
 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

DISSERTATION 
 

Approved for public release; distribution is unlimited  

MODELING SINGLE-EVENT TRANSIENTS  
IN  

COMPLEX DIGITAL SYSTEMS 
 

by 
 

Kenneth A. Clark 
 

June 2002 
 
 Dissertation Supervisors: Herschel H. Loomis, Jr.  
  Alan A. Ross 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



i 

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is  estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2002 

3. REPORT TYPE AND DATES COVERED 
Doctoral Dissertation 

4. TITLE AND SUBTITLE:  Modeling Single -Event Transients in 
Complex Digital Systems  

6. AUTHOR(S)  Kenneth A. Clark 

5. FUNDING NUMBERS  
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES   The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT 

A methodology to determine the effect of single -event transients (SETs) on complex digital 
systems has been developed.  This methodology is based on the SET-state-transition model.  This model 
breaks the complex digital system down into five states.  These states are the error-free/transient-free 
state, the logic-gate-transient state, the single -event-upset (SEU) state, the output-driver transient state, 
and the failure state.  The state -transitional probabilities of the model are determined by SET generation 
modeling, SET propagation modeling, and SEU propagation modeling.  SET generation and 
propagation are primarily modeled using SPICE.  SEU propagation modeling is accomplished using a 
combination of VHDL fault-injection modeling and mode-dependent (or instruction-based for a 
processor) register-usage analysis.   

To verify this methodology, the SET tolerance of a 16-bit RISC microprocessor, the KDLX, 
was predicted. The transitional probabilities for this processor were determined, and the effective cross-
section of the processor for three different test programs was predicted.  Laser testing was performed on 
the KDLX to validate the predicted transitional probabilities.  Heavy-ion testing was performed to 
validate system-level predictions.  The results from the heavy-ion testing show that the methodology 
accurately predicts the saturated effective cross-section of a complex digital system. 

15. NUMBER OF 
PAGES   

183 

14. SUBJECT TERMS   single-event-transients; single-event upsets; single-event effects; transient 
fault propagation;  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



iii 

Approved for public release; distribution is unlimited 
 

MODELING SINGLE-EVENT TRANSIENTS 
IN COMPLEX DIGITAL SYSTEMS 

 
Kenneth A. Clark 

B.S., The University of Virginia, 1990 
M.S., The Johns Hopkins University, 1993 

 
Submitted in partial fulfillment of the 

requirements for the degree of 
 

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2002 

 
 

Author: __________________________________________________ 
Kenneth A. Clark 

 
Approved by:  
 
 
______________________ _______________________ 
Herschel H. Loomis, Jr., Professor Alan A. Ross, Professor 
Dept. of Electrical & Computer Engr. Space Systems Academic Group  
Dissertation and Committee Supervisor Dissertation Supervisor 

 
______________________ _______________________ 
Douglas J. Fouts, Todd Weatherford, 
Associate Professor, Assistant Professor, 
Dept. of Electrical & Computer Engr. Dept. of Electrical & Computer Engr. 

 
______________________ 
George E. Price,  
Engineer, 
Naval Research Laboratory (retired)    

 
 
Approved by: __________________________________________________ 

               Jeffrey B. Knorr, Chair, Department of Electrical & Computer Engr.  
 
Approved by: __________________________________________________ 

Carson K. Eoyang, Associate Provost for Academic Affairs 



iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



v 

ABSTRACT 
 

A methodology to determine the effect of single-event transients (SETs) on 

complex digital systems has been developed.  This methodology is based on the SET-

state-transition model.  This model breaks the complex digital system down into five 

states.  These states are the error-free/transient-free state, the logic-gate-transient state, 

the single-event-upset (SEU) state, the output-driver transient state, and the failure state.  

The state-transitional probabilities of the model are determined by SET generation 

modeling, SET propagation modeling, and SEU propagation modeling.  SET generation 

and propagation are primarily modeled using SPICE.  SEU propagation modeling is 

accomplished using a combination of VHDL fault- injection modeling and mode-

dependent (or instruction-based for a processor) register-usage analysis.   

To verify this methodology, the SET tolerance of a 16-bit RISC microprocessor, 

the KDLX, was predicted. The transitional probabilities for this processor were 

determined, and the effective cross-section of the processor for three different test 

programs was predicted.  Laser testing was performed on the KDLX to validate the 

predicted transitional probabilities.  Heavy- ion testing was performed to validate system-

level predictions.  The results from the heavy- ion testing show that the methodology 

accurately predicts the saturated effective cross-section of a complex digital system. 
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I.  INTRODUCTION 

A.  ON-BOARD PROCESSING REQUIREMENTS OF SATELLITES 

The planned capabilities of many satellites under development today are creating 

tremendous requirements for on-board processing.  The Astrolink and DIAMANT 

satellites are good examples of this.  The Astrolink satellites will provide an “ATM1  

router in space” [1].  Each satellite will be capable of providing 100 Mbits/sec access for 

each user and an aggregate bandwidth of 6 Gbits/sec.  For each received ground 

transmission, the on-board processing circuitry must extract the ATM cells, create a 

virtual connection, and route the cells to the appropriate modulator and antenna beam 

aimed at the desired destination.  This is a very ambitious level of complexity for satellite 

electronics.  The total gate count for the electronics is approximately 750 million [2].  

The DIAMANT satellites will provide high-resolution multi-spectral images of 

the earth.  At the heart of the satellites is the Multi-Spectral high-Resolution-System 

(MSRS) sensor.  This advanced sensor will provide imagery from 12 narrow-spectral 

bands in the very-near- infrared (VNIR) spectral range.  The spatial resolution of the 

imagery is approximately 5 meters [3].    At this resolution, a scene of size 50x700 km 

requires 84 Gbits of on-board data storage per band.  Additionally, the downlink data rate 

is limited to about 280 Mbits/sec.  As a result, on-board processing is necessary to 

compress the imagery data [4].  Greater on-board processing directly improves the total 

number of images the satellite will be able to handle.  Thus, for the DIAMANT satellites, 

it is desirous to have the maximum amount of on-board processing as allowed by the size, 

mass, and power capabilities of the satellite.  

B.  TECHNICAL PROBLEM DESCRIPTION 

 These on-board processing requirements create a challenge to the satellite 

electronics designers: they must balance the processing requirements with the 

requirement to operate reliably in the space radiation environment. To do this, the 

designers not only must provide the necessary processing capability, but they also must 

                                                                 
1 ATM stands for Asynchronous Transfer Mode. 
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assure that the potential effects of radiation will not prevent proper operation of the 

electronics.   

The risks associated with the effects of radiation in space are well understood.  

These risks come from total-dose degradation, dose-rate effects, and single-event- 

transient effects.  An accepted characterization method for total-dose testing of 

electronics devices exists [5].  The same can be said about dose-rate-effects testing [6, 7].  

Most areas of single-event-transient testing are also well understood.  For example, 

testing for single-event latchup and single-event upsets in simple devices (e.g., memories) 

has a standard approach agreed upon in the radiation-effects community [8].  The missing 

piece to the puzzle, though, is the characterization of single-event transients (SETs) in 

complex digital systems.  

 C.  OBJECTIVE OF RESEARCH 

The objective of this research is to formulate, verify, and validate a methodology 

to characterize the single-event-transient tolerance of complex digital systems.  A 

complex digital system is defined as a system that contains more than one functional 

mode and is comprised of both combinational logic and memory elements.  By this 

definition, a complex digital system can range from a state machine to the latest 

processor.  The system may be a single chip, or it may consist of many chips.  This 

methodology must be applicable to this range of systems.  It must be suitable to all 

implementations of digital systems, which include field-programmable gate arrays, 

standard-cell application-specific integrated circuits, and off-the-shelf processors.  In all 

cases, the methodology must account for the two key aspects of a complex digital system: 

that it contains multiple functional modes, and that it contains both combinational logic 

and memory elements. 

D.  TECHNICAL APPROACH 

The formulation of this methodology is based on an SET-state-transition model 

that accounts for the unique aspects of a complex digital system.  The model defines the 

transitional probabilities necessary to go from a fault- free state to a failure state. These 

transitional probabilities are predicted by a combination of modeling and simulation. The 

verification of the methodology was accomplished by determining the transitional 
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probabilities for a candidate complex digital system.  Once the transitional probabilities 

had been determined, the SET-state-transition model was used to determine the 

probability of the system going from the fault- free state to the failure state.  

A 16-bit, 5-stage-pipeline RISC2 microprocessor was the candidate complex 

digital system.  It was fabricated through the MOSIS integrated-circuit fabrication service 

using standard-cell design techniques.  This approach provided a hardware-description- 

language (HDL) definition of the microarchitecture of the processor, a SPICE transistor- 

level description of the individual elements, and the parametric test results of the MOSIS 

foundry run.  This allowed for thorough simulations to determine the transitional 

probabilities. 

Validation was accomplished by performing radiation testing to compare the 

predicted upset rates with the measured upset rates.  Figure 1 summarizes the steps taken 

to validate the methodology.  First the methodology was formulated.  It was verified by 

predicting the system upset rate of the RISC processor.  Radiation testing was then 

performed on the device.  The methodology was validated by agreement between the 

measured upset rate and the predicted upset rate. 

  

Formulate
Methodology

Predict
System
Upset
Rate

Radiation
Testing on

System

Validated
Methodology

 
Figure 1.   Methodology Validation Path 

 

E.  DISSERTATION ORGANIZATION 

This dissertation is organized in a similar manner to the steps shown in Figure 1.  

Chapter II – Methodology Description introduces the SET-state-transition model to 

develop the methodology.  Chapter III – Modeling Approach describes in more detail 

how the various transitional probabilities are modeled and determined.  This includes 

SET generation, SET analog propagation, SET logic propagation, SET clock-edge 

effects, and SEU propagation.  In Chapter IV – Modeling and Simulation, the 
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methodology and modeling approach described in previous chapters are performed on the 

RISC microprocessor.  A system-level prediction of the microprocessor is provided.  

Chapter V – Modeling Validation documents the results of the radiation testing.  This 

testing includes both laser testing and heavy-ion testing.  A comparison between the 

measured upset rate and the predicted upset rate is discussed.  Chapter VI –Conclusion 

summarizes the formulation, verification, and validation of the methodology. It describes 

how the methodology can be simplified to provide the “90% solution.”  It also shows 

how this methodology can be extended to other implementations of complex digital 

systems.  Original contributions to the state-of-the-art are discussed, and areas for further 

investigation are suggested for future research.  

                                                                                                                                                                                                 
2 RISC stands for Reduced Instruction Set Computer. 
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II.  MODELING METHODOLOGY 

A.  OBJECTIVE 

The objective of this chapter is to describe a methodology to characterize the SET 

tolerance of complex digital systems.  Methodologies currently used by both the 

radiation-effects community and the fault-tolerant-computing community are reviewed.  

An SET-state-transition model is then defined, and the methodology is developed from 

this model. 

B.  PREVIOUS WORK   

Methodologies for determining the SET tolerance of complex digital systems 

generally approach the problem from two different perspectives: either injecting 

transients at the device level (through irradiation) and measuring the system impact, or 

injecting transients at the circuit level (through simulation) and tracing error propagation 

to the system level.  The radiation-effects community has largely been responsible for 

developing the injection-by- irradiation methodology, and the fault-tolerant-computing 

community has been largely responsible for the injection-by-simulation methodology. 

There have been many papers from the radiation-effects community about the 

SET tolerance of complex digital systems.  Deb Newberry has written several papers on 

the results of testing a spaceborne 1750A processor system [9, 10, 11].  In these papers, 

the system consisted of processors, memory, and peripheral logic.  One of twenty 

software programs was run.  The results of the tests showed that it is possible for an error 

to propagate from one device to another in the system.  It was also shown that the error 

rate for a processor system is a strong function of the test software used.    

In Label [12], a different approach was used: the actual flight software was run on 

the system during the radiation test.  In this case, the test methodology focused more on 

the validation of the planned flight configuration than on the full characterization the SET 

tolerance of the system. 

In Kimbrough [13], the single-event-upset (SEU) performance of several R3000-

based RISC processors was characterized.  This paper acknowledged the difficulty of 

characterizing processors:  “Determining the cross-section of a processor is complicated 
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by device architecture and test software.  Physically, the microprocessor is made of 

different functional blocks with varying architecture.  The cross-section is dependent 

upon how extensively the software checks the functional blocks.”  In spite of this 

acknowledgement, no attempt was made to provide these various cross-sections that are a 

function of the test software. 

The methodology used in Koga [14] is the most thorough.  A test plan is provided 

to determine the individual sensitivities of the functional elements of a processor system:  

“If we can test the SEU vulnerability of each functional element, the combined rate of 

SEU in space can be estimated from the program execution pattern.  This ‘macroscopic’ 

(functional element as opposed to individual circuit) testing of many functional elements 

can be accomplished externally using the standard instruction sets (i.e., there is no need 

to obtain test circuits especially fabricated for microscopic SEU testing).”  The three 

stages of testing a microprocessor are: 

1.  “... select an appropriate test method, using selection criteria, such as 

 microprocessor architecture, operating speed, instruction formats, circuit design, 

 and application software.” 

2.  “... deduce the SEU cross-section as a function of LET for various memory 

elements and any other elements (using appropriate ground-test procedures and 

microprocessor element utilization factors during software executions).” 

3.  “ ... using an appropriate physical model, we can combine data from step 2 

with a radiation environmental model to compute upset rate in the environment.” 

For step 3, it is suggested that “... at the system level, power weights must be assigned to 

the individual element cross-sections when arriving at an overall system cross-section.”   

In summary, the methodologies from the radiation-effects community focus on 

injecting transients at the system level with radiation.  In each case, it is recognized that 

the upset rate is a function of the software that is run during the test, but Koga [14] is the 

only one that provides a method to determine the cross-sections of the various functional 

elements within processors. 
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Papers from the fault-tolerant-computing community tend to focus on fault 

injection through simulation.  The typical methodology is to inject a fault in the circuit 

design and determine if it propagates to the output.  In Ghosh [15], a fault- injection 

methodology using a VHDL model is described.  The approach allows for fault injection 

at various levels in a VHDL design: from the behavioral models down to the logic-gate-

level VHDL descriptions.  This methodology “involves the interception of signals and the 

corruption of the information present on the signal according to fault-injection times and 

error types.”   

In Cha [16], transient faults are injected at the analog level, where they propagate 

to the logic level. This paper defined a methodology that bridges the gap from an analog 

transient to the logic level. However, there was no attempt to tie the analog transient to a 

probability of occurrence.   

In general, methodologies from the radiation-effects community seek to 

characterize the single-event-effect tolerance of a device given a fluence of incident ions.  

This characterization is usually made without much insight into the design of the device.  

The methodologies used by the fault-tolerant-computing community generally seek to 

evaluate how well a design operates given a transient fault has occurred.  This transient 

fault can be at the analog level or the logic level, but the likelihood of a transient fault 

occurring is not considered.  These methodologies from the two communities can 

complement each other. By combining the determination of the likelihood that an SET 

will occur from the radiation-effects community with the precise fault-propagation 

modeling from the fault-tolerant-computing community, a more complete methodology 

can be created. 

C.   SET-STATE-TRANSITION MODEL 

1.  Objective 

The objective of the SET-state-transition model is to define the framework 

necessary to develop the methodology.  It is a state-transition diagram that shows how an 

SET can cause the device or system to go from a fault- free state to a failure state.  It is 

applicable to synchronous, asynchronous, and mixed-signal systems.  In this dissertation, 

it is applied to a synchronous digital system. 
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 2.  Definitions  

Prior to describing the SET-state-transition model, it is necessary to define some 

key terms.  An SET, or single-event transient, is an unintended analog pulse.  This 

dissertation focuses on SETs that are the result of incident heavy ions; however, the SET-

state-transition model can apply to SETs resulting from other sources such as 

electromagnetic interference or power supply noise.  A single-event upset, or SEU, 

occurs when an SET causes a bit- flip error in a memory element.  Failure  occurs when 

the component of interest causes an error in the external system. 

3.  Description 

The SET-state-transition model is shown in Figure 2.  It shows the states and 

transitional probabilities necessary to go from the fault- free state of the system to the 

failure state. The propagation states are described below: 

S1:  No SETs or SEUs: This is the normal, fault-free state of the system. The 

system will operate perfectly for as long as it remains here.  From this state, an SET can 

cause a transition to states S2, S3, or S4. An SET on a memory element occurs with a 

transitional probability of β1, causing the system state to be S3.  An SET on a logic gate 

occurs with a transitional probability of β2, causing the state to go to S2.  Finally, an SET 

on an output driver occurs with a transitional probability of β3 and causes the system 

state to be S4.  

S2:  Logic Gate Transient(s): In this state, one or more transients are 

propagating in the combinational logic.  The transient or transients are the result of a 

single initial transient.  If the fan-out of the logic gates in the path of propagation is  

greater than one, multiple transients may result.   These transients can do three things: 

they can die out (transitional probability α2), be latched into a memory element (with 

transitional probability δ1), or propagate to an output driver (with transitional probability 

δ2).   This assumes that the length of the pulse is less than one clock cycle. 

S3:  SEU: In this state, one or more SEUs  are present in the system.  This means 

that at least one of the memory elements in the system is in error.  This can happen two 

ways: a transient can occur on the transistors that make up the memory element (causing 



 9

it to go directly from S1 to S3 with transitional probability β1), or the transient can be 

latched after propagating in the logic (causing a transition from S2 to S3 with transitional 

probability β2).  Two state transitions are possible from S3: the SEU can be overwritten, 

bringing the state back to S1 (transitional probability α1), or the SEU can propagate to 

the output and cause an error to the external system, bringing the system state to S5 

(transitional probability ε1).  It should be emphasized that an SEU can propagate to the 

output without causing an error to the external system.  A good example of this is an SEU 

in the address register of a processor that occurs when the processor is neither reading nor 

writing memory. 
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Figure 2.   SET-state-transition Model 

 

S4:  Output Driver Transient : In this state, there is a transient on an output driver.  If 

the transient does not cause an error to the external system, the state returns to S1 

(transitional probability α3).  If the transient does create an error in the external system 

(transitional probability ε2), the state goes to S5.  It should be emphasized that whether or 
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not failure occurs depends on how the external system uses this output.  For example, an 

output driver transient on an asynchronous-control signal of a processor, such as Write*, 

can immediately cause an error to the external system.  In contrast, a transient on a data 

bus output driver that occurs when the processor is not reading or writing will not cause 

an error to the external system. 

S5:  Failure: In this state, the SET or resulting SEU has propagated to the output 

and caused an error in the external system.  This marks the end of the simulation.  

D.  METHODOLOGY DEVELOPMENT 

The transition model described in the previous section provides the basis for 

developing the methodology to characterize system level effects of SETs.  Determining 

the overall system upset rate requires three steps: 

Step 1: Determine Transitional Probabilities.  

a. βn – SET generation probabilities – these probabilities are determined by 

modeling SET generation.   

b.  δn – SET propagation probabilities – these probabilities are determined by the 

three components SET propagation: SET analog propagation, SET logic 

propagation, and SET clock-edge effects.   

c.  εn – propagation to output – these probabilities are modeled with SEU 

Propagation Modeling (for ε1) and SET analog propagation (for ε2).  

Step 2: Determine transitional probabilities for the given application.   

Once the transitional probabilities have been determined for each functional state, 

the overall transitional probabilities for the given application can be determined with the 

equation below  (for example, ε1): 

ε1 = Σ  ε1(in mode n) x (mode n duty cycle), for all n.  (2.1) 

Step 3: Combine these transitional probabilities to account for the four possible 

paths from S1 to S5.  
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These are: 

1.  S1 -> S3 -> S5   [Probability = (β1)(ε1)], 

2.  S1 -> S2 -> S3 -> S5 [Probability = (β2)(δ1)(ε1)], 

3.  S1 -> S2  -> S4 -> S5 [Probability = (β2)(δ2)(ε2)], 

4.  S1 -> S4 -> S5 [Probability = (β3)(ε2)]. 

The overall probability of going from S1 to S5, which is the probability of failure, 

is the union of the above probabilities: 

P(failure) = (β1)(ε1) + (β2)(δ1)(ε1) + (β2)(δ2)(ε2) + (β3)(ε2).  (2.2) 

 

E.  METHODOLOGY APPLICATION 

This methodology can apply to a wide range of complex systems, but first, several 

important aspects of the system must be considered.  The output boundary of the system 

must be defined.  There must be an exact definition of failure.  The functional modes of 

the system must be well understood, because each functional mode must be considered in 

the determination of the transitional probabilities.   

For a complex system that consists of complex subsystems, this SET 

methodology must first be applied to the subsystems.  The results of the subsystem 

analyses are then used to determine the transitional probabilities at the system level.  
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III.  MODELING APPROACH 

A.  OBJECTIVE 

The objective of this chapter is to develop the modeling approach to determine the 

transitional probabilities described in Chapter II.  The modeling effort can be divided into 

five different areas: SET generation, SET analog propagation, SET logic propagation, 

SET clock-edge effects, and SEU propagation. Table 1 shows the relationship between 

the transitional probabilities and these modeling areas. 

Transitional Probabilities Modeling Areas
β1, β2, β3 SET Generation

δ1, α1 SET Analog Propagation,
SET logic Propagation,
SET Clock-Edge Effects

δ2 SET Analog Propagation,
SET Logic Propagation

ε1 SEU Propagation
ε2, α2, α3 SET Analog Propagation,

SET Clock-Edge Effects

 
Table 1.   Relationship Between Transitional Probabilities and Modeling Areas 

 

B.  SET GENERATION MODELING 

1.  Objective 

The objective of SET Generation Modeling is to determine the transitional 

probabilities β1, β2, and β3. For β1 (SET on memory element), it is necessary to 

determine the probability of an incident ion depositing enough energy to cause the 

contents of the memory element to change.  For β2 and β3, it is necessary to calculate the 

probability that an incident ion will result in an SET pulse with amplitude equal to a and 

pulsewidth equal to pw. This is denoted as Pg(a, pw).  

2.  Underlying Theory 

The probability of SET Generation is a function of how the electrical 

characteristics of a device are affected by the environment it is operating in. A CMOS 

inverter is shown in Figure 3.  The input to the inverter is Gnd, and the output is driven to 



 14 

Vdd.  In this logical state, the NFET is in the “off” state and the PFET is in the “on” state.  

The drain voltage of the NFET is driven to Vdd volts by the PFET.  This creates the 

depletion region shown at the drain of the NFET.  The depletion region extends 

horizontally approximately one depletion layer width, W, to each side of the drain.  For 

uniform doping, W is given by: 

W = [(2ε(V0-V)/q)(Na + Nd)/NaNd]1/2  [17], (3.1) 

where ε is the permittivity of silicon, V0 is the contact potentia l, V is the applied potential, 

Na is the acceptor concentration, Nd is the donor concentration.  This creates a region that 

is sensitive to charge collection.  

N+ N+ P+ P+ N+P+

P Substrate N Well

Output: Vdd

Input: Gnd

Depletion Region:
Sensitive Volume

Vdd
Gnd

 
Figure 3.   CMOS Inverter Cross-Section 

The probability that an ion will strike this sensitive volume is a function of both 

the effective cross-section of this volume and the environment. The environment is often 

specified in terms of particle fluence versus Linear Energy Transfer (LET).  The LET of 

an ion is the amount of energy that is transferred to the device per unit length.  It is 

specified in units of MeV*cm2/mg.  For particles with a particular LET, the probability of 

an SET occurring within the sensitive region is given by: 

 P(SET occurring with given LET) =    σΦ(LET),   (3.2) 
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where σ is the cross-section of the sensitive region, specified in units of cm2, and 

 Φ(LET) is the fluence of particles with the given LET, specified in units of particles/cm2.   

