, Hewlett-Packard AMOS14TB, August

2000.

39. Jacobini, C., Canali, C., Ottaviani, G., Quaranta, A. A., Solid State Electron, 20, 2,

1977, pg. 77-89.

40. Streetman, B.G., Solid State Electronic Devices, Second Edition, p. 175.

41. DFFC Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

42. Xilinx Corporation, “VirtexTM 2.5V Field Programmable Gate Arrays” datasheet,

Revision 2.5, April 2001, pg. 27.

43. Ziegler, J.F., Handbook of Stopping Cross-Sections for Energetic Ions in All

Elements, Volume 5, pg. 147 – 154, Pergamom Press, 1980.

44. McMorrow, D., Melinger, J.S. , Buchner, S., Scott, T., Brown, R.D., Haddad, N.F. ,

Application of a Pulsed Laser for Evaluation of SEU-Hard Designs,” IEEE
Transactions on Nuclear Science, Vol. 47, No. 3, June 2000, pg. 559 - 565.

45. MOSIS 0.5 micron SCMOS Library, Tanner Tools Pro, Tanner Research, Inc., 1999.

46. XOR2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

47. Wang, J.J., Katz, R.B., Sun, J.S., Cronquist, B.E., McCollum, J.L., Speers, T.M.,

Plants, W.C., “SRAM Based Reprogrammable FPGA for Space Applications,” IEEE
Transactions on Nuclear Science, Vol. 46, No. 6, December 1999, pages 1728-1735.

48. Hennessy, J.L., Patterson, D.A. , Computer Architecture, A Quantitative Approach,

pp. 69–163,Morgan Kaufman, 1996.

49. Sailer, P.M., Kaeli, D.R., The DLX Instruction Set Architecture Handbook, Morgan

Kaufman, 1996.

50. Nand2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

51. Nand3 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

 161

52. Nand4 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

53. Nor2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

54. Nor3 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

55. Nor4 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

56. Mux2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

57. Buf4 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996.

 162

THIS PAGE INTENTIONALLY LEFT BLANK

 163

INITIAL DISTRIBUTION LIST

 Number of Copies

1. Defense Technical Information Center 2
Fort Belvoir, Virginia

2. Dudley Knox Library 2
 Naval Postgraduate School
 Monterey, California

3. Professor Herschel H. Loomis 1
 Naval Postgraduate School
 Monterey, California

4. Professor Alan Ross 1
 Naval Postgraduate School
 Monterey, California

5. Professor Douglas Fouts 1

Naval Postgraduate School
 Monterey, California

6. Professor Todd Weatherford 1

Naval Postgraduate School
 Monterey, California

7. Mr. George Price 1
 13330 N. Tonto Rd.
 Prescott, AZ 86305

8. Mr. Kenneth A. Clark 10
 4610 S. 4th St.
 Arlington, VA 22204

