At 0248 hours, eight Apache helicopters pushed into enemy territory, flying fifty feet above the ground at 120 mph. Lieutenant Colonel Johnson, the Black Team commander, assigned the lead aircraft the primary mission of navigation. Each relied on a TADS/PNVS suite, enabling them to fly and fight at night in bad weather. For operational security, the team flew at high speed and low altitude with navigation lights blacked out and total radio silence, a dangerous combination. They were going in to strike a newly detected critical mobile target, a concentration of surface-to-surface missiles (SSMs) which had just deployed in the deep battle area.

Suddenly the sky, hills, and ground below were surreally lit by a blinding flash as the lead helicopter exploded. As night vision devices returned to normal, trailing crews detected incoming missiles. Several of the Apaches fired their 2.75 inch (70mm) Hydra rockets in the direction of the attackers. The team then went to ground, hovering low in any covered or concealed position that was available. The rearmost Apache had time to detect and hit an enemy Mi-28 Hokum helicopter with a well-placed Longbow Advanced Hellfire missile.

Attackers and defenders hovered in effective hide positions. Luckily for the Black Team, the attack seemed to be a chance engagement rather than a prepared ambush. The ensuing battle, during which both sides maneuvered for position, was like a firefight between two infantry patrols with troops dodging from rock to tree as their teammates tried to pick off any enemy soldiers who happened to expose themselves to fire.

Johnson knew that time was on the side of the enemy, whose ground forces, surface-to-air weapons, and perhaps attack helicopter reinforcements would soon arrive. Disengaging would be difficult. So he gave the order to use his unit’s new weapon system: “Fire acoustic missiles!”

Each helicopter fired two missiles which rose to an altitude at which discriminating sensors could quickly detect, locate, and identify enemy Hokum helicopters. The Hokums hovered out of sight behind tree stands, hills, and buildings, but to no avail. Within seconds the missiles pitched over and homed in on their targets. They fell straight down through the rotor blades destroying all six of the remaining Hokums.

Colonel Johnson played it safe. After counting the six explosions, he was fairly certain that the acoustic missiles had destroyed all or nearly all the engaging enemy helicopters. He then cautiously began to maneuver his team out of the area. Within moments, the Black Team was again on route to the target area. This mission was critical: the enemy SSMs had to be destroyed.
<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics on the 21st Century Battlefield</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name(s) and Address(es)</th>
<th>Performing Organization Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Defense University Institute for National Strategic Studies Washington D C 20319-5066</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>Sponsor/Monitor’s Acronym(s)</th>
<th>Sponsor/Monitor’s Report Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution/Availability Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Classification</th>
<th>Classification of this page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification of Abstract</th>
<th>Limitation of Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
A re there really acoustic mis-
siles that can detect, iden-
tify, and home in on en-
emy targets? Even flying
targets like Hokums? This may be tech-
nology of the future, but it is just
around the corner. A prototype acoustic
homing sensor system is being tested as
the brilliant anti-tank (BAT) submuni-
tion of the Army tactical missile sys-
tem (ATACMS) or for the tri-service
stand-off attack missiles (TSSAM).

To stay ahead of the power curve,
commanders should anticipate high-
tech weapons such as acoustic missiles.
Many technologies will emerge, prof-
ferring more opportunities for high-
tech battlefield applications. The oper-
ational commander of the 21st century
must understand, integrate, and apply
innovative capabilities to find, fix,
target, and finish enemy forces.

Targets and Sensors

Acoustics exemplify emerging
technologies with great potential for
the high-tech battlefield. The acoustic-
based seeker is ideal as wide area tar-
get acquisition sensors. Coupled with
terminal guidance sensors, they can
find and kill targets. That such preci-
sion strike weaponry—acoustic or oth-
erwise—is the wave of the future even
impressed the public during the Per-
ian Gulf War.

More accurate sensors require
smaller warheads which offer econom-
ical trade-offs. These warheads reduce logis-
tical requirements as well as inflict
less collateral damage and fewer civili-
ian casualties. Such technological ad-
ances will yield several significant
gains for future warfighting. The supe-
riority of acoustic sensors for wide area
target acquisition is derived from the
technology itself. Various electromag-
netic (radio/radar) or electro-optic (EO)
sensors in general use today are able to
receive only very narrow bandwidths.
For instance, EO sensors can usefully
picture only small, specific areas.

Thorough scanning techniques can be
used to broaden the field, a lot of time
is necessarily lost trying to find the
specific bandwidths or locations of
likely targets. It is somewhat like scan-
ning a large crowd for a particular indi-
vidual through a straw.

Unlike existing sensors, an
acoustic sensor is wide open, searching
across all frequencies and angles. Also,
it is very low in background noise. Its
wide-open, simultaneous acquisition
of all incoming signals means it is a
much more efficient sensor, especially
when complemented by a “soda-straw”
sensor that can be pointed at the target
for added data collection or terminal
guidance.