If a particle strikes the sensitive region, a funnel of electron-hole pairs is created, 

as shown in Figure 4. The funnel length, Lf, is the linear distance of charge collection in 

the ion track.  It is given by the following two equations: 

NFET:  Lf = (1 + (µn/µp)k)n,  (3.3) 

PFET: Lf = (1 + (µp/µn)k)n,  (3.4) 

where µn is the electron mobility, µp is the hole mobility, and the exponents k and n are 

determined empirically [18]. The number of electron-hole pairs created per unit length in 

silicon is given by the equation: 

N = LET (MeV*cm2/mg) x  (density of Si(mg/cm3))/3.6 eV  [19]. (3.5)  

N+ N+ P+ P+ N+P+

P Substrate N Well

Funnel of 
electron-hole

pairs

Vdd
Gnd Ion Strike

h+   e-
 e-    h+
h+   e-

 e-    h+
h+   e-

 e-    h+

 
Figure 4.   Charge Generation 

 

Charge collection occurs as the free electrons are drawn to the drain (which is at 

Vdd), and the holes are drawn to the body (which is at Gnd) through the substrate.  This 

is shown in Figure 5.  At any particular plane within the funnel, the sum of the electron 

and hole drift currents is the net current flowing from the NFET drain to the substrate. 

This current reduces the NFET drain voltage (and output node voltage) below Vdd volts. 
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From Messenger[19], this charge deposition can be modeled as a double-exponential 

current pulse:  

I(t) = I0 [ e-αt - e-β t],  (3.7) 

where 1/α is the collection time constant for the junction, and 1/β is the time constant for 

initially establishing the ion track, and I0 is given by 

I0 = qµNE,   (3.8) 

where q is the charge of electron or hole, µ is the ambipolar mobility of carriers, N is the 

number of electron-hole pairs generated per unit length (from equation 3.5), and E is the 

electric field component in the direction of the funnel.  This assumes that diffusion and 

recombination are negligible during this time frame.  Combining these equations and 

dividing by the funnel cross-section A and rearranging terms, gives: 

I(t)/A = qµ(N/A) [ e-αt - e-β t] E, (3.9) 

Since I(t)/A gives current density, J(t), and N/A = n = p (i.e., the carrier concentrations in 

units of electrons/cm3 or holes/cm3), then equation 3.9 can be rewritten as  

J(t) = q(nµ + pµ) [ e-αt - e-β t] E. (3.10) 

This has form similar to that of the drift current density equation from Streetman[17]: 

Jx = q(nµn + pµp)εx.   (3.11) 

          N+
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Ion Strike
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Funnel  
Figure 5.   Charge Collection 
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This shows that the key funneling equation is simply the drift current density 

equation with two main differences.  The first difference is the [ e-αt - e-β t] term, which 

describes the carrier concentrations decreasing as a function of time.  The second 

difference is that equation 3-10 uses the ambipolar mobility for the electrons and holes.  

This assumes the carrier concentrations are ambipolar, which means the electron and hole 

concentrations within the funnel are changing at the same rate.  

3.  Previously Used Electrical Models 

In previous papers [16, 20, & 21], the current pulse from equation 3.7 is modeled 

in SPICE with an independent current source with the output tied to the output node of a 

logic gate, as shown in Figure 6. The primary drawback with this method is that it 

represents the charge collection in a constant biased p+n junction.  The problem, in this 

case, is that the bias of the p+n junction in question (the drain of the NFET) is not 

constant.  It varies because the injection node voltage is changing as a result of the charge 

collection.   A current source that is a function of the injection node voltage would be an 

improvement.  

NFET

PFET

Gnd

Vdd

NFET

PFET

Vdd

GndGnd

Inverter Inverter

Independent
Current
Source

 
Figure 6.   Current Source SET Injection 

The injection source from Buchner[22] uses an NFET connected to Vdd with a 

resistor, as shown in Figure 7.  The gate of the NFET is pulsed to inject charge onto the 

node. In practice, it is difficult to make the resulting current waveform look like the 
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desired double-exponential pulse.  This is because the NFET has three modes of 

operation: cut-off, linear, and saturated; the transconductance of the NFET is different for 

each mode, making control of the current waveform difficult. 

W ~ 10 υm
L ~  0.1 υm

To Sensitive Node
(transistor drain)

Substrate or Well

Potential 

Model:  NMOS
              LEVEL = 3
              VTO = 1.0
              TOX= 0.027
              NSUB = 1.5E16
              U0 = 2E3
              JS = 0.0

R~500 Ω

 
Figure 7.   NFET SET Injection 

 

4.  SET Generation Modeling Approach 

a. Determining the PSET(σ ,Φ ) 

As described above, the probability of a particle with a given LET striking 

the sensitive region of a device is a function of both the device characteristics and the 

environment.  Since a device often is used in multiple environments, the LET-dependent 

cross-section of the device alone is frequently used to define the SET susceptibility of the 

device.  While it is necessary to multiply the particle fluence by the cross-section to 

determine the absolute PSET(σ,Φ), determining the cross-section alone allows for relative 
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assessments of various devices independent of the environment.  For this reason, the SET 

generation transition probabilities will be defined as LET-dependent cross-sections.   

The cross-section of this sensitive region is the effective cross-sectional 

area of the depletion region of the drain of the sensitive MOSFET.  The length (ld) and 

width (wd) dimensions of the drain are calculated from the drain area (AD) and drain 

perimeter (PD) parameters extracted from the layout of the device using the following 

equations: 

AD = ld wd,   (3.12) 

PD = 2ld + 2wd.  (3.13) 

These dimensions are then used to determine the sensitive cross-section of the device 

using the following equations[23]: 

cross-section length: l = ld + 2W,  (3.14) 

cross-section width: w = wd  + 2W,      (3.15) 

cross-section:  σ = l w,    (3.16) 

where W is the depletion width from equation 3.1.  These equations assume that diffusion 

does not add to the sensitive cross-section. 

b.  Electrical Modeling Approach 

To overcome the shortcomings in the previous electrical models, the 

injection model must inject charge such that the amount of charge collected (injected) is 

not independent of the voltage on the node.  Additionally, it is desired to have sufficient 

control of the current injection waveform. The model used is similar to that described in 

[16, 20, and 21], except Io is not treated as a constant.  Instead, it is modeled as a function 

of the node injection voltage using equations 3.7 and 3.8. This requires expressing the 

electric field, E, as a function of the node injection voltage.   

Two cases must be considered: low-level injection and high- level 

injection. Low-level injection occurs when the excess carrier concentration within the 

funnel is lower than the majority carrier concentration yet higher than the equilibrium 

minority-carrier concentration.  In contrast, high- level injection occurs when the excess 
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carrier concentration within the funnel exceeds the extrinsic doping levels and minority 

carrier concentrations [24].  The crossover point between low-level injection to high- level 

injection occurs when the excess carrier density within the funnel is equal the sum of the 

extrinsic doping level and the minority carrier concentration.   

In low-level injection, the electric field is still defined by the junction. The 

electric field for equation 3.8 is given by the equation for the maximum value of the 

electric field within the junction [19, 25]: 

E0 = [(2q/ε )* (Vnode – V0)*(NaNd)/(Na+Nd)]1/2 ,  (3.17) 

where ε is the permittivity of the material and Vnode = voltage of injection node.  

Substituting equation 3.17 into equations 3.7 and 3.8 gives: 

I(t) = qµΝ  [(2q/ε )* (Vnode – V0)*(Na*Nd)/(Na+Nd)]1/2 [ e-αt - e-β t]. (3.18) 

For the purposes of SPICE modeling, all terms other than the (Vnode - Vo)1/2 term are 

combined into a single constant K.   The value used for 1/α is 164 picoseconds, and for 

1/β  is 50 picoseconds from [26]. 

+
- VEXP = (e-αt - e-βt) 

G5

G5: I = K*V EXP*V(Control_Node)

C = 1F

a. Double Exponential Voltage Source

G1

G1:  I = [V(SEU_Node) - Φ]
G2:  I = V(Control_Node)
G3:  I = V 2(Control_Node)
V(Control_Node) = [V(SEU_Node) - Φ]^0.5

G2 G3 R = 1 Ω

Control_Node

b. Square Root Circuit

c. Charge Integration Circuit

To SEU_Node
(NFET Drain)

G4
G4: I = K*VEXP*V(Control_Node)

d. Charge Injection Circuit  
Figure 8.   SET Injection Circuit (Low-Level) 
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The circuits used in SPICE are shown in Figure 8.  Figure 8a shows the 

voltage source that provides the double-exponential factor in the equation.  Figure 8b 

shows the circuit that derives the (V node– Vo)1/2 term.  This circuit is based on the Div 

and Sqrt circuits from [27].  The voltages from 8a and 8b are used as control voltages for 

the voltage-dependent current source in the Charge Injection Circuit of Figure 8d. These 

same control voltages drive the dependent current source G5 in Figure 8c to charge the 

1F capacitor. At the end of the simulation, the voltage on this capacitor shows the total 

charge injected.  

  In high- level injection, the electric field of the junction has collapsed, and 

thus can no longer be modeled using equation 3.17.  Instead, the electric field across the 

funnel is modeled as the field across a semiconductor bar with constant conductivity 

respect to the length, where the length is equal to the funnel length, Lf.  Then, 

E = (Vnode – Vsub)/Lf.  (3.19) 

Substituting equation 3.18 into equation 3.7 and 3.8 gives: 

I(t) = [qµΝ  (Vnode – Vsub)/Lf ] [ e-αt - e-β t].  (3.20) 

G2

G2: I = K*VEXP*V(SEU_Node)

C = 1F

+
- VEXP = (e-αt - e-βt) 

a. Double Exponential Voltage Source

b. Charge Integration Circuit

To SEU_Node
(NFET Drain)

G3
G3: I = K*VEXP*V(SEU_Node)

c. Charge Injection Circuit  
Figure 9.   SET Injection Circuit (High-Level) 
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Figure 9 shows the SPICE circuit used to implement equation 3.20 for 

injection onto the drain of an NFET.    The independent voltage source in Figure 9a 

provides the double-exponential term describing the carrier densities.  The dependent 

current source, G3 is set equal to the product of a constant K, the double-exponential 

pulse from Figure 9a, and the SEU_Node voltage (Vsub = 0 for an NFET injection).  K is 

constant for a single simulation run.  It represents the product of qµN/Lf.   Ions with 

different LETs are injected from one run to the next by changing K.  This is equivalent to 

changing N from equation 3.4.  

b.  Conversion of Charge Collected (fC) to LET(MeV*cm2/mg) 

After the injection circuits described above have been used to simulate the 

SET, the charge collected on the 1F capacitor must be converted to LET in units of 

MeV*cm2/mg.  This is accomplished by assuming that each electron-hole pair created by 

the incident ion results in a charge equal to q, or 1.6e-19C. q is multiplied by equation 3.5 

to give the total charge collected per unit length.  By multiplying the constants in the 

equation, it can be determined that an ion with LET equal to 1 MeV*cm2/mg will result 

in 10.35 fC/µm of collected charge.  Then, combining this result with the funnel length, 

the simulated LET can be determined: 

LET(MeV*cm2/mg) = (total injected charge in fC )/(Lf*10.35). (3.21) 

Equation 3.21 shows how critical the funnel length, Lf, is to the determination of 

the LET of the incident ion.  In Dodd[28], 3-dimensional simulations were performed on 

a biased Si p+n junction with three different substrate doping levels. For doping levels 

similar to the KDLX processor modeled in Chapter IV, the simulations showed that a 

100-MeV Fe ion strike (LET ~ 29.4 MeV*cm2/mg or 0.306 pC/µm) will result in a total 

charge collection of 2.7 pC.  The simulations also showed that the charge collection 

exhibited a breakpoint at 400 picoseconds.  This is called the substrate breakpoint, and 

represents the breakpoint between funnel collection and  diffusion collection. The 

diffusion collection is neglected because these simulations focus on the one to ten 

nanosecond timeframe, and diffusion does not add significantly to the charge collection 

during that time.  At the end of the funnel collection timeframe, 1.2 pC had been 
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collected.   This equates to a funnel length of 3.9 µm, which will be used in the modeling 

in Chapter IV.     

C.  SET CLOCK-EDGE EFFECTS MODELING 

1.  Objective 

The objective of SET clock-edge effects modeling is to determine the probability 

that a transient pulse with amplitude = a and pulsewidth = pw will be latched into the 

memory element, or Platch(a, pw).  The modeling focuses on determining the temporal 

relationship between the transient’s arrival at the memory element and the edge of the 

control signal that latches it.  The modeling also accounts for the effect of the amplitude 

of the transient pulse. 

2.  Underlying Theory 

There are two timing parameters for memory elements that are key in modeling clock-

edge effects: setup time (tsu) and hold time (th). Figure 10 shows a schematic for a pass-

gate-type master-slave D-flip-flop and its associated timing diagram.  The setup time is 

defined as the time data must be stable prior to the active edge of the clock (in this case, 

the positive edge).  Smith [29] defines the hold time as the time data must be kept stable 

after the active edge of the clock.  The setup time is determined by the time required for 

the input to propagate from D through inverter Inv1 to the input of Inv2.  This 

propagation must occur before the passgate PG1 is turned off. The hold time (th) is 

determined by the minimum amount of time the data must be valid after PG1 has been 

turned off for the data to stabilize in the latch, which is created with inverters Inv2 and 

Inv3.  The minimum pulsewidth (tpw,min) required at the input D is given by: 

tpw,min =   tsu + th.  (3.21)  

Thus, two criteria must be met for an SET to be latched: the pulsewidth must be 

greater than tpw,min , and it must arrive at a time at least tsu prior to the active edge of the 

clock. 
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Figure 10.   Setup and Hold Time 

  

3.  Previous Approaches 

In Cha [16], SPICE simulations are used to determine the “latching window.”  A 

logic pulse is used as the input to a flip-flop.  A logic pulse is defined as a pulse that 

makes the full rail- to-rail transition.  The latching window for 0-1-0 and 1-0-1 pulses are 

determined as a function of the pulsewidth. The drawback with this approach is that the 

amplitude information of the SET is ignored. 

In Buchner [30], the “window of vulnerability” is determined using laser pulses to 

inject transients.  It is shown that the width of this window is a function of the energy of 

the laser pulse.  This work is expanded on in Buchner[31].  It is shown, again using laser 

pulses, that there is a linear dependence on the probability of a transient being latched 

into the flip-flop.  

4.  Clock-Edge Effects Modeling Approach 

The approach to modeling clock-edge effects uses SPICE to determine the 

latching window.  However, unlike Cha[16], the pulse used is not a logic pulse.  The 
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transient is injected in the circuit shown in Figure 11.  It is injected one logic cell away 

from the input of the memory element at various times.  The width of the transient is 

controlled by varying the amount of charge deposited.  This approach maintains the 

appropriate transient-pulse shape going into the memory element.  

 To determine the latching window for a specific pulsewidth and amplitude of the 

transient pulse, the arrival time of the SET is varied to determine the maximum-setup 

time, tsu, max, and the minimum-setup time, tsu,min , for this particular pulse.  These values 

are shown in Figure 12.  The maximum setup time for a given amplitude and pulsewidth 

SET is the maximum time the SET can arrive prior to the active edge of the clock signal 

(CLK) and still be successfully latched.  The signal D1 in Figure 12 shows an SET whose 

arrival time is equal to tsu, max. Similarly, the minimum setup time for a given amplitude 

and pulsewidth SET is the minimum time the SET can arrive prior to the active  

D

CLK

Q

D Flip-Flop
InverterInverter

Output

Clock

Input

SET Injection
Node

From SEU 
Injection Circuit

 
Figure 11.   Clock-Edge Effects Simulation Circuit 

 
edge of the clock signal (CLK) and still be successfully latched.  Signal D2 in Figure 12 

shows an SET whose arrival time is equal to tsu, min,.  The latching window is then 

determined using the following equation: 

tlw(a, pw) = tsu, max –  tsu,min    (3.22) 

Because the SET can only be latched once per clock cycle, the probability that the SET  

is latched is given by: 

Platch(a, pw) = tlw(a, pw)/(clock period).  (3.23) 
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Figure 12.   Latching Window Determination 

 
D.  SET ANALOG PROPAGATION MODELING 

1.  Objective 

The purpose of analog propagation modeling is to determine what happens to the 

amplitude and pulsewidth of an SET as it propagates through a sensitized combinational-

logic path.  A sensitized combinational- logic path is defined as a path in which the 

propagation of the SET is not blocked by the other inputs to the logic in the path.  For 

example, if an SET has propagated to input A of a 2- input AND gate, and input B is a 

logic “1,” the logic path is sensitized.  If input “B” had been a logic “0,” the SET could 

not have passed through no matter what its amplitude and pulsewidth had been because 

the logic path was blocked (input B forces the output to logic “0”).   

2.  Previous Approaches 

Previous work in analog propagation has focused on SPICE simulations. The 

primary purpose of Cha [16] was to speed up SPICE-only transient simulation.  SPICE is 

used to determine the resulting pulsewidth at the output of an inverter as a function of the 

quantity of charge injected and fan-out.  This analog pulse is converted to a logic pulse 

using a threshold of Vdd/2.  The logic pulse is then used for further simulations.  While 

this approach succeeds in speeding up the simulation, it loses some fidelity by using the 

Vdd/2 threshold.   



 27 

 In Baze[32], the analog-simulation fidelity is maintained by performing a SPICE 

simulation of an SET propagating through a chain of inverters to the input of the flip-

flop.  This represents a high-fidelity approach, but also is very time consuming for a 

complex digital circuit. 

3.  SET Analog Propagation Approach 

The approach used in this research is an improved version of the approach used in 

Cha [16].   The main difference with this approach is that the threshold is not arbitrarily 

chosen to be Vdd/2.  Instead, the analog information is recorded, resulting in a higher 

fidelity simulation.  An SET is injected into series of logic gates.  The pulsewidth and 

amplitude are recorded as it propagates. From these values, a gate attenuation factor is 

determined in terms of pulsewidth and amplitude.  Additionally, the propagation 

threshold is determined for a logic gate.  The propagation threshold is the point at which 

the amplitude and pulsewidth of the SET is large enough such that it is not attenuated as 

it propagates.   If an SET is at or above the propagation threshold, the attenuation factor 

is set to 1 (i.e., no attenuation).   

E.  SET LOGIC PROPAGATION MODELING  

1.  Objective 

The objective of SET logic propagation modeling is to determine the probability 

that a sensitized combinational- logic path exists from the point of the SET generation to 

the input of the memory element.  This probability is denoted as Pscl. 

2.  Previous Approaches 

Baze [32] describes a method of determining the probability of error propagation 

in a complex circuit.  The approach “uses a detailed cell level design description of a 

circuit to form a probabilistic mathematical model for static bit error propagation … The 

logic simulator performs a single simulation to obtain vector frequency distributions for 

all circuit cells and blocks … The propagation probability routine combines cell and 

block logic functions with state frequencies to calculate the numerical values of the 

propagation probabilities.”  This is a very thorough approach and requires a significant 

software effort.   
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Massengill [33] describes the SEUTool, which uses VHDL simulations to 

determine the likelihood that an SET will propagate to the input of a latch.  These 

simulations are used to create an Error Probability Matrix, in which “each entry 

represents the probability, that, given a random SE3 strike of strength Qcoll anywhere in 

the circuit of interest, that node N will cause an observable output error during clock 

cycle C.”  As with Baze [32], this approach is very thorough, but it requires a large 

VHDL simulation effort. 

 3.  SET Logic Propagation Modeling Approach 

The approach used in this dissertation is an improved version of the Baze 

approach.  It is more efficient and reduces the computational complexity of the analysis.  

Logic is divided into two types: control logic and datapath logic.  Control logic refers to 

logic that steers the flow of data through the possible datapaths.  An example of control 

logic is a multiplexer that steers the flow of data from the output of the register file to the 

input of the arithmetic logic unit (ALU).  Datapath logic is used in computations, but 

does not steer the flow of the data.  An example is an OR gate used to create a fast adder 

in the ALU.   

For control logic, the probability of logic propagation is assigned based on the 

how the datapath is steered.  This is based on the functional mode of the system.  For 

datapath logic, a random input is assumed.  For example, for a 4- input AND gate, the 

probability that a transient will propagate through input “A” is 1/8.  This is the likelihood 

that the other three inputs (B, C, and D) are equal to a logic “1.” 

F.  SEU PROPAGATION MODELING 

1.  Objective 

The purpose of SEU propagation modeling is to determine the probability that an 

SEU will propagate to the output and cause an output error.  This addresses the ε1 

transitional probability on the SET-state-transition model.  This transitional probability is 

very dependent on the functional mode of the digital system.  A key aspect of SEU 

propagation modeling is the ability to express ε1 as a mode-conditional probability. 

                                                                 
3 SE stands for Single Event. 
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2.  Underlying Theory 

When an SEU has occurred in a complex digital system, one of the internal 

memory elements is corrupted.  From this point, four things can occur: 

1.  The SEU can be overwritten. 

2.  The SEU can remain. 

3. The SEU can propagate internally creating multiple corrupted memory   
elements. 

4.  The SEU can propagate to the output.  

3.  Previous Approaches 

There have been two primary approaches to determining which of these four 

possible outcomes will occur to the system.  The first approach focuses on breaking the 

system into functional blocks (e.g., register file, ALU).  Through testing, an attempt is 

made to determine the cross-section of the individual blocks.  This is done by running 

different programs that stress different functional blocks.  This is the approach used in 

Koga [14] and Asenek [34].  Asenek uses a “Duty Cycle Prediction Tool” to determine 

the duty cycle of each functional block.  Heavy- ion testing and software simulations 

using an instruction-set simulator are then performed.  The results from the testing and 

the simulations are the software-dependent upset rate.  Each test program stresses a 

different functional block. Thus, the upset rate of a specific test program can be assigned 

to a specific functional block.   

The second approach focuses on fault injection with hardware-description 

languages (HDL).  This is the subject of Yount [35], Li [36], and Czeck[37].  In these 

papers, a fault is injected by changing the value of a single bit in an internal register 

during an HDL simulation.  The output of the system is monitored to determine if any 

errors have propagated to the output.   

4.  SEU Modeling Approach    

The SEU modeling approach used in this dissertation borrows from the two 

approaches described above.  The duty-cycle approach is useful in that it provides a 

method of breaking down a complex digital system into functional blocks.  The drawback 

is that more precise cross-section determination is desired.  The second approach 
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described provides much greater fidelity of modeling, but the complexity of the 

simulation grows and becomes prohibitive as the complexity of the system grows.  

The SEU modeling approach of this dissertation uses a combination of register-

usage analysis and VHDL simulation.   Register-usage analysis is used to reduce the 

complex digital system to a reasonable number of functional modes. For each possible 

mode, the registers that are necessary for proper execution within that mode are 

determined.  These registers form the mode-dependent cross-section.  For a processor, the 

complexity reduction is accomplished by considering each assembly language instruction 

as a unique mode.  These instructions specify which registers within the functional blocks 

of the processor are being used. These instructions can be further broken down into the 

pipeline stages.  For each pipeline stage of each instruction, the number of registers that 

must not be in error for proper instruction execution is determined.  If a register is used, 

the number of clock cycles since it was last written is recorded.  This provides a 

conditional probability of SEU propagation for each pipeline stage of each instruction. 

In some cases, it is not apparent which bits of a register in a functional block add 

to the mode-dependent cross-section.  In this case, fault injection in a VHDL simulation 

is used to provide additional insight.   This is accomplished by injecting an error into 

each possible bit in the functional block and recording the resulting output errors.  These 

results are then included in the higher- level register-usage analysis. 
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IV. MODELING AND SIMULATION 

A.  OBJECTIVE 

The objective of this chapter is to verify the modeling methodology and approach 

described in Chapters II and III.  This is accomplished by determining the previously 

defined transitional probabilities and using the SET-state-transition model (Figure 2) to 

determine the system-level upset rate for the KDLX processor, which is described in 

Appendix A.  This processor was implemented in a custom layout with a standard-cell 

library and fabricated using the MOSIS prototyping service.  As a result, the following 

information is available for modeling: parametric test results from the foundry run, an 

extracted transistor- level SPICE description, and a complete logic-gate- level VHDL 

description of the microarchitecture.   This information is used for the SET generation 

modeling, SET propagation modeling, and SEU propagation modeling.  The modeling 

results are combined to predict the system-level upset rate, which will be validated with 

measured upset rates in Chapter V. 

B.  SET GENERATION MODELING  

1.  Objective 

The objective of the SET generation modeling is to determine the transitional 

probabilities β1, β2 and β3.  As discussed in Chapter 3, β1 will be described as cross-

section versus LET curves. β2 and β3 will be described as cross-section versus LET, 

resulting pulsewidth, and resulting amplitude tables.  

2.  Determination of Key Parameters  

The first step in SET Generation modeling is to determine key parameters from 

the MOSIS parametric test results and the extracted layout information.  These 

parameters are necessary to determine the sensitive cross-section versus LET curves from 

the SPICE modeling.  Specifically, these parameters are the depletion width, contact 

potential, doping levels, and low-level/high- level- injection crossover point.   

Table 2 shows the parameters that are given in the MOSIS parametric test results 

for the wafer run used in the fabrication of the KDLX device.  Table 3 shows the derived 

parameters.  The doping levels of the n-channel and p-channel devices were 
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Parameter Value
N-Channel Electron Mobility 400.02 cm2/(V*s)
P-Channel Hole Mobility 136.52 cm2/(V*s)
Measured N-Channel to Substrate Area Capacitance 494 aF/µm2

Measured P-Channel to N-well Area Capacitance 943 aF/µm2

 

Table 2.   MOSIS Parametric Test Results [38]  
 

determined using the measured low-field mobility of the n-channel and p-channel devices 

with the mobility-versus-doping- level charts from Jacobini [39].  The n-well and 

substrate doping levels are determined by using the channel doping levels and the 

measured area capacitance values for measured n-channel- to-substrate area capacitance 

and the measured p-channel-to-n-well area capacitance with the equation for junction 

capacitance from Streetman[40]:  

Cj = εA{q*Nd*Na/[(V0-V)(Nd+Na)]}1/2 ,  (4.1) 

where V  is the voltage applied during the parametric test (in Volts).  

Parameter Value
N-Channel Doping 5e17 donors/cm3

P-Channel Doping 5e17 acceptors/cm3

N-channel to Substrate Contact  Potential (Φ) 0.82 Volts
P-channel to N-well Contact  Potential (Φ) 0.86 Volts
Calculated Substrate Doping Level 2.51e16 acceptors/cm3

Derived Substrate Hole Mobility 325 cm2/(V*s)
Calculated N-well Doping Level 1.12e17 donors/cm3

Derived N-well Electron Mobility 780 cm2/(V*s)
NFET Depletion Depth (W) 0.474 µm
PFET Depletion Depth (W) 0.244 µm
Low-Level/High-Level Injection Crossover-Point LET 0.245 MeV*cm2/mg

 
Table 3.   Derived Parameters 

 

The low-level/high- level injection crossover-point was calculated to determine 

which of the SET injection circuits to use (Figure 8 or Figure 9).  Table 3 shows that the 

crossover LET is 0.245 MeV*cm2/mg. When the corresponding value of charge (~ 10 
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femto-coulombs) was injected on the standard-cell inverter in a SPICE simulation, the 

result was nearly imperceptible – only several millivolts.  This is because the quantity of 

charge injected was too small.  To see any effect, the simulated LET must be increased 

significantly above the crossover LET.  Therefore, high- level injection was modeled for 

all the SET-generation simulations. 

3.  Determination of Transitional Probability β 1 

The transitional probability β1 is the likelihood that an SET occurs on a transistor 

within a memory element with enough energy to directly cause an SEU.  As described in 

Chapter III, this probability will be modeled as a cross-section versus LET curve.  The 

only memory element in the KDLX design is the D-Flip-Flop-with-asynchronous-clear 

(DFFC) standard cell.  The schematic for the DFFC is shown in Figure 13.  Determining 

the cross-sections and LETs for β1 requires four input cases to be simulated: Clk=0, 

Data=0; Clk=0, Data=1; Clk=1, Data=0; Clk=1, Data=1.  The ClB Input was set to logic 

“1” to simulate normal operation.  For each input case, the sensitive transistors were 

determined. For each sensitive transistor, several SETs were injected using the high-

level- injection circuit.  The amount of charge deposited from the SETs was varied until 

the minimum charge necessary to cause an SEU was determined. Table 4 shows this 

minimum charge (also known as the critical charge) and corresponding LET required to 

cause an upset for each sensitive transistor for each input case.  It also shows the cross-

section area of the sensitive transistors.  Figure 14 shows the cross-section-versus-LET 

curve for a single DFFC standard cell. 

Table 4 and Figure 14 show that the onset LET for the DFFC should occur at 8.4 

MeV*cm2/mg, which corresponds to 339 fC deposited on the drain of PFET T17.  The 

effective cross-section of T17 is 2.31 µm.  As the LET is increased, the critical charge of 

all the transistors is reached. This occurs when the LET is equal to 23 MeV*cm2/mg.  At 

this point, the effective-saturated cross-section of the DFFC is 33.66 µm. 
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Figure 13.   DFFC D-Flip-Flop Schematic (after [41])
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Input
State

Sensitive
Transistor

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Critical
Charge
(fC)

LET
(MeV*cm2/mg)

Data =0
Clk =0

T15
NFET

8.72 2.18 439 10.9

Data =0
Clk =0

T3_1
NFET

12.46 3.11 930 23.0

Data =0
Clk =0

T4
PFET

10.06 2.51 834 20.7

Data =0
Clk =1

T13
NFET

8.72 2.18 376 9.3

Data =0
Clk =1

T12
NFET

4.72 1.18 421 10.4

Data =0
Clk =1

T23
PFET

10.06 2.51 619 15.3

Data =1
Clk =0

T2_1
NFET

28.19 7.05 588 14.6

Data =1
Clk =0

T26
PFET

7.56 1.89 373 9.2

Data =1
Clk =0

T20
PFET

11.19 2.80 717 17.8

Data =1
Clk =0

T5_1
PFET

16.55 4.14 717 17.8

Data =1
Clk =1

T11
NFET

11.03 2.76 473 11.7

Data =1
Clk =1

T17
PFET

9.24 2.31 339 8.4

 

Table 4.   DFFC Sensitive Transistor Critical Charge, LET, and Cross-Section 
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Figure 14.   DFFC Cross-Section Versus LET Curve 
 

4.  Determination of Transitional Probability β 2 

The transitional probability β2 is the likelihood that an SET occurs on a 

combinational- logic gate.  As defined in Chapter III, β2 will be listed as a cross-section, 

LET, and resulting amplitude and resulting pulsewidth.  Thus, to determine β2, the 

injection circuit is used to inject an SET into the sensitive regions of each of the standard 

cells.  The charge injected is converted to LET, and the output pulsewidth and amplitude 

are recorded.  In Section C5 of this chapter, these resulting output pulsewidths and 

amplitudes are coupled with the results of the SET analog propagation, logic propagation 

and clock-edge effects modeling to determine the probability that the SET will become 

latched.  The standard-cell inverter is described as an example.  

Figure 15 shows the schematic of the inverter and the test circuit.  The output of 

the inverter is connected to the input of another inverter.  This insures proper output 

loading.  If the input is equal to logic ‘0’, the NFET is sensitive.  If the input is logic ‘1’, 

the PFET is sensitive.  Figure 16a shows the current waveform from the high- level 

injection circuit and Figure 16b, the resulting voltage on the injection node.  Figure 17 
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shows this resulting voltage for various LETs for the injected pulse.  This figure shows 

that an LET of approximately 13.89 MeV*cm2/mg is necessary for the SET to make the 

full voltage swing.  As the LET is increased beyond 13.89 MeV*cm2/mg, the pulsewidth 

of the SET increases.  Table 5 shows the cross-section, LET, resulting amplitude and 

resulting pulsewidth for the inverter. 
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Figure 15.   Inverter Standard-Cell Schematic and Test Circuit 
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Figure 16.   Injection Current and Node Voltage 
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Figure 17.   SET Pulse Shape Versus LET 
 

Input
State

Sensitive
Transistor

Charge
(fC)

LET
(MeV*cm2/
mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Amplitude
(Volts)

Output
Pulse-
Width
(ps)

A=0 T2 (NFET) 137.6 3.41 41.59 20.80 -0.83 140
A=0 T2 (NFET) 353.9 8.77 41.59 20.80 -2.44 180
A=0 T2 (NFET) 423.7 10.50 41.59 20.80 -3.0 190
A=0 T2 (NFET) 560.8 13.89 41.59 20.80 -3.3 260
A=0 T2 (NFET) 771.9 19.12 41.59 20.80 -3.3 400
A=0 T2 (NFET) 880.3 21.81 41.59 20.80 -3.3 470
A=0 T2 (NFET) 947 23.46 41.59 20.80 -3.3 490
A=1 T1 (PFET) 140 3.47 29.98 14.99 0.474 90
A=1 T1 (PFET) 477.3 11.82 29.98 14.99 1.91 100
A=1 T1 (PFET) 621 15.38 29.98 14.99 2.69 120
A=1 T1 (PFET) 907.6 22.48 29.98 14.99 3.2 200
A=1 T1 (PFET) 1260 31.22 29.98 14.99 3.3 300
A=1 T1 (PFET) 1530 37.90 29.98 14.99 3.3 390
A=1 T1 (PFET) 1670 41.37 29.98 14.99 3.3 440
A=1 T1 (PFET) 1720 42.61 29.98 14.99 3.3 460

 

Table 5.   Cross-Section and LET for Standard-Cell Inverter 
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5.  Determination of Transitional Probability β 3 

The transitional probability β3 is the likelihood that an SET occurs on an output 

driver.  This simulation is similar to modeling the inverter to determine β2, except the 

output driver is connected to an output pad plus an 8 pF capacitor.  The 8 pF capacitor is 

the input capacitance of a Xilinx XCV300 Field Programmable Gate Array (FPGA) [42], 

which is the device connected to the KDLX in the test system. The results of the 

simulation are shown in Table 6.  

Input
State

Sensitive
Tran-
sistor

Charge
(fC)

LET
(MeV*cm2

/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Amplitude
(Volts)

Output
Pulse-
Width
(ps)

A=0 T1
(PFET)

12960 347.83 84.47 42.24 1.13 800

A=0 T1
(PFET)

25730 690.55 84.47 42.24 2.37 1050

A=0 T1
(PFET)

30530 819.38 84.47 42.24 2.87 1210

A=0 T1
(PFET)

33060 887.28 84.47 42.24 3.08 1280

A=0 T1
(PFET)

33860 908.75 84.47 42.24 3.18 1290

A=0 T2
(NFET)

12830 344.34 127.04 63.52 -1.27 1970

A=0 T2
(NFET)

25250 677.67 127.04 63.52 -2.47 2470

A=0 T2
(NFET)

29870 801.66 41.59 20.80 -2.93 2690

A=0 T2
(NFET)

31600 848.09 41.59 20.80 -3.14 2750

A=0 T2
(NFET)

32280 866.34 41.59 20.80 -3.22 2820

 
Table 6.   SET on Output Driver 

 

Comparing the results in Table 6 to the results Table 5 shows that an SET on an 

output driver requires a much greater quantity of charge to reach a given amplitude than 

an SET on an internal node.  This is a direct result of the larger capacitance of the output 

device relative to the capacitance of an internal node.  As shown in the table, an ion 

incident upon the PFET requires an LET greater than 347 MeV*cm2/mg to result in a 

transient with an amplitude greater than 1.13 Volts.  Similarly, an ion incident upon the 

NFET requires an LET greater 343 MeV*cm2/mg to cause a transient with an amplitude 
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greater than 1.27 Volts. From Ziegler[43], the largest linear energy transfer in silicon 

from a heavy ion is  ~ 120 MeV*cm2/mg.  Since 343 >> 120, β3 can be set to 0, and the 

output drivers of the KDLX are modeled as not susceptible to SETs. 

C.  SET PROPAGATION MODELING 

1.  Objective 

The objective of SET propagation modeling is to determine the propagation 

transitional probabilities δ1, δ2, and ε2.  This can be broken down into three parts: SET 

analog propagation, SET logic propagation, and clock-edge effects.  The results of these 

simulations are coupled with the results of the SET generation modeling.  

2.  SET Analog Propagation Modeling 

a.  Objective 

The objective of the SET analog propagation modeling is to determine 

what happens to the amplitude and pulsewidth of an SET as it propagates through the 

logic gates used in the KDLX.  The results are used to determine the probability of 

analog propagation through a sensitized logic path. 

b.  Modeling Configuration 

The circuit shown in Figure 18 is used to model the analog propagation 

through the standard cell inverter.  Using the SET injection circuit, the transient is 

injected at the node named SET_Node. The injection circuit is used (as opposed to a logic 

pulse) to insure that the rise and fall times are consistent with an SET.  The propagating 

transients are observed at Prop_Node1, Prop_Node2, Prop_Node3, Prop_Node4 and 

Prop_Node5.     

 

Test_Input

 SET_Node

Prop_Node1

Prop_Node2

Prop_Node3

Prop_Node4

Test_Output

Prop_Node5  

 

Figure 18.   Inverter Propagation Circuit 
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c. Modeling Results 

Figure 19 shows the propagation of a small transient.  As it passes through 

each inverter, the transient attenuates significantly.  In fact, by the time it has propagated 

to Prop_Node4, the amplitude is less than 100 mV.  Figure 20 shows the propagation of a 

slightly larger transient.  In this case, attenuation is also occurring through each inverter, 

but it is not as rapid as in Figure 19.   In both cases, there is not enough energy in the 

transient to propagate without attenuation. In contrast, Figure 21 shows the propagation 

of a transient that does not attenuate at all as it propagates.  At some point between the 

size of the transients in Figures 20 and 21, there is a threshold above which transients will 

propagate without attenuation.  This is defined as the propagation threshold. 
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Figure 19.   Propagation of Small SET 

 

The propagation threshold is an important concept in SET propagation 

modeling.  This is because the probability of SET analog propagation through a path of 

logic gates can be set to 1 if the SET is above the propagation threshold.  Furthermore, if 

the latching threshold (to be determined in the Clock-Edge Effects section) is greater than 

the propagation threshold, and the SET meets or exceeds the latching threshold, then it  
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Figure 20.   Propagation of Medium SET 

 

 0.0  0.5  1.0  1.5  2.0  2.5 
Time (ns)

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

 2.5 

 3.0 

V
ol

ta
ge

 (V
)

SET at
SET_Node

Voltage at
Prop_Node2

Voltage at
Prop_Node4

 0.0  0.5  1.0  1.5  2.0  2.5 
Time (ns)

 -0.5 

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

 2.5 

 3.0 

V
ol

ta
ge

 (V
) SET at 
SET_Node

Voltage at
Prop_Node3

Voltage at
Prop_Node5

 
Figure 21.   Propagation of Large SET 
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must also exceed the propagation threshold, and the probability of SET analog 

propagation can be set to 1.  

To determine the propagation threshold, the simulation is run with multiple SETs 

injected into the circuit.  The amplitude and pulsewidth are measured at each node.    

Table 7 shows the results of these simulations.  The propagation threshold for a 0-1-0 

SET pulse is approximately an amplitude of 3 V and a pulsewidth of 400 picoseconds.  

The propagation threshold for at 1-0-1 SET pulse is an amplitude of 3.3V and a 

pulsewidth of 460 picoseconds. These propagation simulations are repeated for the other 

standard cells, and the results are shown in  Appendix B.  

SET_Node Prop_Node1 Prop_Node2 Prop_Node3 Prop_Node4

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

Amp
(V)

PW
(ps)

-2.9 240 1.36 200  NA NA NA NA NA NA

-3.25 290 2.2 260 -2.58 250 1 140 -.08 180

-3.27 300 2.45 280 -3.11 280 2.16 210 -2.05 220

-3.28 330 2.6 300 -3.26 310 2.59 250 -3.18 270

-3.3 400 2.96 380 -3.3 400 3.06 340 -3.3 390

-3.3 450 3.15 410 -3.3 460 3.22 400 -3.3 460

Amp = Amplitude in Volts (V), PW = pulsewidth in picoseconds (ps)
 

Table 7.   SET Propagation - Inverter 
 

3.  SET Logic Propagation Modeling 

SET logic propagation modeling determines the probability that an SET will 

propagate through the logic gate, given that the amplitude and pulsewidth are large 

enough for analog propagation.  Table 8 shows the probability of logic propagation for 

each of the standard-cell logic gates used in the KDLX design.  For multiple- input logic 

gates that are not instruction-dependent, the inputs are modeled as random.  For the 

Mux2, the probability is modeled as being instruction-dependent.  This is because the 
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Mux2 is used throughout the KDLX to direct the data path as a function of the 

instruction, whereas the other multiple logic gates have inputs that are not direct 

functions of the instruction.  This is critical because it causes δ1 to be instruction- 

dependent (if there is a Mux2 in the datapath).  Additionally, the gates that are used in the 

decoding logic of the pipeline are modeled as instruction-dependent. 

Standard Cell Probability of Logic Propagation
Inv 1

Buf4 1
Nand2 0.5 (Non-Pipeline)

Instruction-Dependent (Pipeline)
Nand3 0.25
Nand4 0.125 (Non-Pipeline)

Instruction Dependent (Pipeline)
Nor2 0.5 (Non-Pipeline)

Instruction-Dependent (Pipeline)
Nor3 0.25
Nor4 0.125 (Non-Pipeline)

Instruction-Dependent (Pipeline)
Xor2 1
Mux2 Instruction-Dependent

 
Table 8.   Probability of Logic Propagation 

 

4.  Clock-Edge Effects Modeling 

a.  Objective 

The objective of the clock-edge effects modeling is to determine the 

latching window as a function of the amplitude and pulsewidth of the SET, denoted as 

tlw(a, pw).  The latching window will be used to determine the  probability that the SET is 

latched as a function of the amplitude and pulsewidth: Platch(a, pw).   This probability will 

be combined with the analog propagation and logic propagation modeling results to 

determine the transitional probability δ1 in the following section. 

 b.  Modeling Configuration 

 The circuit in Figure 22 is the simulation circuit used to model the clock-

edge effects.  The SET injection circuit is used to inject the SET to the node named 

“SET_Node.”  As with the SET analog propagation modeling, the SET injection circuit is 
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used to insure that only amplitudes and pulsewidths that can result from an SET are used. 

The resulting amplitude and pulsewidth as the SET propagates to the node named 

“DATA” is recorded.  To determine the latching window for an SET with a specified 

amplitude and pulsewidth, the time the SET is injected onto SET_Node is varied to 

determine the minimum setup time (tsu,min) and maximum setup time (tsu, max) for the 

specified amplitude and pulsewidth.  The latching window for the specified amplitude 

and pulsewidth is determined using equation 3.22: 

tlw(a, pw) = tsu, max –  tsu,min.  (3.22) 

This is process is repeated for other amplitude and pulsewidth combinations to determine 

the latching window as a function of amplitude and pulsewidth. 

          

DATASET_Node

Data_In

Clk_In

CLK

ClB

Q
Cl

D Q
Clk

 
Figure 22.   Clock-Edge Effects Modeling Circuit 

 
c.  Modeling Results 

Table 9 shows the latching window as a function of the SET amplitude 

and pulsewidth.  If the SET pulse arrives during the latching window and has sufficient 

energy, it will be latched.  The probability of the SET pulse being latched is given by the 

equation below: 

Platch  = (latching window)/(clock period)    (4.2) 
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SET
Amplitude
(V)

SET
Pulse-
width
(ps)

Latching
Window
(ps)

Platch
(1/MHz)

Platch
@ 625 KHz

Platch
@ 5 MHz

-3.3 480 60 6.00E-05 3.75E-05 3.00E-04
-3.3 490 80 8.00E-05 5.00E-05 4.00E-04
-3.3 500 180 1.80E-04 1.13E-04 9.00E-04
-3.3 510 190 1.90E-04 1.19E-04 9.50E-04
-3.3 520 230 2.30E-04 1.44E-04 1.15E-03
-3.3 530 270 2.70E-04 1.69E-04 1.35E-03
-3.3 550 340 3.40E-04 2.13E-04 1.70E-03
-3.3 560 360 3.60E-04 2.25E-04 1.80E-03
3.3 510 70 7.00E-05 4.38E-05 3.50E-04
3.3 520 140 1.40E-04 8.75E-05 7.00E-04
3.3 560 210 2.10E-04 1.31E-04 1.05E-03
3.3 580 240 2.40E-04 1.50E-04 1.20E-03
3.3 600 280 2.80E-04 1.75E-04 1.40E-03
3.3 640 330 3.30E-04 2.06E-04 1.65E-03
3.3 670 370 3.70E-04 2.31E-04 1.85E-03
3.3 690 400 4.00E-04 2.50E-04 2.00E-03

 
Table 9.   Clock-Edge Effects Modeling Results 

Because of the relationship between this probability and the clock frequency, Platch is 

listed in units of 1/MHz and also as a probability at two specified clock frequencies: 625 

KHz and 5 MHz. 

The table shows that there is an SET latching threshold. For a 1-0-1 transition, the 

SET must have an amplitude of 0V (full –3.3V transition) and a pulsewidth of 480 

picoseconds.  For a 0-1-0 transition, the threshold is an amplitude of 3.3V and a 

pulsewidth of 510 picoseconds.  Below these thresholds, the SET will not be latched.   In 

comparison, the propagation threshold (from Table 7) requires a 400 picosecond SET 

pulsewidth.   A close look at the SET propagating within the flip-flop shows the reason 

the latching threshold is higher than the propagation threshold.  Node 4_1 of the DFFC 

schematic shown in Figure 13 is the critical node in the determination of the latching 

threshold.  Figure 23 shows this node voltage for an SET that is slightly above threshold.   

Figure 24 shows this voltage for an SET that is slightly below threshold.  In both cases, 

the SET arrives at the DATA input.  With the clock low, transistor T13 is turned on.  The 

transient is attenuated as it passes to Node 4_1.  This is because the on-resistance of T13 



 47 

coupled with the capacitance at node 4_1 form a low-pass filter that removes the high 

frequency components of the transients.  Transients with wider pulsewidths have more 

energy at lower frequencies and more energy is passed through the low-pass filter.   In 

Figure 23, the transient has enough energy (which is to the produc t of charge and voltage) 

after this attenuation to keep the voltage at Node 4_1 at logic “0” when the rising edge of 

the clock occurs.  In Figure 24, the transient is able to pass some energy to Node 4_1.  

However, not enough energy is passed through for the voltage at Node 4_1 to be latched 

in.  Thus, the smaller transient is not latched.  
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Figure 23.   SET Above Latching Threshold 
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Figure 24.   SET Below Latching Threshold 
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Because the latching threshold is greater than the propagation threshold, the 

latching threshold defines the minimum amplitude and pulsewidth for an SET in logic to 

be latched and become an SEU.  This simplifies the determination of δ1, because if the 

SET meets the latching threshold requirements, the probability of analog propagation is 

equal to one.   If an SET does not meet the latching threshold requirements, δ1 is set to 

zero because it will not be latched. 

5.  Determination of the Transitional Probability δ 1 

From Figure 2, δ1 is the probability that an SET will propagate from the sensitive 

region of a logic gate where generation occurred to the input of the memory element 

AND be latched in. Thus, δ1 is the product of the Platcch (a, pw) * Pscl* Pap(a, pw), and  δ1 

can be multiplied by the cross-section of the logic gate to give the effective cross-section:  

σeff = σ δ1.  (4.3) 

The total effective cross-section of a logic path is the sum of the effective cross-

sections of each of the sensitive regions in the logic path.  For a logic path with m 

sensitive regions: 

σeff, logic path = Σσn δ1n, n= 1 to m.         (4.4) 

Figure 25 shows the logic path from the output of registers A and B in the register 

file to the input of the ALU register for the AND instruction. The importance of modeling 

the logic propagation of the Mux2 is apparent in this figure. The sensitive regions are 

determined by the datapath steered by the Mux2s, which are controlled by the instruction 

being executed.   Table 10 shows δ1 and the effective cross-section evaluated at each 

logic block in the path.  Appendix B shows this analysis for other logic paths in the 

KDLX. 