The potential of acoustic technol-
ogy was recently dramatized by apply-
ing it to anti-armor munitions in the
commanders throughout history have
used sound to pierce the fog of war
form of BAT munitions. However, this
development is merely an extension of
the traditional military ear for listening
to sounds on and around the battlefield.

Sound Across the Ages

Commanders throughout history
have used sound to pierce the fog of
war—or maintain it to their advantage,
as in muffling cannon wheels. This
to day has seen greater scientific in-
terest in sound. Flash and sound rang-
ing equipment was perfected during
World War I to direction find (DF)
enemy artillery. Sophisticated elec-
tronic sensors such as the Italian pas-
sive acoustic location system (PALS),
Swedish sound ranging system-6
(SOARS-6), and Russian standard
Schiz-6 acoustic artillery ranging sys-
tem are being employed to triangulate
and locate enemy batteries.

Early in World War II, air defend-
ers on both sides of the English Chan-
nel used simple airplane noise recog-
tors, like giant stethoscopes aimed at
the sky, to locate, track, and even iden-
tify aerial targets and the direction of
aerial movements. Although surpris-
ingly effective, these devices were soon
overstayed by the new technology of
radar.

Medieval armies dug tunnels to
penetrate fortifications. Sophisticated
tunnel detectors still are used along the
demilitarized zone in Korea. Sol-
ders have always sought an effective
means of detecting underground
sounds, the seismic subset of acoustic
technology.

In Vietnam unattended ground
sensors (UGS) included the air-deliver-
able seismic intrusion detection system
(AIDSIDS) and the remotely monitored
battlefield sensor system (REMBASS),
which included seismic, acoustic, mag-
netic, and infrared sensors to detect
the movement of people and vehicles.
These were tactically placed to track
battroops along the DMZ, Ho
Chi Minh Trail, and else-
where. Current wide area mine systems
(WAMS) and artillery-delivered ground
sensors also use seismic sound to de-
tect target movements.

Even so, acoustics technologies
emerging on the 21st century battle-
field offer the prospects of a major leap
forward from contemporary UGS and
WAMS-type systems, just as the minié
ball rifle of the Civil War surpassed the
Brown Bess smooth-bore musket of the
Revolutionary War. The new BAT sub-
munition is just the tip of the acoustics
iceberg. BAT represents only an initial
step in the development of future
acoustics sensor capabilities.

Seeking Acoustic Signatures

The distinctive aspect of the revo-
lution in 21st century battlefield
acoustics is not found in acoustics tech-
nology itself, but in advances in other
unrelated, parallel technologies. Specifi-
cally, it comes from synergistic applica-
tions of developments in miniaturized,
high-tech data processing capabilities
which have appeared recently.

Earlier uses of acoustics amplified
our natural sense of hearing by me-
chanical means. Later technology
added sophisticated electronic amplifi-
cations of sound waves. However, this
process was limited to simply making
ambient sound audible to human ears
so that people could respond. In the

Lieutenant Colonel Marvin G. Metcalf, ARNG, is executive
officer of the 1st Brigade, 40th Infantry Division. He completed
this article while attending the U.S. Army War College.

Winter 1995-96 / JFQ 45
A case of listening posts, audio detectors, remote seismic detectors, and other devices, sound was detected and monitored by humans or electronically reported to have occurred, such as using remote UGS.

Recently developed artillery ranging systems and acoustic sensor munitions have only been incremental improvements. Sounds detected by sensitive directional microphones that are used in the PALS system are computer-processed to provide data readouts for its operators. When seismic sensors detect approaching targets, WAMS mines automatically dispense high-flying, sensor-fused submunitions to find and destroy them. Yet these systems only detect noise and respond to it.

The distinction between current systems and BAT technology is simple. Assisted by high-tech, miniaturized, high-speed, high-capacity, on-board data processing, the BAT acoustics system not only hears a target but analyzes sound waves. Using differentiating characteristics, BAT filters all sounds which its wide-open sensors acquire to focus on and attack selected targets. Moreover, as difficult as such target discrimination can be from a static ground platform, BAT sensors detect it from an air vehicle moving at high speed.

Operating acoustic sensors from a flying platform has challenged designers and engineers. If ground noise was undistinguishable from platform noise, the system simply could not differentiate the sounds of various targets. Acoustics pioneers thus devised methods to distinguish platform or engine noise, in part by borrowing techniques and fancy signal data processing from radar. Using on-board microcomputers to manipulate noise parameters such as amplitude and phase, they could filter out self-noise from even high-speed, flying platforms like BAT. Once designers produced flying acoustic sensors that worked, various battlefield applications became readily apparent.

Taking practical advantage of acoustic weapons combined with the reconnaissance vehicles required the simultaneous, parallel development of microcomputer processing, including advanced miniaturization, that provided on-board computers with significant processing power and memory. The on-board computer facilitates the signal processing and acoustic signature matching. It also handles on-board mission planning and navigation systems for autonomous operations of potential unmanned aerial vehicles (UAVs) applications of acoustic sensor technology.