Inv_1

Mux2_7 Mux2_8

Mux2_3 Mux2_4

Mux2_5 Mux2_6 Mux2_9 Mux2_10

Mux2_1 Mux2_2

Nand2_1
To 
ALU_Out
Register

From 
Register A

From 
Register B

 
Figure 25.   AND Combinational-Logic Datapath 
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Logic
Block

Cross-
section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) Effective Cross-
Section

σ*δ1 (µm2/Mhz)

Effective
Cross-
Section

@ 625 KHz

Effective
Cross-
Section

@ 5 MHz
Mux2_1 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Mux2_2 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Mux2_3 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Mux2_4 131.62 0.5 1 1.50E-04 7.50E-05 9.87E-03 3.29E-03 2.63E-02
Nand2_1 41.75 1 1 1.50E-04 1.50E-04 6.26E-03 2.09E-03 1.67E-02

Inv_1 35.79 1 1 1.50E-04 1.50E-04 5.37E-03 1.79E-03 1.43E-02
Mux2_6 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_7 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_8 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_9 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02
Mux2_10 131.62 1 1 1.50E-04 1.50E-04 1.97E-02 6.58E-03 5.26E-02

Total 1.50E-01 4.99E-02 4.00E-01

 
Table 10.   Effective Cross-Section of AND Datapath 

 

5.  Determination of the ε2 Transitional Probability 

The ε2 transition was determined in a similar manner as the analog propagation 

simulations.  An SET pulse was used to drive the input of the output buffer, which was 

connected to an 8 pF capacitor (similar to the β3 simulations).  The resulting pulsewidth 

and amplitude are shown in Table 11. 

Table 11 shows that it takes a very long SET pulse (1430 picoseconds) to 

propagate to the output with an amplitude of –1.37 volts (with respect to Vdd, or 3.3 

Volts).  The maximum input voltage that the Xilinx Virtex FPGA will read as a logic “0” 

is 0.8 Volts [42].  The resulting output of the KDLX is 1.93 Volts (3.3 – 1.37), thus the 

transient will not be read as logic “0” by the FPGA.  Similarly, the minimum voltage that 

the Xilinx Virtex FPGA will read as a logic “1” is 2.0 Volts, and the resulting amplitude 

due to a 1370 picosecond length SET is 0.81 volts, so the FPGA will not read the SET as 

a logic “1.”  These two cases indicate that even very long SETs will not cause the SET to 

be read incorrectly by the external system.  Thus, ε2 is set to “0.” 
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Input Amplitude

(Volts)

Input Pulsewidth

(picoseconds)

Output Amplitude

(Volts)

Output Pulsewidth

(picoseconds)

-3.3 780 -0.46 1850

-3.3 1010 -0.78 2020

-3.3 1120 -0.93 2150

-3.3 1230 -1.08 2290

-3.3 1320 -1.22 2320

-3.3 1430 -1.37 2380

3.3 750 0.41 1130

3.3 960 0.55 1250

3.3 1080 0.62 1320

3.3 1180 0.69 1430

3.3 1290 0.76 1440

3.3 1370 0.81 1520

 
Table 11.   SET Propagation – Output Buffer 

 
D.  SEU PROPAGATION MODELING 

1.  Objective 

The objective of the SEU propagation modeling is to determine the probability 

that an SEU will propagate to cause an output error.  Specifically, it addresses the ε1 

transitional probability.   Instruction-based register-usage analysis is used to determine 

which internal registers are sensitive to an SEU during the execution of an instruction. In 

most internal registers, it is obvious when an SEU will prevent the proper execution of an 

instruction.  This is not the case for the pipeline registers.  Depending on the instruction 

decoding, an SEU in a pipeline register may or may not prevent proper execution of an 

instruction.  Because of this, VHDL fault- injection modeling is used to determine the 

effect of an SEU in the pipeline registers.  

2.  Instruction-Based Register-Usage Analysis 

The purpose of instruction-based register-usage analysis is to determine which 

internal registers are necessary for the proper execution of an instruction.  Proper 
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execution is defined as follows: for each pipeline stage, if all internal registers and 

external signals that are affected by the instruction are correct at the end of that stage, 

then proper execution of that stage has occurred.  For example, in the register add 

instruction (ADD Rd, Rs1, Rs2), the contents of source register 1, Rs1, is added to source 

register 2, Rs2, and stored in the destination register, Rd.  Table 12 shows the critical 

registers for each pipeline stage.  

Pipeline Stage Critical Registers
Fetch Program_Counter
Decode Decode_Instr_Reg

Rs1
Rs2

Execute Execute_Instr_Reg
RA
RB

Memory Memory_Instr_Reg
ALU_Out

Writeback WB_Instr_Reg
Delayed_ALU_Out

 
Table 12.   Critical Registers for ADD Rd, Rs1, Rs2 Instruction 

 

 If an error occurs in one of the registers during a particular pipeline stage, 

improper instruction execution will occur.  This approach is complete for all registers that 

are updated every clock cycle, but not all registers are updated every clock cycle.  The 

Rs1 and Rs2 registers (which correspond to registers R1 to R15 in the KDLX) are 

examples of this.  If an error has occurred in either of these registers since they were last 

written to, improper execution will occur: the result in Rd will not be correct.  Thus, it is 

also necessary to determine the number of clock cycles that have occurred since the 

register was last updated.  Table 13 shows a revised version of Table 12 that includes the 

number of sensitive clock cycles given register Rs1 was last updated n clock cycles ago, 

and Rs2 was last updated m clock cycles ago.    
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter: 1 clock cycle
Decode Decode_Instr_Reg: 1 clock cycle

Rs1: n clock cycles since Rs1 was last written
Rs2: m clock cycles since Rs1 was last written

Execute Execute_Instr_Reg: 1 clock cycle
RA: 1 clock cycle
RB: 1 clock cycle

Memory Memory_Instr_Reg: 1 clock cycle
ALU_Out: 1 clock cycle

Writeback WB_Instr_Reg: 1 clock cycle
Delayed_ALU_Out: 1 clock cycle

  
Table 13.   Critical Registers and Clock Cycles for Add Rd, Rs1, Rs2 Instruction 

 

  3.  VHDL Fault-Injection Modeling 

The pipeline module of the KDLX processor decodes the 8-bit opcode and 

provides control signals to the rest of the processor during the decode, execute, memory, 

and writeback pipeline stages.  Depending on the decoding, an SEU may cause an error 

in these control signals.  The purpose of the fault-injection modeling is to determine 

exactly which bits of the opcode in each pipeline stage can tolerate an SEU without 

causing an error in the control signals.   These results will then be used to further refine 

Table 13.   

The VHDL fault- injection circuit is shown in Figure 26.  The blocks labeled 

“Pipeline_A” and “Pipeline_B” are gate- level VHDL descriptions of the KDLX pipeline 

module.  The block labeled “Opcode_Error_Inject” outputs the byte-wide exclusive-or of 

the signal Opcode_A_In (the input to Pipeline_A) and the signal Mask_In.  This allows 

errors to be injected into the opcode by changing the bits of Mask_In.  The block labeled 

“Pipeline_Error_Check” compares the outputs of Pipeline_A to the outputs of 

Pipeline_B.  If the injected bit error does not cause a miscompare, all outputs of Pipeline 

Error Check will be a logic ‘0’.  If the injected error does cause a miscompare, the  

outputs of  Pipeline_Error_Check show which pipeline signal the error occurs in; it also 

shows what type of error is caused:  a PC_Error, a Control_Error, or an Access_Error. 
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AVHDL test bench works as follows: for every KDLX opcode, the Mask_In signal 

cycles through the following sequence:  

1.  “00000001” 

2.  “00000010” 

3.  “00000100” 

4.  “00001000” 

5.  “00010000” 

6.  “00100000” 

7.  “01000000” 

8.  “10000000”. 

Thus, for every opcode, the simulation is run with a single-bit error occurring at 

each bit location of the opcode.  A single-bit error is assumed, because the transistors of 

the flip-flops are separated enough spatially such that a single particle will not cause a 

multiple-bit error. By summing the number of bit errors that cause an output error, the 

cross-section of the opcode register during a particular pipeline stage can be determined.  

Table 14 shows the results for seven opcodes of this simulation.  For each pipeline stage, 

the number of  bit errors that resulted in an output error is shown.  The “P” in each 

column refers to a program address error.  The “C” refers to a control error.  The “A” 

refers to an access error. 

 
Decode
Stage

Execute
Stage

Memory
Stage

Writeback
Stage

Instruction Opcode P C A P C A P C A P C A
SW 0x45 0 0 8 0 0 7 0 8 0 0 0 8
LW 0x44 0 0 1 0 0 7 0 8 0 0 0 8
J 0xC8 0 0 0 6 0 8 0 0 0 0 0 7
JAL 0xE8 0 0 0 6 0 8 0 0 0 0 0 8
BEQZ 0xC1 0 0 0 7 0 8 0 0 0 0 0 6
BNEZ 0xC0 0 0 0 7 0 8 0 0 0 0 0 5
ADD 0x01 0 0 0 0 0 7 0 0 0 0 0 2

 
Table 14.   Sensitive Bits in Pipeline Registers
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Figure 26.   VHDL Fault-Injection Circuit
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Table 15 merges the results of the fault- injection modeling with Table 13.  This 

gives the exact number of bits that are sensitive to an SEU during the execution of this 

instruction. 

Pipeline 
Stage 

Critical Registers & Clock Cycles 

Fetch Program_Counter(16 bits): 1 clock cycle 
Decode Decode_Instr_Reg12 bits): 1 clock cycle 

Rs1(16 bits): n clock cycles since Rs1 was last written 
Rs2(16 bits): m clock cycles since Rs2 was last written 

Execute Execute_Instr_Reg(11 bits): 1 clock cycle 
RA(16 bits): 1 clock cycle 
RB(16 bits): 1 clock cycle 

Memory Memory_Instr_Reg(4 bits): 1 clock cycle 
ALU_Out(16 bits): 1 clock cycle 

Writeback WB_Instr_Reg(6 bits): 1 clock cycle 
Delayed_ALU_Out(16 bits):1 clock cycle 

 
Table 15.   Critical Bits and Clock Cycles for ADD Rd, Rs1, Rs2 Instruction 

 

4.  Determination of the Transitional Probability ε1 

As previously discussed, the transitional probability ε1 is the probability that an 

SEU will propagate to the output of the component under test and cause an error in the 

external system.  It is determined by using the results of the preceding two sections 

applied to the programs of interest. A simple example will illustrate how this is 

accomplished.  Figure 27 shows a simple KDLX program.   Using this program, the 

transitional probability that an SEU in register R1 will propagate to the output (ε1R1) is 

determined.  Figure 28 shows the sensitive window for register R1.  It is labeled tsw. The 

transitional probability ε1 is the product of two probabilities: 

1.  The probability that an SEU occurs in register R1 during the time tsw.. 
2.  The probability that R3 is written to memory. 

The probability that an SEU occurs in register R1 during the time tsw  is equal to 

the ratio of tsw/time period of interest.  Since the SW instruction comes after the ADD 

instruction, the probability in 2 is set to 1.  Then, 
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ε1R1 = (tsw/time of interest) * 1.  (4.5) 

 

Figure 27.   Example Program 
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Figure 28.   Sensitive Window for R1 

 

E.  SYSTEM-LEVEL PREDICTION 

The results of the SET propagation simulations and SEU propagation modeling 

are applied to determine the effective cross-sections of three test programs.   The 

effective cross-section for a given program is the product of the SET transitional 

probabilities, the SEU transitional probabilities and the cross-sections determined in the 

SET generation modeling.  Test Program #1 is a program that loads all the registers, 

writes them out immediately, waits for approximately 240 clock cycles, and repeats the 

LW R0(0), R1; (Loads R1 with Memory[0])
LW R0(1), R2; (Load R2 with Memory[1])
NOP
NOP
NOP
NOP
ADD R3, R1, R2; (Adds R1+R2, writes the sum to R3)
NOP
NOP
NOP
NOP
SW R0(2), R3;     (Stores contents of R3 to Memory[2])
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process.  Test Program #2 is similar, except it loads all registers, waits for 240 clock 

cycles, and writes them out.  Test Program #3 is a functionality test program, similar to 

the program used for verification of the processor design prior to fabrication.  Test 

Program #3 loads the registers, performs an operation (e.g., ADD, XOR) on the register, 

and writes the result to the output.  All operations are exercised in this manner in Test 

Program #3.  Table 16 shows the average number of sensitive bits per clock cycle for 

each program. Table 17 shows the contribution of the memory elements and logic 

elements to the effective saturated access error cross-sections for Test Program #1 and 

Test Program #2.  The crossover point in the table is the frequency at which the 

contribution due to logic elements is equal to the contribution due to memory elements.  

The table shows that the effective cross-section due to the logic elements is negligible at 

625 kHz and 5 MHz.    Figure 29 shows the predicted access-error cross-section as a 

function of LET.  Figure 30 shows the predicted control-error cross-section as a function 

of LET, and Figure 31 shows the predicted program-address-error cross-section as a 

function of LET.  

Test
Program

Access-Errors
Sensitive Bits per

Clock Cycle:

Control-Errors
Sensitive Bits per

Clock Cycle:

Program-Address-
Errors

Sensitive Bits per
Clock Cycle:

1 10.7 1.2 15.94
2 231.0 1.2 15.94
3 272.0 7.13 19.24

 
Table 16.   Average Number of Sensitive Bits per Clock Cycle 
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Test
Program

Effective
Cross-section

Due to
Memory
Elements

(cm2/device)

Effective
Cross-section
Due to Logic
@ 625 kHz
(cm2/device)

Effective
Cross-section
Due to Logic

@ 5 Mhz
(cm2/device)

Cross-over
Frequency

1 3.59e-6 9.375e-10 7.5e-9 2.393 GHz
2 7.77e-5 9.375e-10 7.5e-9 51.8 GHz

 
Table 17.   Comparison of Memory-Element Versus Logic-Element Saturated Access Error 

Cross-Sections 
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Figure 29.   Predicted Access-Error Cross-Section Versus LET 
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Figure 30.   Predicted Control-Error Cross-Section Versus LET 
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Figure 31.   Predicted Program-Address-Error Cross-Section Versus LET 
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V.  MODELING VALIDATION 

A. OBJECTIVE 

The objective of this chapter is to document the validation of the modeling results 

from Chapter IV.  This was accomplished by performing laser and heavy- ion testing on 

the KDLX processor.  The laser provides the means to inject an SET directly on a 

particular transistor.  This allows for direct validation of the key transitional probabilities 

δ1 and ε1.  Heavy-ion testing provides SET injection that is both spatially and temporally 

random. It is not known exactly which transistor will have an SET.  This provides the 

means to validate the system-level predictions.  Additionally, it provides the opportunity 

to evaluate some of the predicted physical parameters: saturated cross-section and onset 

LET.   This chapter describes the test system, the laser testing results, and the heavy- ion 

testing results. 

B.  TEST SYSTEM 

1.  Objective  

The objective of the test system is to provide a means of capturing all required 

information during a test.  This information must describe an error that has occurred in 

the KDLX processor during laser and heavy- ion testing.  The address bus, the data bus, 

the program address bus, and the read and write control signals are the required 

information. 

2.  Description 

Figure 32 shows the configuration of the test system.  It consists of the laser or 

heavy- ion beam source, a personal computer (PC), and the test board.  The details of the 

laser and heavy- ion beam source will be discussed in later sections.  The PC controls the 

operation of the test board and records the test results.  The test board is described below. 

Figure 33 shows a block diagram of the test board. Conceptually, it consists of 

two pieces, the KDLX device under test and the KDLX_Tester FPGA.  The 

KDLX_Tester FPGA provides test control and implements the “golden chip” method of 

processor testing described in Koga [14].  The FPGA contains a functionally-equivalent 

VHDL description of the KDLX, the Golden Chip KDLX.  The program and data 
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memories are provided in the FPGA.  The Comparison Logic Module captures the 

program address bus, the address bus, the data bus, the read signal and the write signal 

from both the KDLX under test and the Golden Chip KDLX on every clock cycle.  These 

values are compared.  If there is a difference between the KDLX under test and the 

Golden Chip KDLX, an error flag goes high and the captured values are written to the 

Error FIFO.  The Error FIFO provides temporary storage for the error data.  The Error 

Counters Module contains three counters: the access error counter, the program address 

error counter, and the control error counter.  These counters are incremented depending 

on the type of error.  The Universal Asynchronous Receiver/Transmitter (UART) 

provides the interface to the PC.  

 

Test Board

KDLX (Device Under Test) Laser or 
Heavy-Ion
Beam

PC (Control &
Data Recording)

Mounting
Fixture

RS-232 Cable

KDLX_Tester FPGA

 

 

Figure 32.   Test Configuration 
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Figure 33.   Test-Board Block Diagram 

 

3.  Operation 

The test board is placed in a position such that the laser or heavy- ion beam will be 

incident upon the KDLX under-test.  The beam is turned on.  The PC sends the test 

command.  This specifies the test number, clock speed, and test length.  Once this 

command has been completely received, the Test Control block pulls the Resetn signal to 

a logic level “0,” synchronously resetting both the device-under-test and the Golden 

Chip.  The Test Control block also provides the Clk signal to both processors at the 

commanded clock speed.  The Test Number specifies which of the test programs is used 

during a particular test.  The Test Number drives the upper two address bits of the 

Program Memory to choose the test program.  
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When the Resetn signal goes to a logic “1,” both processors begin executing the 

first instruction from the chosen test program in Program Memory.  On every clock cycle, 

the program addresses, read signals and write signals are checked.  If the program 

addresses do not match, a Program-Address Error has occurred.  The Program-Address 

Error Counter is incremented and the outputs of both processors are saved in the Error 

FIFO.  Both processors are then reset to resynchronize their program counters.  If the 

read or write signal does not agree, the Control-Error Counter is incremented and the 

outputs of both processors are saved in the Error FIFO.  Because the processors are still 

synchronized, they are not reset.  If either both read signals or both write signals are 

active (which indicates an access to the data memory without a control error), the address 

and data buses are checked.  If they do not agree, then an access error has occurred.  The 

Access Error Counter is incremented and the outputs are saved.  The Error FIFO passes 

the data to the UART, which sends it to the PC.  This process continues until the number 

of clock cycles specified in the Test Length has occurred.  This marks the end of the test.  

At this point, the Error Counters block sends the values of its counters to the PC via the 

UART. The test is complete when the PC receives the counter values.  Another test can 

be run immediately by sending another command from the PC. 

C.  LASER TESTING 

1.  Objective 

The objective of the laser testing is to validate the predicted transitional 

probabilities δ1 and ε1.  The laser provides the opportunity to inject an SET on a specific 

transistor within the KDLX.  Focusing the laser on a transistor of a logic gate allows 

direct insertion into state S2.   This provides for validation of the two critical element s of 

δ1: clock-edge effects modeling and the probability of logic propagation.  Similarly, 

focusing the laser on a transistor within a flip-flop provides direct insertion into state S3.  

This provides for validation of the instruction-based register-usage analysis used to 

predict ε1.  

2.  Test Configuration 

The laser tests were performed at the Naval Research Laboratory’s Pulsed-Laser 

Facility for Single-Event-Effects Investigation.  A block diagram of the test configuration 
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is shown in Figure 34.  The laser source is a 590 nm wavelength pulsed dye laser.   The 

laser pulses are nominally 1 picosecond in length. Optics between the laser source and 

the device-under-test focus the beam to a spot size of approximately 1.2 to 1.5 µm [44].  

This allows the targeting of a single transistor.  

               Computer

Test Board

TV Monitor CCD Camera

Objective Illuminator

Reflected Energy 
Meter

Incident Energy
Meter

Picosecond
Dye Laser

Wavelength/Polarizer
Combination

 
Figure 34.   Laser Test Configuration (after [44]) 

 
3.  Test #1 

The purpose of Test #1 is to validate the logic propagation modeling.  

Specifically, it validates the modeling of logic propagation for the Mux2 standard-cell 

multiplexer.  Table 8 defines this probability as being “Instruction-Dependent.”   This is a 

critical concept in the determination of the effective cross-section of a logic path; it says 

that logic elements that are not in the logic path do not contribute to the effective cross-

section. To validate this, the functionality test program, Test Program #3, was executed 

with the laser beam focused on the combinational- logic elements of the 

ALU_Logic_Slice module.  This module performs the logic operations of the arithmetic 

logic unit (ALU).  Figure 35 shows its schematic. The module consists of an AND gate, 

an OR gate, an XOR gate, and three multiplexers that determine the output.  For logical 
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AND instructions, Sel0=1 and Sel1=0, steering the output of the AND gate to the output 

of the module.  Similarly, for logical-OR instructions, Sel0=0 and Sel1=1, steering the 

output of the OR gate to output of the module.  The output of the XOR gate is steered to 

the module output with Sel0=1 and Sel1=1 for exclusive-or instructions.  

Figure 36 shows the layout of the ALU_Logic_Slice module.  The red circles 

show the targeted regions (also shown in Figure 35).  For Test Run #1, the beam was 

focused on the output of the AND gate.  Ten errors were observed at the output: six 

occurred during the ANDI instruction execution, and four occurred during the execution 

of the AND instruction.  None occurred during the logical-or  (OR, ORI) or the 

exclusive-or (XOR, XORI) instructions during Test Run #1.  In Test Run #2, the beam 

was focused on the output of the OR gate.  Errors occurred only during the execution of 

the logical-or instructions.  Similarly, Test Run #3 focused the beam on the output of the 

XOR gate. Errors occurred only during the execution of the exclusive-or instructions. The 

results of these three test runs are summarized in Table 18.  These results validate the 

premise that the combinational- logic elements that are not in an instruction’s data path do 

not contribute to the effective cross-section for that instruction.  

A

B

Sel0

Sel1

Out

Sel0

Target
Regions:

And

Or

Xor
Sel0  

Figure 35.   Target Regions for ALU_Logic_Slice 
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Figure 36.   Target Regions for ALU_Logic_Slice – Layout (after [45]) 
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Test Run Target Cell Number of
Errors

Corresponding
Instructions

1 AND Gate 10 ANDI(6)
AND(4)

2 OR Gate 11 ORI(5)
OR(6)

3 XOR Gate 9 XORI(4)
XOR(5)

 
Table 18.   Laser Test #1 Results 

 
4. Test #2  

The purpose of Test #2 is to validate the clock-edge effects modeling.  

Specifically, the relationships among the clock frequency, SET pulsewidth, and the 

probability that an SET is latched (Platch) are validated.   This was accomplished by 

injecting an SET on a transistor in the second XOR gate of the Full_Adder module, as 

shown in Figures 37 and 38.  In the first group of tests, the output energy detector voltage 

was 14 mV.   In the second group, the laser energy was decreased; the output energy 

detector voltage was 8 mV.  This resulted in a reduced length SET pulse.  For each group 

of tests, the KDLX executed Test Program #2 at four clock frequencies: 625 kHz, 1.25 

MHz, 2.5 MHz, and 5 MHz. Table 19 shows the results of these tests. Figure 39 shows a 

plot of the number of upsets versus the clock frequency.  The linear relationship between 

the clock frequency and the number of upsets is clearly evident, particularly at the higher 

energy (where the statistics are better).  This validates the predicted linear relationship 

between clock frequency and Platch. 
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Figure 37.   Target Region of Full Adder – Schematic (after [46]) 

 

 

Clock Speed Laser Energy 
Detector Output 

Voltage (mV) 

Number of 
Upsets 

Platch 

5 MHz 14 138 1.15e-3 
2.5 MHz 14 78 6.5e-4 

1.25 MHz 14 34.3 2.86e-4 
0.625 MHz 14 17.3 1.44e-4 

5 MHz 8 16 1.33e-4 
2.5 MHz 8 12 1.00e-4 

1.25 MHz 8 4 3.33e-5 
0.625 MHz 8 2 1.67e-5 

 
 

Table 19.   Laser Test #2 Results 
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Figure 38.   Target Region of Full Adder – Layout (after [45])
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Figure 39.   Laser Test #2 Results:  Clock-Edge Effects 

 

Validation of the absolute quantitative relationship between the length of the SET 

pulse and Platch requires an accurate measurement of the SET pulsewidth at the injection 

node.  Unfortunately, this is not possible with the KDLX chip.  This is because the SET 

must propagate through multiple logic gates prior to reaching the output; it is shaped and 

attenuated during this propagation and thus cannot be accurately measured.  However, it 

is clear from the data that for a given clock rate, a longer SET pulse results in a larger 

Platch.  

5.  Test #3 

The purpose of Test #3 is to validate the predicted transitional probability ε1. 

Validation requires injecting an SEU into a register and observing the resulting number 

of output errors as a function of the program.   To accomplish this, the laser beam was 

focused on the least-significant bit of register R1 as shown in Figures 40 and 41.   This 

transistor is sensitive only when the clock is high, so the probability of a laser pulse 

directly causing an SEU is 0.5 (i.e., β1 = .5).  The pulse repetition frequency of the laser 

was set at 1 KHz, and Test Program #1 was executed.   Each test run lasted two minutes, 

causing an estimated 60,000 SEUs.  This was repeated for Test Program 2, but the laser 

pulse repetition frequency needed to be reduced to 100 Hz because the test system could 

not keep up with the error rate.   This resulted in an estimated 6000 SEUs.   Table 20 

shows the test results.  The measured transitional probability ε1 for Test Program 1 was 
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0.00397.  This shows very good agreement with the predicted ε1: 0.00391.  For Test 

Program 2 the measured ε1 was 0.931.  This also shows good agreement with the 

predicted ε1: 0.922.   These results validate the modeling approach for the transitional 

probability ε1.  
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Figure 40.   Laser Target Region for DFFC D-Flip-Flop – Schematic (after [41]) 
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Figure 41.   Laser Target Region for DFFC D-Flip-Flop – Layout (after [45]) 
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Program Laser
PRF

Number
of Pulses

Estimated
Number of

SEUs

Average
Number

of Output
Errors

Transitional
Probability

ε1
(Measured)

Transitional
Probability

ε1
(Predicted)

Test
Program

1

1 kHz 120,000 60,000 238.4 0.00397 0.00391

Test
Program

2

100
Hz

12,000 6000 5479.8 0.9133 0.922

 
Table 20.   Laser Test #3 Results 

 
D.  HEAVY-ION TESTING  

1.  Objective  

The objective of the heavy- ion testing is to validate the system-level predictions 

in Chapter IV.  In laser testing, the SET generation is controlled by focusing the beam on 

the transistor of interest.  In heavy- ion testing, the LET and fluence of particles are 

controlled, but the exact location of ion impact is not.  The SET generation is governed 

by the relationship for equation 3.2: 

P(SET occurring with given LET) =    σΦ(LET)   (3.2). 

Since Φ(LET) is controlled, the heavy-ion testing provides a measure of the device cross-

section as a function of LET.  By executing the three different test programs used for the 

system predictions in Chapter IV, the program-dependent cross-sections can be validated.  

The predicted saturated cross-section and onset LET can also be validated.   

2.  Test Operation 

The heavy- ion tests were performed at the Texas A & M University Cyclotron 

Institute Radiation Effects Facility. The same test board and computer used in the laser 

testing were used.  Figure 42 shows a close-up of the output of the beam and the device 

under test. Three different species of ions were used to provide six different LET values.  

These are shown in Table 21.  
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Figure 42.   Heavy-Ion Test Configuration 

 

 

Ion Energy (MeV) Angle of Incidence
(Degrees)

LET
(MeV*cm2/mg)

Argon 933 0 5.69
Argon 933 45 8.08

Krypton 1862 0 20.6
Krypton 1862 45 28.9
Xenon 2730 0 40.9
Xenon 2730 45 57.8

 

Table 21.   Heavy-Ions Used for Heavy-Ion Testing 
 

For each of the LETs shown in Table 21, two test runs were performed: one with 

KDLX #1, and the other with KDLX #2. Two different KDLX devices were used to 
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obtain better statistics.  Each test run lasted twelve minutes and consisted of the following 

sequence of test programs: 

1.  Test Program #1 @  5 MHz 

2.  Test Program #2 @  5 MHz 

3.  Test Program #3 @  5 MHz 

4.  Test Program #1 @  625 kHz 

5.  Test Program #2 @  625 kHz  

6.  Test Program #3 @  625 kHz. 

Each program lasted exactly two minutes and was run at both the highest and lowest 

clock frequencies available on the test system. During the execution of each program, the 

number of access, program address, and control errors was recorded, as was all the error 

information.  

3.  Test Results  

The test results are divided into three cross-section versus LET plots: access 

errors, control errors, and program address errors. Figures 43 and 44 show the access-

error cross-section versus LET.  Figures 45 and 46 show the program-address- error 

cross-section versus LET.  Figures 47 and 48 show the control-error cross-section versus 

LET. 
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Figure 43.   Measured Access-Error Cross-Section Versus LET @ 5 MHz 
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Figure 44.   Measured Access-Error Cross-Section Versus LET @ 625 kHz 
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Figure 45.   Measured Control-Error Cross-Section Versus LET @ 5 MHz 
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Figure 46.   Measured Control-Error Cross-Section Versus LET @ 625 kHz 
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Figure 47.   Measured Program-Address-Error Cross-Section Versus LET @ 5 MHz 
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Figure 48.   Measured Program-Address-Error Cross-Section Versus LET @ 625 kHz 
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E.  COMPARISON BETWEEN SYSTEM PREDICTIONS AND TEST RESULTS 

Figure 49 shows a comparison between the predicted access-error cross-sections 

and the measured access-error cross-sections from the heavy-ion testing.  The Measured 

Test Program #1 cross-section is the average of the cross-sections of the 625 kHz and 5 

MHz tests.  This is also true for Test Program #2 and Test Program #3.  The predicted 

cross-sections track the measured values well, especially at the higher LETs.  
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Figure 49.   Measured and Predicted Access-Error Cross-Section Versus LET 

 

Table 22 compares the measured and the predicted saturated cross-section and 

onset LETs for each of the test programs. The predicted saturated cross-sections match 

the measured cross-sections very well.  For each of the test programs, the predicted 

values are within one standard deviation of the measured cross-section.  

Table 22 also shows that the predicted onset LET is slightly higher than the 

measured onset LET.  This illustrates the sensitivity of the prediction to the funnel length 

value.  It also appears that the predicted cross-sections are greatly overestimated at low 

LETs.  This shows that modeling the sensitive cross-section of a transistor as the drain 

area surrounded by one depletion width is too large for LET values near the onset 

threshold. One possible explanation for this is that the charge-collection process is 

hindered as the charge has to travel farther to get to the drain contact.  Figure 50 shows 

the cross-section of two sensitive NFET drains.  In 50a, the ion is incident directly upon 
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the drain contact.  This creates a funnel directly below the contact (shown in white). The 

red arrow indicates the flow of electrons to the drain.  The entire path for an electron is 

within the funnel, which has extremely high conductivity during the charge-collection 

process.  In contrast, the ion strike and funnel formation are away from the drain contact 

(but still in the sensitive region) in Figure 50b.  In this case, the electrons must travel 

some distance through the depletion region, where the conductivity is much lower than 

the conductivity of the funnel.   This reduced conductivity reduces the charge-collection 

efficiency.  For low-LET ions, the reduced charge-collection efficiency prevents enough 

charge to be collected at the drain contact to cause an upset.  Larger-LET ions have 

enough charge that the charge collected at the drain contact is enough, in spite of the 

reduced collection efficiency.    

To support this hypothesis, the prediction for the effective cross-section of Test 

Program #3 was modified using the drain contact area as the sensitive area for the 

transistor.  Table 23 compares the measured effective cross-section for Test Program #3 

with the predicted effective cross-section using the drain contact area as the cross-section 

and the predicted effective cross-section using the drain area plus depletion width.  This 

comparison shows that the using the drain contact area matches much more closely to the 

measured value for the cross-section.  This indicates that this may be a viable 

explanation. 
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Program  Onset LET  
(MeV*cm2/mg) 

Saturated Cross-
Section (cm2/device) 

Measured Test Program 
#1 

< 20.7 3.23e-6  
+/- 2.11e-6 

Predicted Test Program 
#1 

8.4 3.59e-6 

Measured Test Program 
#2 

< 5.69 8.20e-5  
+/- 8.44e-6 

Predicted Test Program 
#2 

8.4 7.77e-5 

Measured Test Program 
#3 

< 5.69 8.9e-5  
+/- 1.49e-5 

Predicted Test Program 
#3 

8.4 9.16e-5 

 
 

Table 22.   Measured and Predicted Onset LET and Saturated Cross-Section 
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Figure 50.   Onset-LET Cross-Section Reduction 
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Measured Cross-

section @ Onset LET

(cm2)

Predicted Effective Cross-

section @ Onset LET

using Active Contact Area

(cm2)

Predicted Effective

Cross-section @ Onset

LET using Drain Area

(cm2)

1.55e-7 1.67e-7 5.93e-6

 
Table 23.   Measured and Predicted Access-Error Cross-sections for Test Program #3 

 
 
 F.  CONCLUSION 

The modeling and simulations documented in Chapter IV were used to predict the 

transitional probabilities of the SET-state-transition model.  These probabilities were 

combined to predict the test-program-dependent effective cross-section of the KDLX 

processor.  The results of the laser testing described in this chapter show very good 

agreement with the clock-edge effects modeling (which is a key element of the 

transitional probability δ1) and the predicted transitional probability ε1.  The results from 

the heavy-ion testing also show very good agreement between the predicted and 

measured system-level cross-sections.   The combination of the results from the laser 

testing and the heavy- ion testing validates both the transitional-probability modeling as 

well as the system-level predictions from Chapter IV.  This, in turn validates the 

modeling approach defined in Chapter III.  
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VI.  CONCLUSION 

A.  SUMMARY OF RESEARCH 

This dissertation formulated, verified and validated a methodology to determine 

the single-event transient (SET) tolerance of a complex digital system.  A 16-bit RISC 

microprocessor, the KDLX, was the candidate complex digital system. 

The formulation of the methodology was based on the SET-state-transition model 

of Figure 2.  State S1 is the error/transient- free state.  From this state, three transitional 

probabilities, β1, β2, and β3 bring the system to states S3 (SEU), S2 (Logic Gate 

Transient), and S4 (Output Driver Transient), respectively.  These transitional 

probabilities are SET generation probabilities.  From state S2, δ1 is the probability that 

the transient becomes latched to become an SEU (state S3); δ2 is the probability that the 

transient propagates to an output driver (state S4).  From state s4, ε2 is the probability 

that the transient causes an error to the external system (state S5 - failure).  These 

transitional probabilities are SET propagation probabilities.  From state S3, ε1 is the 

transitional probability that the SEU will propagate to the output and cause an error to the 

external system (also state S5).  This is the SEU propagation probability. 

Determination of the SET generation probabilities is based on three key 

parameters: critical charge, funnel length, and cross-section.  For transitional probability 

β1, the critical charge is the minimum quantity of charge that causes an SEU to the 

memory element.  For β2 and β3, the critical charge is the minimum quantity of charge 

that causes a given amplitude and pulsewidth for an SET.  It is determined with SPICE 

simulations by injecting a double-exponential current pulse onto the node of interest and 

observing the results.  The funnel length is the linear distance of charge collection in the 

ion track.  It is a necessary parameter to convert the critical charge to an equivalent linear 

energy transfer (LET). The cross-section of a transistor is the sensitive region that the ion 

must hit to cause the SET.  It is determined from the layout and the depletion width.   

Determination of the SET propagation probabilities is based on SET analog 

propagation, SET logic propagation, and clock-edge effects modeling.  SET analog 
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propagation modeling determines if a transient has enough energy to propagate, given a 

sensitized logic path.  It is modeled in SPICE.  SET logic propagation modeling 

determines the probability of a sensitized logic path.  Clock-edge effects modeling 

determines the probability that a transient is latched into a memory element.  It is 

accomplished using SPICE simulations. 

The probability of SEU propagation is determined by instruction-based register-

usage analysis and VHDL-based fault injection.  Instruction-based register-usage analysis 

is top- level analysis to determine which registers are used in a particular functional mode.  

VHDL-based fault injection is used when the top- level analysis does not provide enough 

insight into the propagation of SEUs in the design. 

To verify this methodology, the SET tolerance of a candidate complex digital 

system was determined.  The candidate system was the 16-bit KDLX RISC processor.  

This processor was implemented using the MOSIS prototyping service.  Using the design 

information available, the SET generation modeling, SET propagation modeling, and 

SEU propagation modeling were performed. 

The funnel length was estimated to be 3.9 µm based on the 3-dimensional 

semiconductor simulation results in Dodd[28]. For β1, the total effective saturated cross-

section of the DFFC standard-cell (the only type of memory element used in the KDLX) 

was 33.66 µm.  The critical charge was 339 fC, or an ion with an LET equal to 8.4 

MeV*cm2/mg.  The effective cross-section of the transistor that defined the critical 

charge was 2.18 µm.   For β2, the sensitive effective cross-section of the inverter was 

determined to be 35.79 µm.  The critical charge to provide a 3V amplitude, 190 ps length 

of the SET pulse was determined to be 423.7 fC.  This was incident on the NFET and 

requires an ion with an LET equal to 10.5 MeV*cm2/mg.  For β3, it was determined that 

the capacitance at the output of the KDLX is so la rge that an ion with an LET greater 

than 340 MeV*cm2/mg was necessary to provide a small effect at the output.  Ions with 

LETs that large do not exist, thus β3 was set to 0. 

The SET propagation modeling was necessary to determine δ1, δ2 and ε2 

transitional probabilities.  The analog propagation was modeled using SPICE.  The 
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modeling showed that there is a propagation threshold.  If the amplitude and pulsewidth 

of the SET are below the threshold, propagation without attenuation will not occur.  For 

inverters, this threshold was determined to be an amplitude of 3.0V and pulsewidth of 

400 picoseconds for a 0-1-0 SET and 3.3V, 460 picoseconds for a 1-0-1 SET.  For SET 

logic propagation, it was determined that the multiplexer was critical in determining the 

logic cross-section.  This was because the logic datapath is largely determined by the how 

the instruction being executeded controls the mulitplexers to steer the data.  The clock- 

edge effects modeling revealed that an SET must have equal amplitude and longer pulse 

than is required for the propagation threshold (480 picoseconds vs. 400 picoseconds for a 

1-0-1 SET).  This simplified the SET propagation modeling, because if an SET was large 

enough (both in amplitude and pulsewidth) to be latched, then it must also be large 

enough to propagate without attenuation. 

The SEU propagation modeling focused on determining the sensitive window for 

an SEU to occur during the execution of an instruction to cause improper execution.  For 

most registers, this was accomplished by performing instruction-based register-usage 

analysis for each instruction.  The sensitive windows for the pipeline registers were not 

apparent from this analysis.  As a result, VHDL-based fault injection was used to 

determine the sensitive windows in the pipeline. 

The results of the modeling were combined to provide a system-level prediction 

for the KDLX processor for three different test programs.  For Test Program #1, the 

predicted effective saturated cross-section was 767.55 µm2.  For Test Program #2 the 

predicted effective saturated cross-section was 6841.22 µm2, and for Test Program #3, it 

was 8226.06 µm2. 

Laser testing and heavy- ion testing were performed to validate the results of the 

modeling.  Laser testing was used to validate key transitional probabilities.  Heavy- ion 

testing was performed to validate the system-level predictions. 

The laser testing allowed direct injection into states S2 and S3.  This way, the 

predicted transitional probabilities δ1 and ε1 could be validated.  The logic propagation 

and clock-edge effects components of δ1 were validated.  To validate logic propagation, 
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it was shown that a logic gate that is not in the datapath defined by the instruction will not 

contribute to the cross-section of the instruction.  To validate the clock-edge effects 

modeling, it was shown that the probability of an SET being latched is a linear function 

of the clock frequency.  It was also shown that a longer SET pulse results in a higher 

probability of being latched. To validate ε1, the sensitive window concept was tested.  

For Test Program #1, the predicted ε1(R1, bit 1) was 0.00391; the measured value was 

0.00397.  For Test Program #2, the predicted ε1(R1, Bit 1) was 0.922, and the measured 

value was 0.931. 

 The heavy- ion testing validated the system-level predictions.  The testing used 

six different LET values: 5.69, 8.08, 20.6, 28.9, 40.9, and 57.8 MeV*cm2/mg.  In all 

cases, the cross-section versus LET curves tracked the predicted values for each test 

program.  This was particularly true at LETs > 20 MeV*cm2/mg.  The predicted onset 

LET was 8.4 MeV*cm2/mg; the measured was < 5.69 MeV*cm2/mg (this was the lowest 

LET tested).  The predicted saturated cross-section of Test Program #1 was 3.59e-6 

cm2/device; the measured value was 3.23e-6 cm2/device.  For Test Program #2, the 

predicted saturated cross-section was 7.77e-5 cm2/device; the measured value was 8.20e-

5 cm2/device. For Test Program #3, the predicted saturated cross-section was 9.16e-5 

cm2/device; the measured value was 8.9e-5 cm2/device. 

B.  THE 90% SOLUTION 

The methodology implemented in this dissertation demonstrates very good 

agreement between predicted and measured values.  A closer look at these results reveals 

that the system-level cross-section is dominated by the S1-to-S3-to-S5 transition path.  

This is largely due to the fact that the clock-edge effects minimize the δ1 transitional 

probability. 

The 90% solution uses this fact to simplify the methodology.  All modeling and 

simulations can focus on determining the transitional probabilities of the S1-to-S3-to-S5 

transition path.  The problem then reduces to determining the cross-section versus LET 

curve of the memory elements (β1) and determining the probability of SEU propagation 
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(ε1). The transitional probability β1 is determined using SPICE simulations and ε1 is 

determined using the instruction–based register-usage analysis.  

C.  ORIGINAL CONTRIBUTIONS 

The primary original contribution of this dissertation is the methodology to 

determine the effective cross-section of a complex digital system.  In particular, the use 

of the SET-state-transition diagram is unique.  This allows the combinational- logic 

contribution of the cross-section to be determined separately from the static cross-section.   

The instruction-based register-usage analysis approach to determine the 

probability of SEU propagation is also unique, because it provides a precise measure of 

the sensitive window for a register as a function of the instruction execution.  This allows 

the total number of modes of a processor to be reduced to something that is workable to 

determine the cross-section for each functional mode.   

The SPICE injection circuits are also contributions, because they allow for more 

accurate SPICE simulations of SETs.  While these injection circuits do not provide the 

accuracy of a high-end mixed-mode simulation that uses 3-dimensional semiconductor 

modeling, they do represent a significant improvement over the independent current pulse 

injection approach.  This improvement is due to the fact that the charge collected is a 

function of the injection node voltage with the injection circuits used in this dissertation, 

while the charge collected using the independent current pulse is not a function of the 

node voltage. 

D.  EXTENSION TO OTHER IMPLEMENTATIONS 

This dissertation documented the application of the methodology to the KDLX 

RISC processor.  It was validated with the laser and heavy- ion testing, which is 

important, but for this dissertation to be complete, how the methodology can be applied 

to other classes of complex digital systems must also be shown.  

1.  The Standard-Cell Application Specific Integrated Circuit (ASIC) 4 

 The first alternate implementation considered is the standard-cell ASIC.  Because 

this is a standard-cell design, the designer has the same information available from the 
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parametric test results of the foundry run, the extracted layout, and the gate- level 

hardware-description language (HDL) definition of the design.  Thus, the approach is the 

same as the KDLX to determine the SET generation probabilities.  The analog 

propagation and clock-edge effects modeling are also the same.  The difference between 

the standard-cell ASIC and the KDLX processor is that the ASIC does not have an 

instruction set.  This means that the instruction-based register-usage analysis approach 

does not apply.  Thus, instead of determining the datapath and the ε1 transitional 

probability for each instruction, these must evaluated for each functional mode.  The total 

effective device cross-section is then determined by the equation: 

 σdevice = Σ σn* Dn , n = 1 to the total number of modes, where    (6.1) 

σn = mode-dependent cross-section for mode n, 

 Dn = duty cycle of state n. 

2.  Field Programmable Gate Array (FPGA) 

The next alternate implementation considered is an FPGA.  This is fundamentally 

different from the standard-cell ASIC because the engineer typically will not have the 

parametric test results of the foundry run or a SPICE transistor- level model of the logic 

modules.  However, the designer will have a high- level description of the design, as well 

as a synthesized logic-module description.  It is also likely that the engineer has some 

SEU data on the FPGA logic modules [47].  Assuming that there is SEU test data on the 

logic modules, the problem becomes determining the functional-mode-dependent cross-

section.  This requires a determination of the number of logic modules used for each 

functional mode.  The total device cross-section is then determined using equation 6.1. 

3.  Off-the-Shelf Processor 

An off-the-shelf processor is the next implementation considered.  In this case, the 

only information likely to be available is an instruction-set architecture (ISA) description 

of the processor.  The information contained in an ISA description may be similar to the 

information in a full HDL description of the microarchitecture, except that the ISA 

                                                                                                                                                                                                 
4 While it is true that an ASIC can be a processor, here an ASIC is defined as a complex digital system that 
does not contain an instruction set. 
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description will be missing the hidden memory elements that are included in the HDL 

description.  Examples of hidden memory elements in the KDLX are the pipeline 

memory elements, the ALU-buffer memory elements, and the data input/output buffer 

memory elements.  These hidden memory elements may create a very big difference 

between the ISA description and the HDL microarchitecture description. These hidden 

elements contribute to the effective cross-section, but are not apparent in looking at the 

ISA description of the processor.   

The approach for the processor focuses on determining the instruction-dependent 

cross-section using a combination of what is known from the ISA description and what 

can be determined about the microarchitecture from SEU testing.  The procedure is as 

follows: 

1. For each instruction type, determine the sensitive memory elements using the 

ISA description.    

2.  Add a variable to depict the additional hidden sensitive memory elements for 

each instruction to the result in #1. 

3. Create a test program for each instruction type to determine the mode- 

dependent cross-section associated with that instruction type.  Predict the cross-

section of the test program using #1 and #2. 

4. Create a (or use an existing) program that uses many different instructions. This 

is the validation program.  Predict the cross-section using #1 and #2.  

5. At a high LET (to insure the best statistics), run all programs to determine the 

saturated cross-sections for each program.   

6. Using the test program with the largest saturated cross-section, test the 

processor at lower LETs to obtain a cross-section versus LET curve.  The other 

test programs should follow this same cross-section versus LET trend. 

7. Determine the hidden number of memory elements for each instruction by 

comparing the resulting saturated cross-sections with the cross-sections that were 

predicted in #3.  
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8. Update the instruction-dependent cross-sections by including the contribution 

of the hidden memory elements.   

9. Compare the measured cross-section of the validation program to the updated 

predicted cross-section.  If the two agree, the predicted instruction-dependent 

cross-sections will be validated.  

4.  Off-the-Shelf ASIC 

The final implementation considered is an off-the-shelf ASIC.  In this case, the 

device is not a processor, and the only information typically available is a block diagram 

from the data sheet, which may be significantly different from the actual architecture.  As 

before, it is necessary to determine the cross-section for each of the operational modes of 

the device.  Each functional mode of the device should be tested at a high LET to 

determine the relative cross-section of each mode.  Then, as with the off- the-shelf 

processor, the cross-section versus LET curve is determined by testing at lower LETs 

with the device operating in the functional mode with the largest cross-section.  The total 

effective device cross-section is determined by using equation 6.1. 

E.  AREAS FOR FURTHER INVESTIGATION 

There are two primary areas for further investigation.  The first area is the 

verification of the approaches defined in the previous section.  This could be 

accomplished by implementing the approach on a standard-cell ASIC, FPGA, off-the-

shelf processor, and off-the-shelf ASIC.  This would demonstrate the versatility of the 

methodology defined in this dissertation.   

The second area is the determination of how the sensitive area of a transistor is 

reduced as the LET approaches the onset LET.  In this dissertation, it was assumed that 

the sensitive area is ze ro if the LET is less than the onset LET and becomes the area 

defined by equations 3.12 – 3.14 once the onset LET has been reached.  At high LETs, 

the test results in Chapter V show that this estimate is accurate; however at LETs less 

than 10 MeV*cm2/mg, the measured cross-section is an order of magnitude less than the 

predicted cross-section.   This indicates that the assumption is not valid at lower LETs, 

which is why further investigation is merited.  The recommended approach is to perform 

mixed-mode 3-dimensional simulations of the transistors in the DFFC standard-cell flip-
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flop.  These simulations allow the precise control of the location that the incident ion 

strikes the sensitive area.  This would show if the charge-collection process is enhanced 

as the location of the funnel moves closer to the drain contact (see Figure 50).  The 

simulation results could be validated with testing using heavy ions with low values of 

LET. 
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APPENDIX A – KDLX PROCESSOR DESCRIPTION 

A.  INTRODUCTION 

The KDLX processor is a 16-bit version of the DLX processor described in 

Computer Architecture, a Quantitative Approach, by Hennessey and Patterson[48].  It 

was implemented through the MOSIS prototyping service using the Hewlett-Packard 0.5 

µm CMOS process.  The processor was designed using the Tanner Tools Pro MOSIS 

SCMOS Standard-cell library, with a gate length of 0.7 µm.  This appendix describes the 

functional blocks of the processor as well as the instruction set that was implemented.   