The increasingly ubiquitous global positioning system (GPS) is bolstering the accuracy and effectiveness of emerging, high-tech weaponry. Most missile and unmanned vehicle systems of the next century will be designed to function with GPS-based navigational systems and follow-on generations of this technology for convenience, accuracy, and effectiveness.

Ears to the Ground

The most significant aspect of synergistically developed acoustic weapons will be an ability to find and discriminate among targets using distinctive acoustic signatures. BAT submunitions launched from ATACMS or multiple-launch rocket system (MLRS)
munications employ relatively simple capabilities to detect and home in on engine noises from enemy tanks. More sophisticated applications, such as acoustic anti-helicopter missiles described earlier, use acoustic-based sensors to detect and select a given target for which a missile is programmed. Once a target is selected, the missile homes in and destroys it.

Missiles on reconnaissance, surveillance, and target acquisition (IRSTA) missions will be able to detect and identify targets that it has been programmed to recognize, report their locations to J-STARS or ground station modules, and perhaps cue sensor platforms to commence an attack or initiate more detailed intelligence gathering. This technology will turn precision strikes into ultra-precision strikes. The added accuracy and target discrimination made possible by advanced sensor systems will transform surgical operations into arthroscopic surgical operations.

The first step in the process of target acquisition, identification, and designation is to screen out ambient sounds. Acoustic receivers are always wide open and thus hear everything. Filtering ambient background noises makes it possible for further specific noise filtering and wave analysis. The self-noise generated by a vehicle engine and air turbulence created by movement of a vehicle is filtered out and identified during reception.

Remaining sounds are isolated by factors such as frequency and amplitude with detectable acoustic signatures plotted like visual graphics in a voice-based lie detector. The acoustic signature of a target type such as the T-80 tank, like human voiceprints, is distinctive—at least sufficiently for targeting purposes. For example, consider the success that the Navy had in the 1970s and 1980s using underwater microphones (or hydrophones) to collect the unique acoustic signature of submarines.

Next, a system must identify discriminating characteristics that distinguish the sound being monitored: frequency, harmonic frequency relationships, amplitude, and changes in frequency and amplitude. Such characteristics can identify a class of targets, a target type, or an individual target. Comparisons of incoming sound signals are made literally hundreds of times per second against unique characteristics of recorded targets. If a match does not occur, the unmatched target sensing is dropped, and the computer continues to seek matches for other signals. Given such a massive computational requirement, the importance of powerful, on-board computers is evident.

Another advantage of seeking acoustic signatures to locate and identify potential targets is that it adds yet another dimension to a threat. Like our own forces, an enemy can hide from visual detection behind camouflage nets or more substantial cover. Similarly enemy forces can hide from infrared detectors and remotely locate their antennas as well as use emission control to protect radio frequency emitters.

Sending Out Pings

Countermeasures will be attempted, but an enemy must hide its acoustic signature. Many targets cannot operate without generating a detectable signature. For example, tanks cannot move without running acoustically distinctive engines or making acoustically distinctive track noises. On the future battlefield acoustic factors may become the proverbial straw that breaks the camel’s back when an enemy attempts to conceal its assets. Target files, developed and preprogrammed in the mission computer of an acoustic missile, can be updated as required. The missile can be programmed to respond only to specific target sets. On the other hand, IRSTA missions may require that an entire target list be left wide open in order to identify the full range of targets which a reconnaissance mission might encounter and report.

One constraint on acoustic-sensor weapon systems envisioned for the mid-term is that the sensors are passive. A column of tanks with its engines off may avoid detection by an overflying acoustic missile. Yet the next generation of R&D may address this handicap through a refinement of acoustic technology: active acoustic sensors. Operating like an aerial sonar, sending out pings and detecting returns from desirable targets, they could yield a greater magnitude of collection and accuracy capability to acoustic systems. An advanced WAMS could use acoustic sensors to locate, identify, and select targets. Another potential acoustic system might employ a network of active acoustic sensors seeded across an enemy rear area to report on movements and activities.

Future commanders must anticipate uses of more advanced technologies, especially missile delivery systems linked to acoustic technology which identifies, selects, and finds critical targets. Conversely, operational commanders must be able to defend against comparable capabilities.

Acoustic science is just one area of emerging high technology with applications for the next century. Analysis of its potential reveals rapidly developing trends and battlefield applications that such discoveries may offer or even impose. No nation can afford to ignore the accelerating march of such militarily applicable technology. Europe, Japan, and certain Third World nations have the skilled scientists and technicians who may discover the next winning technology. In the wake of the Gulf War, the Russians have acknowledged the importance of winning the information war and established information as a “fourth realm” of warfare: information warfare. Yet the battlefield of the future will understand and apply integrated systems of advanced technology. Our most critical training mission is to ensure that our leaders understand and anticipate the potential and complexity of near future warfare.