Figure 51 shows a photograph of the device.   Figure 52 shows the layout of the KDLX. 

 
Figure 51.   Photograph of KDLX Processor 

 

      
Figure 52.   KDLX Layout 
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B.  TOP-LEVEL FUNCTIONAL BLOCK DIAGRAM 

Figure 53 shows the top- level block diagram of the KDLX processor.  It consists 

of the following functional blocks: 

1.  General-Purpose Register File – contains the general-purpose 16-bit registers (

 R0 – R16).  

2.  ALU (Arithmetic Logic Unit) – performs arithmetic and logical functions on 

its inputs. 

3.  PC Control Module – controls the program counter. 

4.  Pipeline Module – implements the pipeline by providing the necessary control 

signals to the other modules during each pipeline stage. 

5.  RW_Control – provides the Rd* and Wr* signals to control the input and 

output of the processor. 

6.  ALU Out Buffer – buffers the output of the ALU to drive the ADDR_Out 

signal and to feedback into the Delayed_ALU_Out_Buffer Register for writeback. 

7.  Delayed ALU Out Buffer – buffers the output of the ALU for writeback into 

the general-purpose registers. 

8.  Data Out Buffer – buffers the output data when writing to memory.  

9.  Data In Buffer – buffers the input data when reading from memory. 

10.  Reg_In_Sel Multiplexer – selects the input to the general-purpose registers.   

This input can be the Program_Addr+2 signal, the Data_In register, or the 

Delayed_ALU_Out Buffer (from the ALU).   

11.  A_Mux – selects the A input for the ALU.  This input can be the 

Program_Addr+1(15:0) from the PC Control Module, the 16-bit immediate 

(Immed[15:0]), the high 8-bit immediate (Immed[7:0]), or the register RA from 

the general-purpose register file. 

12.  B_Mux – selects the B input for the ALU.  This can the sign-extended 

immediate (S_Immed), which is the sign-extended 8-bit immediate value, the 
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Figure 53.   KDLX Block Diagram 
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unsigned- immediate (US_Immed) value, or the register RB from the general-  

purpose register file. 

C.  GENERAL-PURPOSE REGISTER FILE  

Figure 54 shows the block diagram of the general-purpose register file. The 

general-purpose register selected by the Dest(3:0) signal is written through the 

Reg_Data_In input when the WB_Enable signal is active.  The registers RA and RB are 

loaded with the registers selected by the RS1(3:0) and RS2(3:0) inputs. 

Register 
RA

Register 
RB

RA(15:0)

RB(15:0)

RS2(3:0)

RS1(3:0)

Reg_Data_In(15:0)

Dest(3:0)

General- 
Purpose
Registers
R0-R15

WB_Enable

 
Figure 54.   General-Purpose Register File Block Diagram 

 
D.  PIPELINE MODULE  

Figure 55 shows a block diagram of the Pipeline Module.  The Fetch pipeline 

cycle is not shown because it fetches the 24-bit instruction word, Instr(23:0).  The 

Decode stage provides the RS1 and RS2 multiplexer selections for the General-Purpose 

Register File.  The Execute stage is the stage in which the ALU operations are performed.  

In this stage, the pipeline module provides the 8 or 16-bit immediate value (depending on 

the instruction type).  The ALU_Op(4:0) defines the operation of the ALU module.  The 

A_Mux and B_Mux signals are used to define the input to the ALU.  The PC_Sel 

controls the source of the next program counter for the PC Control module.  The Memory 

Stage provides the Rd_Enable and Wr_Enable to the RW_Control module to drive the  

Rd* and Wr* outputs.  The Writeback stage provides the WB_Enable, Dest(3:0), and 
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Reg_In_Sel(1:0)  to the General-Purpose Register File.  Additionally, the Writeback 

stage also provides the Interrupt Address Register Enable (IAR_Enable) to the PC 

Control module to save the return address during a TRAP instruction.  

Decode
Stage

Instr(23:0)

RS1(3:0)

RS2(3:0)

Immed(15:0)

B_Mux(1:0)

A_Mux(1:0)

ALU_Op(4:0)

Memory
Stage

Rd_Enable

Wr_Enable

WB_Enable

Reg_In_Sel(1:0)

IAR_Enable

PC_Sel(1:0)

Execute
Stage

Writeback
Stage

Dest(3:0)

 
Figure 55.   Pipeline Module Block Diagram 
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16-bit
Interrupt
Address
Register

Program_Addr+1(15:0) Program_Addr+2(15:0)

IAR_Enable

ALU_Out(15:0)

 
 

Figure 56.   PC Control Module Block Diagram 
 
E.  PC CONTROL MODULE DESCRIPTION  

Figure 56 shows a block diagram of the PC Control module.  The PC_Sel(1:0) 

selects the source for the next program address.  The sources can be the incremented 

Program Address (normal operation), the Interrupt Address(for a return from exception, 

or RFE, instruction) or the output of the ALU, ALU_Out (for Jump and Branch 

instructions).  The PC Control module provides the Program_Addr(15:0) output to 
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perform the instruction fetch.  The Program_Addr+1(15:0) output is used by the ALU to 

determine the next program address for Branch instructions.  The Program_Addr+2(15:0) 

is the link address used in the jump and link instructions.   

F.  ARITHMETIC LOGIC UNIT (ALU) MODULE  

Figure 57 shows a block diagram of the ALU Module.  The adder module 

performs addition and subtraction.  The ALU logic module provides the capability to 

perform the logical functions AND, OR, and exclusive-OR.  The barrel shifter is used for 

bit-wise shift operations.  The conditional set module is used for the set-on conditional 

functions. 

+/-

ALU
Logic

Module

Barrel
Shifter

Set
Module

A(15:0)

B(15:0)

ALU_Out(15:0)

ALU_Op(4:0)

 

 

Figure 57.   Arithmetic Logic Unit (ALU) Module Block Diagram  
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G.  INSTRUCTION SET DESCRIPTION 

This section describes the instructions that were implemented in the KDLX.  The 

format of the instructions is based on the description in Sailer[49]. 

Instruction:  ADD (Register Add) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x01   Rs1      Rd     Rs2 Unused    
Usage:  ADD Rd, Rs1, Rs2  

 Operation:  (Rs1 + Rs2) = Rd 

 

Instruction:  ADDI (Add Immediate) 

23                            16 15         12 11           8 7                              0

Opcode: 0x41   Rs1      Rd           Immed  
  Usage:  ADD Rd, Rs1, Rs2  

 Operation:  (Rs1 + [(Immed7)8 ||Immed])= Rd 

 

Instruction:  ADDUI (Add Unsigned Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x21   Rs1      Rd       Immed  
  Usage:  ADD Rd, Rs1, Rs2  

 Operation:  (Rs1 + [(0)8 ||Immed])= Rd 

 

Instruction:  AND (Register AND) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x09   Rs1      Rd     Rs2 Unused  
  Usage:  AND Rd, Rs1, Rs2  

 Operation:  (Rs1 (logical-and) Rs2) = Rd 
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Instruction:  ANDI (And Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x29   Rs1      Rd       Immed  
  Usage:  AND Rd, Rs1, Immed 

 Operation:  (Rs1 logical-and [(Immed7)8 ||Immed])= Rd 

 

Instruction:  BEQZ (Branch if Equal to Zero) 

23                            16 15         12 11           8 7               0

Opcode: 0xC1   Rs1   Unused       Immed  
 Usage:  BEQZ Rs1, Immed  

 Operation:  If Rs1 = 0,  

then Program_Addr = (PC+1 +  [(Immed7)8 ||Immed]) 

 

Instruction:  BNEZ (Branch if Not Equal to Zero) 

23                            16 15         12 11           8 7               0

Opcode: 0xC0   Rs1   Unused       Immed  
 Usage: BNEZ Rs1, Immed 

 Operation:  If Rs1 != 0,  

then Program_Addr = (PC+1 +  [(Immed7)8 ||Immed]) 

 

Instruction:  J (Jump) 

23                            16 15               0

Opcode:0xC8       Immed  
 Usage: J Immed 

 Operation:  Program_Addr = Immed 

 

Instruction:  JAL (Jump  and Link ) 

23                            16 15               0

Opcode:0xE8       Immed  
 Usage: JAL Immed 

 Operation:  Program_Addr = Immed; 

         R15 = Link_Program_Address 
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 Instruction:  JALR (Jump Register and Link) 

23                            16 15         12 11               0

Opcode: 0x68   Rs1              Unused  
 Usage: JALR Rs1 

 Operation:  Program_Addr = (Rs1) 

  R15 = Link_Program_Address 

 

Instruction:  JR (Jump Register) 

23                            16 15         12 11               0

Opcode: 0x48   Rs1              Unused  
 Usage: JALR Rs1 

 Operation:  Program_Addr = (Rs1) 

 

Instruction:  LHI (Load High Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x08  Unused    Rd       Immed  
 Usage:  LHI Rd, Immed  

 Operation:  Rd = Immed || (0)8 

 

Instruction:  LW (Load Word) 

23                            16 15         12 11           8 7               0

Opcode: 0x08  Unused    Rd       Immed  
  Usage:  LW Rd, Rs1(Immed)  

 Operation:  Rd = Mem{Rs1 + [(Immed7)8 ||Immed]} 

 

Instruction:  NOP (No Operation ) 

23                            16 15               0

Opcode:0x00       Unused  
 Usage: NOP 

 Operation:  None 

 



 102 

Instruction:  OR (Register OR) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x0A   Rs1      Rd     Rs2 Unused  
  Usage:  OR Rd, Rs1, Rs2  

 Operation:  Rd = (Rs1 (logical-or) Rs2)  

 

Instruction:  ORI (OR Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x2A   Rs1      Rd       Immed  
  Usage:  OR Rd, Rs1, Immed 

 Operation:  (Rs1 logical-or [(Immed7)8 ||Immed])= Rd 

 

Instruction:  RFE (Return from Exception) 

23                            16 15               0

Opcode:0xF8       Unused  
 Usage: RFE 

 Operation:  Program_Address = Interrupt_Address_Register 

 

Instruction:  SEQ (Set Equal) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x18   Rs1      Rd     Rs2 Unused  
  Usage:  SEQ Rd, Rs1, Rs2  

 Operation:  If Rs1 = Rs2, then Rd = 0x0001, 

                                                     Else, Rd = 0x0000 

 

Instruction: SEQI (Set Equal Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x58   Rs1      Rd       Immed  
  Usage:  SEQI Rd, Rs1, Immed 

 Operation:   If Rs1 = [(Immed7)8 ||Immed]), then Rd = 0x0001, 

                                                                                  Else, Rd = 0x0000 
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Instruction:  SGE (Set if Greater Than or Equal) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x19   Rs1      Rd     Rs2 Unused  
  Usage:  SGE Rd, Rs1, Rs2  

 Operation:  If Rs1 >= Rs2, then Rd = 0x0001, 

                                                       Else, Rd = 0x0000 

 

Instruction: SGEI (Set if Greater Than or Equal Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x59   Rs1      Rd       Immed  
  Usage:  SGEI Rd, Rs1, Immed 

 Operation:   If Rs1 >= [(Immed7)8 ||Immed]), then Rd = 0x0001, 

                                                                                    Else, Rd = 0x0000 

 

Instruction:  SGT (Set if Greater Than) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x1A   Rs1      Rd     Rs2 Unused  
  Usage:  SGT Rd, Rs1, Rs2  

 Operation:  If Rs1 > Rs2, then Rd = 0x0001, 

                                                       Else, Rd = 0x0000 

 

Instruction: SGTI (Set if Greater Than Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x5A   Rs1      Rd       Immed  
  Usage:  SGTI Rd, Rs1, Immed 

 Operation:   If Rs1 > [(Immed7)8 ||Immed]), then Rd = 0x0001, 

                                                                                    Else, Rd = 0x0000 
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Instruction:  SLE (Set if Less Than or Equal) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x1B   Rs1      Rd     Rs2 Unused  
  Usage:  SLE Rd, Rs1, Rs2  

 Operation:  If Rs1 < Rs2, then Rd = 0x0001, 

                                                       Else, Rd = 0x0000 

 

Instruction: SLEI (Set if Less Than or Equal Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x5B   Rs1      Rd       Immed  
  Usage:  SLEI Rd, Rs1, Immed 

 Operation:   If Rs1 <= [(Immed7)8 ||Immed]), then Rd = 0x0001, 

                                                                                    Else, Rd = 0x0000 

Instruction:  SLL (Shift Logic Left) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x11   Rs1      Rd     Rs2 Unused  
  Usage:  SLL Rd, Rs1, Rs2  

 Operation:  Rd = (Rs1) shifted left by Rs2(3:0) bits 

 

Instruction: SLLI (Shift Logic Left Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x51   Rs1      Rd       Immed  
  Usage:  SLLI Rd, Rs1, Immed 

 Operation: Rd = (Rs1) shifted left by Immed(3:0) bits 

                                                                                     

Instruction:  SLT(Set if Less Than) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x1C   Rs1      Rd     Rs2 Unused  
  Usage:  SLT Rd, Rs1, Rs2  

 Operation:  If Rs1 < Rs2, then Rd = 0x0001, 

                                                     Else, Rd = 0x0000 
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Instruction: SLTI (Set if Less Than Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x5C   Rs1      Rd       Immed  
  Usage:  SLTI Rd, Rs1, Immed 

 Operation:   If Rs1 < [(Immed7)8 ||Immed]), then Rd = 0x0001, 

                                                                                  Else, Rd = 0x0000 

 

Instruction:  SNE (Set If Not Equal) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x1D   Rs1      Rd     Rs2 Unused  
  Usage:  SNE Rd, Rs1, Rs2  

 Operation:  If Rs1 != Rs2, then Rd = 0x0001, 

                                                     Else, Rd = 0x0000 

 

Instruction: SNEI (Set If Not Equal Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x58   Rs1      Rd       Immed  
  Usage:  SNEI Rd, Rs1, Immed 

 Operation:   If Rs1 != [(Immed7)8 ||Immed]), then Rd = 0x0001, 

                                                                                    Else, Rd = 0x0000 

 

Instruction:  SRA (Shift Right Arithmetic) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x13   Rs1      Rd     Rs2 Unused  
  Usage:  SRA Rd, Rs1, Rs2  

Operation:  Rd = (Rs1) shifted right by Rs2(3:0) bits,  

with Rs1(15) shifted in from right (for sign extension) 
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Instruction: SRAI (Shift Right Arithmetic Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x53   Rs1      Rd       Immed  
  Usage:  SRAI Rd, Rs1, Immed 

Operation: Rd = Rd = (Rs1) shifted right by Immed(3:0) bits, with 
Rs1(15) shifted in from right (for sign extension) 

 

Instruction:  SRL (Shift Right Logical) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x12   Rs1      Rd     Rs2 Unused  
  Usage:  SRL Rd, Rs1, Rs2  

Operation:  Rd = (Rs1) shifted left by Rs2(3:0) bits, with 0s shifted in 
from right  

 

Instruction: SRLI (Shift Right Logical Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x52   Rs1      Rd       Immed  
  Usage:  SRLI Rd, Rs1, Immed 

Operation:  Rd = (Rs1) shifted left by Rs2(3:0) bits, with 0s shifted in  

from right 

 

Instruction:  SUB (Register Subtract) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x01   Rs1      Rd     Rs2 Unused  
  Usage:  Sub Rd, Rs1, Rs2  

 Operation:  Rd = (Rs1 - Rs2)  

 

Instruction:  SUBI (Subtract Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x43   Rs1      Rd       Immed  
  Usage:  SUB Rd, Rs1, Rs2  

 Operation: Rd = (Rs1 - [(Immed7)8 ||Immed])  
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Instruction:  SUBUI (Subtract Unsigned Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x23   Rs1      Rd       Immed  
  Usage:  Sub Rd, Rs1, Rs2  

 Operation:  Rd = (Rs1 - [(0)8 ||Immed]) 

 

Instruction:  SW (Store Word) 

23                            16 15         12 11           8 7               0

Opcode: 0x45   Rs1      Rs2       Immed  
  Usage:  SW Rs2, Rs1(Immed)  

 Operation: Mem{Rs1 + [(Immed7)8 ||Immed]} = Rs2 

 

Instruction:  TRAP (Software Trap) 

23                            16 15               0

Opcode:0x28       Immed  
 Usage: Trap Immed 

 Operation:  Program_Addr = Immed 

                                Interrupt Address Register = Link_Program_Address 

 

Instruction:  XOR (Register Exclusive-OR) 

23                            16 15         12 11           8 7             4  3            0

Opcode: 0x0B   Rs1      Rd     Rs2 Unused  
  Usage:  XOR Rd, Rs1, Rs2  

 Operation:  Rd = (Rs1 (exclusive-or) Rs2)  

 

Instruction:  XORI (Exclusive-OR Immediate) 

23                            16 15         12 11           8 7               0

Opcode: 0x2B   Rs1      Rd       Immed  
  Usage: XORI Rd, Rs1, Immed 

 Operation:  (Rs1 (exclusive-or) [(Immed7)8 ||Immed])= Rd 
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APPENDIX B – SIMULATION RESULTS 

A.  OBJECTIVE 

The objective of Appendix B is to document the simulation results that were not 

documented in Chapter IV.  These results are divided into four sections: SET generation 

modeling, SET analog propagation modeling, logic path modeling and Instruction-based 

register-usage analysis. 

B.  SET GENERATION MODELING  

 1.  Objective 

This objective of this section is to document the simulation results of the SET 

Generation Modeling.  Chapter IV documents the results of the SET Generation 

modeling on the DFFC standard cell, the INV standard cell, and the output driver.  This 

section documents the remaining standard cells: Nand2, Nand3, Nand4, Nor2, Nor3, 

Nor4, Xor2, Mux2, and Buf4.  

2.  Nand2 

The Nand2 (two input Nand gate) has four different input possibilities.  Figure 58 

shows the schematic, and Table 24 shows the cross-sections and LETs for each of the 

sensitive regions with the resulting amplitude and pulsewidth at the output.  

B

A

Out

1

T1 T2

T4

T3

 
Figure 58.   Nand2 Schematic (after [50]) 
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Input

State

Senstive

Transistor

Charge

(fC)

LET

(MeV*cm2

/mg)

Cross-

Section

(µm2)

Effective

Cross-

Section

(µm2)

Output

Ampli-

tude

(Volts)

Output

Pulse-

Width

(ps)

531 14.32 41.59 10.40 -2.58 130

791 21.33 41.59 10.40 -3.25 200

921 24.88 41.59 10.40 -3.3 240

A=0

B=0

T5

(NFET)

973 26.24 41.59 10.40 -3.3 250

284 7.66 31.76 7.94 -1.36 200

477 12.86 31.76 7.94 -2.29 250

556 14.99 31.76 7.94 -2.59 270

A=0

B=1

T6

(NFET)

588 15.86 31.76 7.94 -2.69 280

402 10.84 41.59 10.40 -2.86 180

530 14.29 41.59 10.40 -3.27 250

593 15.99 41.59 10.40 -3.3 280

A=1

B=0

T5

(NFET)

618 16.67 41.59 10.40 -3.3 300

479 12.92 42.24 10.56 2.71 150

644 17.37 42.24 10.56 3.26 220

720 19.42 42.24 10.56 3.3 260

A=1

B=1

T11, T12

(PFETs)

755 20.36 42.24 10.56 3.3 270

 
Table 24.   Nand2 Simulation Results 
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3.  Nand3 

The Nand3 (three- input Nand gate) has eight different input possibilities.  Figure 

59 shows the schematic, and Table 25 shows the cross-sections and LETs for each of the 

sensitive regions with the resulting amplitude and pulsewidth at the output.  
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Figure 59.   Nand3 Schematic (after [51]) 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/m
g)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-
tude
(Volts)

Output
Pulse-
Width
(ps)

750 20.23 41.59 5.20 -2.34 130
1330 35.87 41.59 5.20 -3.24 210

1830 49.35 41.59 5.20 -3.3 320

A=0
B=0
C=0

T2
(NFET)

2200 59.33 41.59 5.20 -3.3 420
334 9.01 31.76 3.97 -0.8 180
692 18.66 31.76 3.97 -1.4 240
981 26.46 31.76 3.97 -1.77 330

A=0
B=0
C=1

T3
(NFET)

1200 32.36 31.76 3.97 -1.94 360
631 17.02 41.59 5.20 -1.36 200
1020 27.51 41.59 5.20 -2.29 250
1350 36.41 41.59 5.20 -2.59 270

A=0
B=1
C=0

T2
(NFET)

1590 42.88 41.59 5.20 -2.69 280
274 7.39 31.76 3.97 -0.83 270
484 13.05 31.76 3.97 -1.44 330
663 17.88 31.76 3.97 -1.82 410

A=0
B=1
C=1

T4
(NFET)

784 21.14 31.76 3.97 -2.02 460
631 17.02 41.59 5.20 -1.36 200
1020 27.51 41.59 5.20 -2.29 250
1350 36.41 41.59 5.20 -2.59 270

A=1
B=0
C=0

T2
(NFET)

1590 42.88 41.59 5.20 -2.69 280
330 8.90 31.76 3.97 -1.29 240
598 16.13 31.76 3.97 -2.25 330
774 20.87 31.76 3.97 -2.61 400

A=1
B=0
C=1

T3
(NFET)

895 24.14 31.76 3.97 -2.71 470
483 13.03 41.59 5.20 -2.84 220
682 18.39 41.59 5.20 -3.2 310
844 22.76 41.59 5.20 -3.3 420

A=1
B=1
C=0

T4
(NFET)

956 25.78 41.59 5.20 -3.3 480
526 14.19 62.71 7.84 2.73 220
713 19.23 62.71 7.84 3.25 320
853 23.0 62.71 7.84 3.3 420

A=1
B=1
C=1

T6, T7, T8
(PFET)

951 25.65 62.71 7.84 3.3 480

 
Table 25.   Nand3 Simulation Results 
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4.  Nand4 

The Nand4 (four input Nand gate) has sixteen different input possibilities.  Figure 

60 shows the schematic, and Tables 26 and 27 show the cross-sections and LETs for each 

of the sensitive regions with the resulting amplitude and pulsewidth at the output.  
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Figure 60.   Nand4 Schematic (after [52]) 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-
tude
(Volts)

Output
Pulse-
Width
(ps)

1060 28.57 41.59 2.60 -2.61 130
1570 42.34 41.59 2.60 -3.28 200
1820 49.08 41.59 2.60 -3.3 240

A=0
B=0
C=0
D=0

T1
(NFET)

1920 51.78 41.59 2.60 -3.3 250
392 10.57 31.76 1.99 -0.61 180
624 16.83 31.76 1.99 -0.9 220
747 20.15 31.76 1.99 -1.04 250

A=0
B=0
C=0
D=1

T4_1
(NFET)

791 21.33 31.76 1.99 -1.11 260
932 25.13 41.59 2.60 -2.74 150
1310 35.33 41.59 2.60 -3.27 220
1500 40.45 41.59 2.60 -3.3 250

A=0
B=0
C=1
D=0

T1
(NFET)

1570 42.34 41.59 2.60 -3.3 260
325 8.76 31.76 1.99 -0.5 240
461 12.43 31.76 1.99 -0.72 260
533 14.37 31.76 1.99 -0.83 270

A=0
B=0
C=1
D=1

T5
(NFET)

557 15.02 31.76 1.99 -0.87 270
932 25.13 41.59 2.60 -2.74 150
1310 35.33 41.59 2.60 -3.27 220
1500 40.45 41.59 2.60 -3.3 250

A=0
B=1
C=0
D=0

T1
(NFET)

1570 42.34 41.59 2.60 -3.3 260
393 10.60 31.76 1.99 -0.82 200
623 16.80 31.76 1.99 -1.29 230
733 19.77 31.76 1.99 -1.55 240

A=0
B=1
C=0
D=1

T4_1
(NFET)

775 20.90 31.76 1.99 -1.65 250
796 21.47 41.59 2.60 -2.89 190
1040 28.05 41.59 2.60 -3.3 240
1170 31.55 41.59 2.60 -3.3 270

A=0
B=1
C=1
D=0

T1
(NFET)

1220 32.90 41.59 2.60 -3.3 290
307 8.28 31.76 1.99 -0.53 380
414 11.17 31.76 1.99 -0.78 370
462 12.46 31.76 1.99 -0.92 380

A=0
B=1
C=1
D=1

T6
(NFET)

504 13.59 31.76 1.99 -0.92 380

 

Table 26.   Nand4 SET Generation Modeling Results  
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Table 27.   Nand4 SET Generation Results (Continued) 

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-
tude
(Volts)

Output
Pulse-
Width
(ps)

932 25.13 41.59 2.60 -2.74 150

1310 35.33 41.59 2.60 -3.27 220

1500 40.45 41.59 2.60 -3.3 250

A=1
B=0
C=0
D=0

T1
(NFET)

1570 42.34 41.59 2.60 -3.3 260
393 10.60 31.76 1.99 -0.82 200

623 16.80 31.76 1.99 -1.29 230

733 19.77 31.76 1.99 -1.55 240

A=1
B=0
C=0
D=1

T4_1
(NFET)

775 20.90 31.76 1.99 -1.65 250
796 21.47 41.59 2.60 -2.89 190

1040 28.05 41.59 2.60 -3.3 240

1170 31.55 41.59 2.60 -3.3 270

A=1
B=0
C=1
D=0

T1
(NFET)

1220 32.90 41.59 2.60 -3.3 290
320 8.63 31.76 1.99 -0.79 310

458 12.35 31.76 1.99 -1.19 330

528 14.24 31.76 1.99 -1.4 330

A=1
B=0
C=1
D=1

T16
(NFET)

551 14.86 31.76 1.99 -1.44 350
796 21.47 41.59 2.60 -2.89 190

1040 28.05 41.59 2.60 -3.3 240

1170 31.55 41.59 2.60 -3.3 270

A=1
B=1
C=0
D=0

T1
(NFET)

1220 32.90 41.59 2.60 -3.3 290
389 10.49 31.76 1.99 -1.24 280

598 16.13 31.76 1.99 -1.97 320

695 18.74 31.76 1.99 -2.32 330

A=1
B=1
C=0
D=1

T4_1
(NFET)

725 19.55 31.76 1.99 -2.44 330
648 17.48 41.59 2.60 -3.03 260

771 20.79 41.59 2.60 -3.3 320

834 22.49 41.59 2.60 -3.3 360

A=1
B=1
C=1
D=0

T5
(NFET)

860 23.19 41.59 2.60 -3.3 380
687 18.52 62.71 3.92 3.0 260

795 21.44 62.71 3.92 3.3 320

839 22.63 62.71 3.92 3.3 360

A=1
B=1
C=1
D=1

T1, T2, T3,
T4

(PFET)

858 23.14 62.71 3.92 3.3 380
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5.  Nor2 

The Nor2 (two input Nor gate) has four different input possibilities.  Figure 61 

shows the schematic, and Table 28 shows the cross-sections and LETs for each of the 

sensitive regions with the resulting amplitude and pulsewidth at the output. 

A

B
Out

B

1

T1

T2

T3 T4

 
Figure 61.   Nor2 Schematic (after [53]) 

                             

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
378 10.19 63.52 15.88 -3.0 290
455 12.27 63.52 15.88 -3.3 360
482 13.00 63.52 15.88 -3.3 390

A=0
B=0

T1,T2
(NFETS)

488 13.16 63.52 15.88 -3.3 400
631 17.02 29.98 7.50 2.5 120
947 25.54 29.98 7.50 3.25 230
1030 27.78 29.98 7.50 3.3 260

A=0
B=1

T7
(PFET)

1080 29.13 29.98 7.50 3.3 270
222 5.99 21.12 5.28 0.341 180
350 9.44 21.12 5.28 0.467 230
400 10.79 21.12 5.28 0.508 240

A=1
B=0

T8
(PFET)

414 11.17 21.12 5.28 0.522 250
881 23.76 29.98 7.50 2.07 90
1550 41.80 29.98 7.50 3.2 180
1760 47.46 29.98 7.50 3.3 240

A=1
B=1

T7
(PFET)

1870 50.43 29.98 7.50 3.3 240

 
Table 28.   Nor2 SET Generation Results 
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6.  Nor3 

The Nor3(three input Nor gate) has eight different input possibilities.  Figure 62 

shows the schematic, and the Table 29 shows the cross-sections and LETs for each of the 

sensitive regions with the resulting amplitude and pulsewidth at the output. 

A

B

C

A B C

Out

1

2

T3

T2

T1

T6T5T4

 
Figure 62.   Nor3 Schematic (after [54]) 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
504 13.59 45.56 5.70 -2.79 480
594 16.02 45.56 5.70 -3.27 570
626 16.88 45.56 5.70 -3.3 620

A=0
B=0
C=0

T2, T3_1,
T4_1

(NFETS)
639 17.23 45.56 5.70 -3.3 650
672 18.12 29.98 3.75 2.3 140
993 26.78 29.98 3.75 3.24 210
1150 31.01 29.98 3.75 3.3 250

A=0
B=0
C=1

T7
(PFET)

1220 32.90 29.98 3.75 3.3 280
229 6.17 21.12 2.64 0.3 190
353 9.52 21.12 2.64 0.43 240
422 11.38 21.12 2.64 0.49 250

A=0
B=1
C=0

T8
(PFET)

451 12.16 21.12 2.64 0.51 260
852 22.98 29.98 3.75 1.8 90
1500 40.45 29.98 3.75 3.21 160
1830 49.35 29.98 3.75 3.3 220

A=0
B=1
C=1

T7
(PFET)

1960 52.86 29.98 3.75 3.3 240
211 5.69 21.12 2.64 0.13 280
286 7.71 21.12 2.64 0.19 300
320 8.63 21.12 2.64 0.22 300

A=1
B=0
C=0

T6_1
(PFET)

335 9.03 21.12 2.64 0.23 300
852 22.98 21.12 2.64 1.8 90
1500 40.45 21.12 2.64 3.21 160
1830 49.35 21.12 2.64 3.3 220

A=1
B=0
C=1

T7
(PFET)

1960 52.86 21.12 2.64 3.3 240
231 6.23 21.12 2.64 0.17 170
357 9.63 21.12 2.64 0.22 220
427 11.52 21.12 2.64 0.24 240

A=1
B=1
C=0

T8
(PFET)

454 12.24 21.12 2.64 0.24 250
977 26.35 21.12 2.64 1.5 80
1990 53.67 21.12 2.64 3.15 150
2500 67.42 21.12 2.64 3.3 210

A=1
B=1
C=1

T7
(PFET)

2710 73.0 21.12 2.64 3.3 230

 
Table 29.   Nor3 SET Generation Results 
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7. Nor4 

The Nor4 (four input Nor gate) has sixteen different input possibilities.  Figure 63 

shows the schematic, and Tables 30 and 31 shows the cross-sections and LETs for each 

of the sensitive regions with the resulting amplitude and pulsewidth at the output. 

A

B

C

D

A B C D
Out

1

2

3

T1

T5

T2

T3

T4

T6 T7 T8

 
Figure 63.   Nor4 Schematic (after [55]) 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
660 15.83 127.04 7.94 -3.1 660
760 17.29 127.04 7.94 -3.3 760
810 17.93 127.04 7.94 -3.3 810

A=0
B=0
C=0
D=0

T5, T4_1,
T3_1, T1
(NFETS)

830 18.20 127.04 7.94 -3.3 830
392 10.57 29.98 1.87 0.61 180
624 16.83 29.98 1.87 0.9 220
747 20.15 29.98 1.87 1.04 230

A=0
B=0
C=0
D=1

T2
(PFET)

791 21.33 29.98 1.87 1.11 230
343 9.25 21.12 1.32 0.272 210
378 10.19 21.12 1.32 0.446 240
432 11.65 21.12 1.32 0.489 260

A=0
B=0
C=1
D=0

T8
(PFET)

448 12.08 21.12 1.32 0.505 260
1120 30.20 29.98 1.87 2.56 120
1660 44.77 29.98 1.87 3.3 190
1920 51.78 29.98 1.87 3.3 230

A=0
B=0
C=1
D=1

T2
(PFET)

2020 54.48 29.98 1.87 3.3 230
236 6.36 21.12 1.32 0.155 290
302 8.14 21.12 1.32 0.202 300
339 9.14 21.12 1.32 0.220 310

A=0
B=1
C=0
D=0

T9
(PFET)

349 9.41 21.12 1.32 0.227 310
1120 30.20 29.98 1.87 2.56 120
1660 44.77 29.98 1.87 3.3 190
1920 51.78 29.98 1.87 3.3 230

A=0
B=1
C=0
D=1

T2
(PFET)

2020 54.48 29.98 1.87 3.3 230
276 7.44 21.12 1.32 0.187 180
382 10.30 21.12 1.32 0.228 230
436 11.76 21.12 1.32 0.24 250

A=0
B=1
C=1
D=0

T8
(PFET)

453 12.22 21.12 1.32 0.245 260
1370 36.95 29.98 1.87 2.3 90
2210 59.60 29.98 1.87 3.23 180
2610 70.39 29.98 1.87 3.3 220

A=0
B=1
C=1
D=1

T2
(PFET)

2770 74.70 29.98 1.87 3.3 230

 
Table 30.   Nor4 SET Generation Results 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
249 6.72 21.12 1.32 0.062 500
284 7.66 21.12 1.32 0.107 460
306 8.25 21.12 1.32 0.120 430

A=1
B=0
C=0
D=0

T10_1
(PFET)

314 8.47 21.12 1.32 0.124 430
1120 30.20 29.98 1.87 2.56 120
1660 44.77 29.98 1.87 3.3 190
1920 51.78 29.98 1.87 3.3 230

A=1
B=0
C=0
D=1

T2
(PFET)

2020 54.48 29.98 1.87 3.3 230
276 7.44 21.12 1.32 0.187 180
382 10.30 21.12 1.32 0.228 230
436 11.76 21.12 1.32 0.24 250

A=1
B=0
C=1
D=0

T8
(PFET)

453 12.22 21.12 1.32 0.245 260
1370 36.95 29.98 1.87 2.3 90
2210 59.60 29.98 1.87 3.23 180
2610 70.39 29.98 1.87 3.3 220

A=1
B=0
C=1
D=1

T2
(PFET)

2770 74.70 29.98 1.87 3.3 230
234 6.31 21.12 1.32 0.083 270
293 7.90 21.12 1.32 0.105 280
321 8.66 21.12 1.32 0.113 300

A=1
B=1
C=0
D=0

T9
(PFET)

328 8.85 21.12 1.32 0.115 310
1370 36.95 29.98 1.87 2.3 90
2210 59.60 29.98 1.87 3.23 180
2610 70.39 29.98 1.87 3.3 220

A=1
B=1
C=0
D=1

T2
(PFET)

2770 74.70 29.98 1.87 3.3 230
275 7.42 21.12 1.32 0.129 180
390 10.52 21.12 1.32 0.152 230
438 11.81 21.12 1.32 0.158 250

A=1
B=1
C=1
D=0

T8
(PFET)

455 12.27 21.12 1.32 0.16 250
1570 42.34 29.98 1.87 2.08 80
2750 74.16 29.98 1.87 3.2 150
3310 89.27 29.98 1.87 3.3 210

A=1
B=1
C=1
D=1

T4
(PFET)

3520 94.93 29.98 1.87 3.3 230

 
Table 31.   Nor4 SET Generation Results (Continued) 
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8.  Xor2 

The Xor2 (two-input XOR gate) has four different input possibilities.  Figure 64 

shows the schematic, and Table 32 shows the cross-sections and LETs for each of the 

sensitive regions with the resulting amplitude and pulsewidth at the output. 
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Figure 64.   Xor2 Schematic (after [46]) 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
346 9.33 55.27 13.82 2.48 330
392 10.57 55.27 13.82 2.93 400
407 10.98 55.27 13.82 3.02 430

A=0
B=0

T1, T2
(NFETS)

409 11.03 55.27 13.82 3.04 430
598 16.13 33.73 8.43 3.1 180
755 20.36 33.73 8.43 3.3 260
801 21.60 33.73 8.43 3.3 270

A=0
B=0

T10B, T10
(PFETS)

809 21.82 33.73 8.43 3.3 270
402 10.84 51.78 12.94 -3.15 340
447 12.06 51.78 12.94 -3.3 390
468 12.62 51.78 12.94 -3.3 420

A=0
B=1

T6_1, T9
(NFETS)

476 12.84 51.78 12.94 -3.3 420
619 16.69 24.50 6.13 -1.84 360
790 21.31 24.50 6.13 -3.08 440
870 23.46 24.50 6.13 -3.25 470

A=1
B=0

T3
(PFET)

893 24.22 24.50 6.13 -3.3 480
463 12.49 25.06 6.26 -3.09 410
519 14.00 25.06 6.26 -3.3 470
543 14.64 25.06 6.26 -3.3 510

A=1
B=0

T9
(NFET)

552 14.89 25.06 6.26 -3.3 530
318 8.58 20.43 5.11 -1.84 410
436 11.76 20.43 5.11 -2.65 440
473 12.76 20.43 5.11 -2.91 450

A=1
B=0

T5
(PFET)

483 13.03 20.43 5.11 -2.98 450
215 5.80 21.58 5.39 0.588 210
285 7.69 21.58 5.39 0.759 240
316 8.52 21.58 5.39 0.835 250

A=1
B=1

T6
(PFET)

324 8.74 21.58 5.39 0.866 250
215 5.80 21.58 5.39 0.588 210
285 7.69 21.58 5.39 0.759 240
316 8.52 21.58 5.39 0.835 250

A=1
B=1

T7
(PFET)

324 8.74 21.58 5.39 0.866 250

 
Table 32.   Xor2 SET Generation Results 
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9.  Mux2 

The Mux2 (2-to-1 Multiplexer) has three inputs: A, B, and Sel.  Thus, there are 

eight different input possibilities.  Figure 65 shows the schematic, and Tables 33 and 34 

show the cross-sections and LETs for each of the sensitive regions with the resulting 

amplitude and pulsewidth at the output. 
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Figure 65.   Mux2 Schematic (after [56]) 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
452 12.19 196.34 24.54 2.44 360
501 13.51 196.34 24.54 2.92 450
522 14.08 196.34 24.54 3.05 470

A=0
B=0

Sel=0

T14, T12
(NFETS)

530 14.29 196.34 24.54 3.08 480
718 19.36 29.98 3.75 2.95 150
962 25.94 29.98 3.75 3.27 220
1070 28.86 29.98 3.75 3.3 240

A=0
B=0

Sel=0

T1
(PFET)

1120 30.20 29.98 3.75 3.3 260
452 12.19 196.34 24.54 2.44 360
501 13.51 196.34 24.54 2.92 450
522 14.08 196.34 24.54 3.05 470

A=0
B=0

Sel=1

T14, T12
(NFETS)

530 14.29 196.34 24.54 3.08 480
559 15.08 16.15 2.02 -3.24 350
676 18.23 16.15 2.02 -3.3 440
727 19.61 16.15 2.02 -3.3 480

A=0
B=1

Sel=0

T6_1
(PFET)

747 20.15 16.15 2.02 -3.3 500
507 13.67 41.59 5.20 -3.1 220
619 16.69 41.59 5.20 -3.3 270
676 18.23 41.59 5.20 -3.3 300

A=0
B=1

Sel=0

T2
(NFET)

696 18.77 41.59 5.20 -3.3 310
462 12.49 24.54 3.07 2.61 420
523 14.10 24.54 3.07 3.03 500
542 14.62 24.54 3.07 3.11 530

A=0
B=1

Sel=1

T14
(NFET)

545 14.70 24.54 3.07 3.14 550
719 19.39 29.98 3.75 2.93 140
780 21.04 29.98 3.75 3.28 210
1080 29.13 29.98 3.75 3.3 250

A=0
B=1

Sel=1

T1
(PFET)

1120 30.20 29.98 3.75 3.3 260
552 14.89 29.98 3.75 0.067 140
707 19.07 29.98 3.75 0.68 210
780 21.04 29.98 3.75 1.45 250

A=0
B=1

Sel=1

T5_1
(PFET)

807 21.76 29.98 3.75 1.7 260

 
Table 33.   Mux2 SET Generation Results 
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Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
464 12.51 24.54 3.07 2.63 410
514 13.86 24.54 3.07 3.04 500
536 14.46 24.54 3.07 3.11 540

A=1
B=0

Sel=0

T12
(NFET)

547 14.75 24.54 3.07 3.16 540
294 7.93 18.07 2.26 0.151 180
407 10.98 18.07 2.26 1.62 260
447 12.06 18.07 2.26 1.84 310

A=1
B=0

Sel=0

T10_1
(NFET)

462 12.46 18.07 2.26 2.03 340
179 19.39 29.98 3.75 2.93 150
963 25.97 29.98 3.75 3.28 210
1080 29.13 29.98 3.75 3.3 250

A=1
B=0

Sel=0

T1
(PFET)

1130 30.47 29.98 3.75 3.3 260
559 15.08 24.54 3.07 -3.26 360
674 18.18 24.54 3.07 -3.3 440
728 19.63 24.54 3.07 -3.3 480

A=1
B=0

Sel=1

T12
(NFET)

745 20.09 24.54 3.07 -3.3 490
507 13.67 41.59 5.20 -3.1 220
619 16.69 41.59 5.20 -3.3 270
676 18.23 41.59 5.20 -3.3 300

A=1
B=0

Sel=1

T2
(NFET)

696 18.77 41.59 5.20 -3.3 310
579 15.61 32.31 4.04 -3.23 360
686 18.50 32.31 4.04 -3.3 430
735 19.82 32.31 4.04 -3.3 470

A=1
B=1

Sel=0

T7, T6_1
(PFET)

752 20.28 32.31 4.04 -3.3 490
506 16.65 41.59 5.20 -3.11 210
619 16.69 41.59 5.20 -3.3 270
674 18.18 41.59 5.20 -3.3 310

A=1
B=1

Sel=0

T2
(NFET)

696 18.77 41.59 5.20 -3.3 320
579 15.61 32.31 4.04 -3.23 360
686 18.50 32.31 4.04 -3.3 430
735 19.82 32.31 4.04 -3.3 470

A=1
B=1

Sel=1

T7, T6_1
(PFET)

752 20.28 32.31 4.04 -3.3 490
506 13.65 41.59 5.20 -3.11 210
619 16.69 41.59 5.20 -3.3 270
674 18.18 41.59 5.20 -3.3 310

A=1
B=1

Sel=1

T2
(NFET)

696 18.77 41.59 5.20 -3.3 320

 

Table 34.   Mux2 SET Generation Results (Continued) 
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10.  Buf4 

The Buf4 (High-Drive Buffer) has two input possibilities.  Figure 66 shows the 

schematic, and Table 35 shows the cross-sections and LETs for each of the sensitive 

regions with the resulting amplitude and pulsewidth at the output. 

A Out
1

T3T1

T4T2

 
Figure 66.   Buf4 Schematic (after [57]) 

 
 
 

Input
State

Senstive
Transistor

Charge
(fC)

LET
(MeV*cm2/mg)

Cross-
Section
(µm2)

Effective
Cross-
Section
(µm2)

Output
Ampli-

tude
(Volts)

Output
Pulse-
Width

(ps)
713 19.23 30.05 7.51 3 340
837 22.57 30.05 7.51 3.3 470
888 23.95 30.05 7.51 3.3 520

A=0 T1
(NFET)

906 24.43 30.05 7.51 3.3 540
1650 44.5 168.94 42.24 1.91 90
3040 82.0 168.94 42.24 3.2 160
3750 101.1 168.94 42.24 3.3 220

A=0 T10
(PFET)

4010 108.1 168.94 42.24 3.3 230
1180 31.82 31.76 7.94 -2.45 140
1800 48.5 31.76 7.94 -3.24 210
2100 56.6 31.76 7.94 -3.3 240

A=1 T2
(NFET)

2220 59.9 31.76 7.94 -3.3 260
858 23.14 21.67 5.42 -3.3 310
1050 28.32 21.67 5.42 -3.3 420
1130 30.74 21.67 5.42 -3.3 470

A=1 T9
(PFET)

1170 31.55 21.67 5.42 -3.3 480

 
Table 35.   Buf4 SET Generation Results 
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C.  ANALOG PROPAGATION 

For each of the standard cells, the relationship between the input and output SET 

amplitude and pulsewidth was determined.  These results are summarized in Tables 36 

and 37. 

Standard
Cell

Transition Input
Amplitude

(Volts)

Input
Pulsewidth

(Picoseconds)

Output
Amplitude

(Volts)

Output
Pulsewidth

(Picoseconds)
2.6 110 -1.37 160
3.11 150 -2.35 220
3.25 190 -2.87 250

NAND2 0-1-0

3.3 240 -3.2 300
-2.92 180 0.89 160
-3.19 210 1.49 200
-3.3 240 2.0 220

NAND2 1-0-1

-3.3 290 2.63 260
1.54 150 -0.21 210
2.47 220 -1.43 210
3.0 2.8 -2.26 280

NAND3 0-1-0

3.3 440 -3.05 450
-2.39 180 0.38 190
-3.3 240 1.41 260
-3.3 360 2.34 350

NAND3 1-0-1

-3.3 490 3.09 440
1.5 160 -0.06 470
2.48 220 -0.54 350
2.77 250 -0.72 330

NAND4 0-1-0

2.84 250 -0.79 340
-2.65 220 0.43 330
-3.25 260 0.88 380
-3.3 290 1.08 410

NAND4 1-0-1

-3.3 340 1.28 440
2.64 120 -1.54 270
3.14 170 -3.11 330
3.3 220 -3.3 410

NOR2 0-1-0

3.3 250 -3.3 450
-2.93 190 0.49 130
-3.22 230 1.03 150
-3.28 260 1.43 160

NOR2 1-0-1

-3.3 310 1.7 190

 

Table 36.   SET Analog Propagation Results 
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Table 37.   SET Analog Propagation Results (Continued) 
 

Standard
Cell

Transition Input
Amplitude

(Volts)

Input
Pulsewidth

(Picoseconds)

Output
Amplitude

(Volts)

Output
Pulsewidth

(Picoseconds)
1.5 170 -0.30 480
2.11 200 -0.96 440
2.68 230 -1.90 610

NOR3 0-1-0

2.85 250 -2.36 560
-3.02 240 0.13 250
-3.3 280 0.16 240
-3.3 320 0.27 230

NOR3 1-0-1

-3.3 330 0.28 220
1.5 160 -0.33 540
2.1 200 -0.93 550
2.7 230 -1.8 630

NOR4 0-1-0

2.9 240 -2.2 700
-2.64 220 0.03 760
-3.26 260 0.07 450
-3.3 290 0.09 400

NOR4 1-0-1

-3.3 340 0.11 370
1.69 170 -0.4 280
2.34 200 -1.02 320
2.87 230 -1.84 370

XOR2 0-1-0

3.0 250 -2.23 390
-2.89 200 0.52 170
-3.3 250 1.0 190
-3.3 300 1.4 210

XOR2 1-0-1

-3.3 320 1.5 230
3.0 250 0.26 200
3.2 300 1.3 270
3.3 410 2.9 530

MUX2 0-1-0

3.3 420 3.0 490
-3.3 320 -0.07 260
-3.3 390 -0.3 210
-3.3 490 -1.15 240

MUX2 1-0-1

-3.3 690 -3.3 450
1.73 160 0.003 260
2.73 220 0.045 150
3.0 240 0.13 160

BUF4 0-1-0

3.1 260 0.18 170
-2.96 210 -0.02 210
-3.3 280 -0.13 180
-3.3 310 -0.24 180

BUF4 1-0-1

-3.3 320 -0.29 180
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D.  EFFECTIVE CROSS-SECTIONS OF DATAPATHS   

The purpose of this section is to show the effective cross-sections of the datapaths 

that were not shown in Chapter IV (the AND instruction was shown in Chapter IV).  

Tables 38 through 53 show the effective cross-section for the execute datapath for these 

remaining instructions. 

 

Logic Block cross-section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_5 131.6169 0.5 1 1.50E-04 7.50E-05 9.87E-03
Xor2_1 63.48 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 41.7522 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 41.7522 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 41.7522 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 40.54 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 63.48 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_6 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 131.6169 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.58E-01

 

Table 38.   Effective Cross-Section for AND and ANDUI Logic Datapaths 
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Logic

Block

cross-section

(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1

(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03

Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03

Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03

Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03

Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total

Effective

Cross-

Section

1.48E-01

 
Table 39.   ADD and ADDUI Logic Datapath Effective Cross-section 

 
 

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_2 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_3 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_4 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.18E-01

 
Table 40.   LHI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_5 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Inv_1 3.58E+01 1 1 1.50E-04 1.50E-04 5.37E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.64E-01

 
Table 41.   SUB and SUBUI Logic Datapath Effective Cross-Section 

 
Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.48E-01

 
Table 42.   XOR and XORI Logic Datatpath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03

Inv_1 3.58E+01 1 1 1.50E-04 1.50E-04 5.37E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

1.54E-01

 
Table 43.   SUBI Logic Datapath Effective Cross-Section 

 
 

Logic Block Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Nor2_1 3.62E+01 1 1 1.50E-04 1.50E-04 5.42E-03
Inv_1 3.58E+01 1 1 1.50E-04 1.50E-04 5.37E-03

mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.49E-01

 
Table 44.   OR and ORI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_2 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_3 1.32E+02 0.15625 1 1.50E-04 2.34E-05 3.08E-03
mux2_4 1.32E+02 0.15625 1 1.50E-04 2.34E-05 3.08E-03
mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_12 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_13 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_14 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_15 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
mux2_16 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

2.83E-01

 
Table 45.   SLL, SLLI, SRL, SRLI, SRA, SRAI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1 (1/MHz) σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor4_1 3.61E+01 0.007813 1 1.50E-04 1.17E-06 4.23E-05
Nor4_2 3.61E+01 0.0625 1 1.50E-04 9.38E-06 3.38E-04
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_12 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

8.31E-02

 
Table 46.   SEQ and SEQI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-
Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor4_1 3.61E+01 0.007813 1 1.50E-04 1.17E-06 4.23E-05
Nor4_2 3.61E+01 0.0625 1 1.50E-04 9.38E-06 3.38E-04
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.19E-02

 
Table 47.   SNE and SNEI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.15E-02

 

Table 48.   SLT and SLTI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Inv_1 3.58E+01 0.0625 1 1.50E-04 9.38E-06 3.36E-04

Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

8.31E-02

 

Table 49.   SGE and SGEI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor2_1 3.62E+01 0.0625 1 1.50E-04 9.38E-06 3.39E-04
Inv_2 3.58E+01 0.0625 1 1.50E-04 9.38E-06 3.36E-04

Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.34E-02

 

Table 50.   SLE and SLEI Logic Datapath Effective Cross-Section 
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Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_2 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_3 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_4 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06
Mux2_5 1.32E+02 0.000488 1 1.50E-04 7.32E-08 9.64E-06

Inv_1 3.58E+01 0.000977 1 1.50E-04 1.46E-07 5.24E-06
Xor2_1 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06

Nand2_1 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_2 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand2_3 4.18E+01 0.000244 1 1.50E-04 3.66E-08 1.53E-06
Nand3_1 4.05E+01 0.000977 1 1.50E-04 1.46E-07 5.94E-06
Xor2_2 6.35E+01 0.000977 1 1.50E-04 1.46E-07 9.30E-06
Nor2_1 3.62E+01 0.0625 1 1.50E-04 9.38E-06 3.39E-04
Mux2_6 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_7 1.32E+02 0.0625 1 1.50E-04 9.38E-06 1.23E-03
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_9 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Mux2_10 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_11 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective
Cross-
Section

8.31E-02

 

Table 51.   SGT and SGTI Logic Datatpath Effective Cross-Section 
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Table 52.   BEQZ and BNEZ Logic Datapath Effective Cross-Section 
 

 

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_2 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_3 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

5.92E-02

 

Table 53.   RFE Logic Datapath Effective Cross-Section 
 

Logic
Block

Cross-Section
(µm2)

Pscl Pap Platched

(1/MHz)

δ1
(1/MHz)

σ*δ1
(µm2/Mhz)

Mux2_1 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_2 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_3 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Mux2_4 1.32E+02 0.5 1 1.50E-04 7.50E-05 9.87E-03
Xor2_1 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03

Nand2_1 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_2 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand2_3 4.18E+01 0.25 1 1.50E-04 3.75E-05 1.57E-03
Nand3_1 4.05E+01 1 1 1.50E-04 1.50E-04 6.08E-03
Xor2_2 6.35E+01 1 1 1.50E-04 1.50E-04 9.52E-03
Mux2_5 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Nor4_1 3.61E+01 0.0625 1 1.50E-04 7.32E-08 2.64E-06
Nor4_1 3.61E+01 0.5 1 1.50E-04 5.86E-07 2.12E-05
Inv_1 3.58E+01 0.5 1 1.50E-04 7.32E-08 2.62E-06

Mux2_6 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_7 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02
Mux2_8 1.32E+02 1 1 1.50E-04 1.50E-04 1.97E-02

Total
Effective

Cross-
Section

1.88E-01
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E.  INSTRUCTION-BASED REGISTER-USAGE ANALYSIS 

The purpose of this section is to document the instruction-set register-usage 

analysis that was not documented in Chapter IV.  The register-usage analysis for the 

ADD instruction was shown in Chapter IV.  The remaining instructions are documented 

in this section. 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle

Decode Decode_Instr_Reg(20 bits): 1 clock cycle
Rs1(16 bits): n clock cycles since Rs1 was last written

Execute Execute_Instr_Reg(20 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(6 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(6 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 54.   Critical Bits and Clock Cycles for ADDI Instruction 

 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(6 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(6 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 

Table 55.   Critical Bits and Clock Cycles for ADDUI Instruction 
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Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(19 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 

Table 56.   Critical Bits and Clock Cycles for AND Instruction 
 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written

Execute Execute_Instr_Reg(24 bits): 1 clock cycle
RA(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(5 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(5 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 57.   Critical Bits and Clock Cycles for ANDI Instruction 

 
 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last
written

Execute Execute_Instr_Reg(16 bits): 1 clock cycle
RA(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(7 bits): 1 clock cycle
Writeback WB_Instr_Reg(7 bits): 1 clock cycle

 

Table 58.   Critical Bits and Clock Cycles for BEQZ Instruction 
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Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(5 bits): 1 clock cycle
Writeback WB_Instr_Reg(5 bits): 1 clock cycle

 
Table 59.   Critical Bits and Clock Cycles for BNEZ Instruction  

 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle
Execute Execute_Instr_Reg(24 bits): 1 clock cycle
Memory Memory_Instr_Reg(6 bits): 1 clock cycle
Writeback WB_Instr_Reg(6 bits): 1 clock cycle

 
Table 60.   Critical Bits and Clock Cycles for J Instruction 

 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle
Execute Execute_Instr_Reg(24 bits): 1 clock cycle
Memory Memory_Instr_Reg(2 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(2 bits): 1 clock cycle

Delay_ALU_Out(16 bits): 1 clock cycle

 
Table 61.   Critical Bits and Clock Cycles for JAL Instruction 

 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(6 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(6 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(2 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(2 bits): 1 clock cycle

Delay_ALU_Out(16 bits): 1 clock cycle
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Table 62.   Critical Bits and Clock Cycles for JALR Instruction 
 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(12 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(12 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(7 bits): 1 clock cycle
Writeback WB_Instr_Reg(7 bits): 1 clock cycle

 
Table 63.   Critical Bits and Clock Cycles for JR Instruction 

 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(20 bits): 1 clock cycle
Execute Execute_Instr_Reg(20 bits): 1 clock cycle
Memory Memory_Instr_Reg(7 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(7 bits): 1 clock cycle

Delay_ALU_Out(16 bits): 1 clock cycle

 
Table 64.   Critical Bits and Clock Cycles for LHI Imm Instruction 

 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(20 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(12 bits): 1 clock cycle

Addr_Reg(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(12 bits): 1 clock cycle

Load_Data_Reg(16 bits): 1 clock cycle

 
Table 65.   Critical Bits and Clock Cycles for LW Instruction 

 
Pipeline Stage Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode None
Execute None
Memory None

 
Table 66.   Critical Bits and Clock Cycles for NOP Instruction 
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 67.   Critical Bits and Clock Cyc les for OR Instruction 

 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(5 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(5 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 68.   Critical Bits and Clock Cycles for ORI Instruction 

 
 

Pipeline Stage Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle

Decode Decode_Instr_Reg(8 bits): 1 clock cycle

Execute Execute_Instr_Reg(8 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle

 
Table 69.   Critical Bits and Clock Cycles for RFE Instruction 
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 70.   Critical Bits and Clock Cycles for SEQ Rd, Rs1, Rs2 

 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(15 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(5 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(5 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 71.   Critical Bits and Clock Cycles for SEQI Instruction  

 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 72.   Critical Bits and Clock Cycles for SGE Rd, Rs1, Rs2 
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle

ecode
Decode_Instr_Reg(19 bits): 1 clock cycle
Rs1(16 bits): n clock cycles since Rs1 was last written

Execute Execute_Instr_Reg(15 bits): 1 clock cycle
RA(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 73.   Critical Bits and Clock Cycles for SGEI Instruction 

 
Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle

ecode
Decode_Instr_Reg(19 bits): 1 clock cycle
Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 74.   Critical Bits and Clock Cycles for SGT Instruction 

 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(15 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 75.   Critical Bits and Clock Cycles for SGTI Instruction 
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Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
 

Table 76.   Critical Bits and Clock Cycles for SLE Instruction 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 77.   Critical Bits and Clock Cycles for SLEI Instruction 

 
Pipeline

Stage
Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(5 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(5 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 78.   Critical Bits and Clock Cycles for SLL Instruction 
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 79.   Critical Bits and Clock Cycles for SLLI Instruction 

 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 80.   Critical Bits and Clock Cycles for SLT Instruction 

 
 
 

Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 81.   Critical Bits and Clock Cycles for SLTI Instruction 
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 82.   Critical Bits and Clock Cycles for SNE Instruction 

 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 83.   Critical Bits and Clock Cycles for SNEI Instruciton 

 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(5 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(5 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 84.   Critical Bits and Clock Cycles for SRA Instruction 
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Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 85.   Critical Bits and Clock Cycles for SRAI Instruction 

 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(5 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(5 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 86.   Critical Bits and Clock Cycles for SRL Instruction 

 
Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(16 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(16 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 87.   Critical Bits and Clock Cycles for SRLI Instruction 
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Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 88.   Critical Bits and Clock Cycles for SUB Instruction 

 
 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(11 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(11 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 89.   Critical Bits and Clock Cycles for SUBI Instruction 

 
Pipeline

Stage
Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 90.   Critical Bits and Clock Cycles for SUBUI Instruction 
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Pipeline Stage Critical Registers & Clock Cycles
Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(19 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(11 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 91.   Critical Bits and Clock Cycles for SW Instruction 

 

 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(24 bits): 1 clock cycle
Execute Execute_Instr_Reg(24 bits): 1 clock cycle
Memory Memory_Instr_Reg(8 bits): 1 clock cycle
Writeback WB_Instr_Reg(8 bits): 1 clock cycle

 
Table 92.   Critical Bits and Clock Cycles for Trap Instruction 

 

 

Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Rs2(16 bits): m clock cycles since Rs2 was last written

Execute Execute_Instr_Reg(15 bits): 1 clock cycle
RA(16 bits): 1 clock cycle
RB(16 bits): 1 clock cycle

Memory Memory_Instr_Reg(4 bits): 1 clock cycle
ALU_Out(16 bits): 1 clock cycle

Writeback WB_Instr_Reg(4 bits): 1 clock cycle
Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 93.   Critical Bits and Clock Cycles for XOR Instruction 
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Pipeline
Stage

Critical Registers & Clock Cycles

Fetch Program_Counter(16 bits): 1 clock cycle
Decode Decode_Instr_Reg(23 bits): 1 clock cycle

Rs1(16 bits): n clock cycles since Rs1 was last written
Execute Execute_Instr_Reg(19 bits): 1 clock cycle

RA(16 bits): 1 clock cycle
Memory Memory_Instr_Reg(4 bits): 1 clock cycle

ALU_Out(16 bits): 1 clock cycle
Writeback WB_Instr_Reg(4 bits): 1 clock cycle

Delayed_ALU_Out(16 bits):1 clock cycle

 
Table 94.   Critical Bits and Clock Cycles for XORI Instruction 

 

 

 

 

 

 

 

 

 



 156 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 157 

LIST OF REFERENCES: 

 
1. Wilson, R.,  “ATM Router in Space Presents Unique Challenges to the TRW ASIC 

Team,” Integrated System Design, pp. 54 – 57, August 2001. 
 
2.  Wilson, R. “Astrolink Reaches New Heights in Orbit Complexity,” Integrated 

System Design, pp. 55, August 2001. 
 
3. Ginati, A., Fuchs, M., Kassebom, M., “Commercial Earth Observation with Small 

Satellites at OHB-System,” 13th Annual AIAA/USU Conference on Small Satellites, 
1999. 

 
4. Penne, B., Rathje, R., Hofers, H., Purnhagen, I., Koopman, O., “Advanced High 

Speed Processing and DSP Technologies for Earth Observation Payloads,” 
www.fuchs-gruppe.com/eo/msrs 

 
5. MIL-STD-883E, “Test Methods and Procedures for Microcircuits,” Method 1019.4, 

“Ionizing Radiation (Total Dose) Test Procedure,” 1991. 
 
6. MIL-STD-883E, “Test Methods and Procedures for Microcircuits,” Method 1020.4, 

“Dose Rate Induced Latchup Test Procedure,” 1991. 
 
7. MIL-STD-883E, “Test Methods and Procedures for Microcircuits,” Method 1021.2, 

“Dose Rate Upset Testing of Digital Microcircuits,” 1991. 
 
8. EIA/JEDEC Standard, “Test Procedures for the Measurement of Single-Event Effects 

in Semiconductor Devices from Heavy Ion Irradadition,” EIA/JESD57, December 
1996. 

 
9. Newberry, D.M., “Investigation of Single Event Effects at the System Level,” 

RADECS: IEEE Proceedings from, pp. 113–120, Sept. 1993. 
 
10. Newberry, D.M., “Single Event Upset Error Propagation Between Interconnected 

VLSI Logic Devices”, IEEE Transactions on Nuclear Science, Vol. NS, pp. 446 – 
449, June 1992. 

 
11. Newberry, D.M., Kaye, D.H., Soli, G.A. , “Single Event Induced Transients in I/O 

Devices:  A  Characterization,” IEEE Transactions on Nuclear Science, Vol. 37, No. 
6, pp. 1974- 1980, December 1990. 

 
 
 



 158 

12. Label, K., Stassinopolus, E.G., Brucker, G.J., Stauffer, C.A.,  “SEU Tests of a 80386 
Based Flight Computer/Data-Handling System and Discrete PROM and EEPROM 
Devices and SEL Tests of Discrete 80386, 80387, PROM , EEPROM and ASICS,” 
Workshop Record from the 1992 IEEE Radiation Effects Data Workshop, pp. 1-11, 
1992. 

 
 
13. Kimbrough,  J.R., Colella, N.J., Denton, S.M., Shaeffer, D.L., Shih, D., Wilburn, 

J.W., Coakley, P.W., Castenda, C., Koga, R., Clark, D.A., Ullmann, J.L.,  “Single 
Event Effects and Performance Predictions for Space Applications of RISC 
Processors,” IEEE Transactions on Nuclear Science, Vol. 41, No. 6, pp. 2706-2714, 
December 1994.    

 
14. Koga, R., Kolasinski, W.A., Marra, M.T., Hanna, W.A., “Techniques of 

Microprocessor Testing and SEU-Rate Prediction,” IEEE Transactions on Nuclear 
Science, Vol. NS-32, No. 6, pp. 4219-4224,  December 1985. 

 
15. Ghosh,A.K., DeLong, T.A., Johnson, B.W., Profeta, J.A., “Fault Injection in the 

Design Process Using VHDL,” VHDL International Users' Forum Fall Conference, 
October 15-19, 1995. 
 

16. Cha, H., Rudnick, E.M., Patel, J.H., Iyer, R.K., Choi, G.S., “A Gate-Level Simulation 
Environment for Alpha-Particle-Induced Transient Faults,” IEEE Transactions on 
Computers, Vol. 46, No. 11, pp. 1248-1256, November 1996.  

 
17. Streetman, B.G., Solid State Electronic Devices, Second Edition, p. 174, Prentice-

Hall, 1980. 
 
18. Messenger, G.C., Ash, M.S., Single Event Phenomena, p.181, Chapman and Hall, 

1997. 
 
19. Messenger, G.C., “Collection of Charge on Junction Nodes from Ion Tracks,” IEEE 

Transactions on Nuclear Science, Vol. NS-29, No. 6, December 1982, pp. 2024-
2031. 

 
20. Yang, F.L., Saleh, R. A., “Simulation and Analysis of Transient Faults in Digital 

Circuits,” IEEE Journal of Solid State Circuits, Vol. 27, No. 3, Mach 1992. 
 
21. Hass, K.J., Gambles, J.W., “Single Event Transients in Deep Submicron CMOS,” 

42nd Midwest Symposium on Circuits and Systems, Vol. 1, pp. 122-125, 2000. 
 
22.  Buchner, S., Baze, M. , “Single-Event Transients in Fast Electronic Circuits,” 2001 

IEEE Nuclear and Space Radiation Effects Conference Short Course Notebook , pg. 
V-67. 

 
23.  Ibid, pg. V-66. 



 159 

 
24. Kerns, S.E., “Transient-Ionization and Single-Event Phenomena,” from Ionizing 

Radiation Effects in MOS Devices and Circuits, edited by Ma, T.P., and 
Dressendorfer, P.V., p. 495.  

 
25. Streetman, B.G., Solid State Electronic Devices, Second Edition, p. 140, Prentice-

Hall, 1980. 
 
26. Carreno. V., Choi, G., Iyer, R.K. , “Analog-Digital Simulation of Transient-Induced 

Logic Errors and Upset Susceptibility of an Advanced Control System,”  NASA 
Technical Memo 4241, Nov. 1990. 

 
27. Kielkowski, Ron, Inside SPICE, Second Edition, p. 240 & 242, McGraw-Hill, 1995. 
 
28. Dodd, P.E., Sexton, F.W., Winokur, P.S.,  “Three-Dimensional Simulation of Charge 

Collection and Multiple-Bit Upset in Si Devices,” IEEE Transactions on Nuclear 
Science, Vol. 41, No. 6, December 1994. 

 
29. Smith, M. J. S., Application-Specific Integrated Circuits, p. 71-73, Addison-Wesley, 

1999. 
 
30. Buchner, S., Kang, K., Krening, D., Lannan, G., Schneiderwind, R., “Dependence of 

the SEU Window of Vulnerability of a Logic Circuit on Magnitude of Deposited 
Charge,” IEEE Transactions on Nuclear Science, Vol. 40, No. 6, December 1993. 

 
31.  Buchner, S., Baze, M., Brown, D., McMorrow, D, Mehlinger, J., “Comparison of 

Error Rates in Combinational and Sequential Logic,” IEEE Transactions on Nuclear 
Science, NS-44, 1999. 

 
32. Baze, M.P., Buchner, S., Bartholet, W.G., Dao, T.A., “An SEU Analysis Approach 

for Error Propagation in Digital VLSI CMOS ASICs,” IEEE Transactions on Nuclear 
Science, Vol. 42, No. 6, December 1995. 

 
33. Massengill, L.W., Baranski, A.E., Van Nort, D.O., Meng, J., Bhuva, B.L., “Analysis 

of Single-Event Effects in Combinational Logic-Simulation of the AM2901 Bitslice 
Processor,” IEEE Transactions on Nuclear Science, Vol. 47, No. 6, December 2000, 
pg. 2609-2615. 

 
34. Asenek, V., Underwood, C., Velazco, R., Rezgui, S., Oldfield, M., Cheynet, Ph., 

Ecoffet, R., “SEU Induced Errors Observed in Microprocessor Systems,” Nuclear 
Science, IEEE Transactions on Nuclear Science, Vol. 45 , No. 6, Dec. 1998, pg. 
2876-2883.  
 

35. Yount, C.R., Siewiorek, D.P., “A Methodology for the Rapid Injection of Transient 
Hardware Errors,” IEEE Transactions on Computers, Vol. 45, No. 8, pp. 881-891, 
August 1996. 



 160 

 
36. Li, K.W., Armstrong, J.R., Trong, “An HDL Simulation of the Effects on Single 

Event Upsets on Microprocessor Program Flow,” IEEE Transactions on Nuclear 
Science, Vol. NS-31, No. 6, pp. 1139 – 1144, December 1984. 

 
37. Czeck, E.W., Siewiorek, D.P., “Effects of Transient Gate-Level Faults on Program 

Behavior,”  Digest, 20th International Symposium on Fault-Tolerant Computing, pp. 
236-243, June 1990. 

 
38. MOSIS-Parametric-Test Results, run T06D, Hewlett-Packard AMOS14TB, August 

2000. 
 
39. Jacobini, C., Canali, C., Ottaviani, G., Quaranta, A. A., Solid State Electron, 20, 2, 

1977, pg. 77-89. 
 
40. Streetman, B.G., Solid State Electronic Devices, Second Edition, p. 175. 
 
41. DFFC Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
42. Xilinx Corporation, “VirtexTM 2.5V Field Programmable Gate Arrays” datasheet, 

Revision 2.5, April 2001, pg. 27. 
 
43. Ziegler, J.F., Handbook of Stopping Cross-Sections for Energetic Ions in All 

Elements, Volume 5, pg. 147 – 154, Pergamom Press, 1980. 
 
44. McMorrow, D., Melinger, J.S. , Buchner, S., Scott, T., Brown, R.D.,  Haddad, N.F. , 

Application of a Pulsed Laser for Evaluation of SEU-Hard Designs,” IEEE 
Transactions on Nuclear Science, Vol. 47, No. 3, June 2000, pg. 559 - 565. 

 
45. MOSIS 0.5 micron SCMOS Library, Tanner Tools Pro, Tanner Research, Inc., 1999. 
 
46. XOR2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
47. Wang, J.J., Katz, R.B., Sun, J.S., Cronquist, B.E., McCollum, J.L., Speers, T.M., 

Plants, W.C., “SRAM Based Reprogrammable FPGA for Space Applications,” IEEE 
Transactions on Nuclear Science, Vol. 46, No. 6, December 1999, pages 1728-1735. 

 
48. Hennessy, J.L., Patterson, D.A. , Computer Architecture, A Quantitative Approach, 

pp. 69–163,Morgan Kaufman, 1996. 
 
49. Sailer, P.M., Kaeli, D.R., The DLX Instruction Set Architecture Handbook, Morgan 

Kaufman, 1996. 
 
50. Nand2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
51. Nand3 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 



 161 

 
52. Nand4 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
53. Nor2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
54. Nor3 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
55. Nor4 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
56. Mux2 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 
 
57. Buf4 Schematic, S-Edit/SCMOSLib, Tanner Research, Inc., 1996. 



 162 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



 163 

INITIAL DISTRIBUTION LIST 

        Number of Copies 

1. Defense Technical Information Center     2  
Fort Belvoir, Virginia  
  

2. Dudley Knox Library        2 
 Naval Postgraduate School 
 Monterey, California 
 
3. Professor Herschel H. Loomis      1 
 Naval Postgraduate School 
 Monterey, California 
 
4. Professor Alan Ross        1 
 Naval Postgraduate School 
 Monterey, California 
 
5. Professor Douglas Fouts       1 

Naval Postgraduate School 
 Monterey, California 

 
6. Professor Todd Weatherford       1 

Naval Postgraduate School 
 Monterey, California 

 
7. Mr. George Price        1 
 13330 N. Tonto Rd. 
 Prescott, AZ 86305 

 
8. Mr. Kenneth A. Clark        10 
 4610 S. 4th St.  
 Arlington, VA 22204 
 
  
 
 
 


