REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-MM-YYYY) 27-08-2002
2. REPORT TYPE Final Technical
3. DATES COVERED (From - To) 10-04-2001 to 09-03-2002

4. TITLE AND SUBTITLE
 Reconfigurable Network of Networks for Multi-Scale Computing

5a. CONTRACT NUMBER
5b. GRANT NUMBER
 ONR N00014-99-1-0884
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)
 Jeffrey P. Sutton, M.D., Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 General Hospital Corporation
 Fruit Street
 Boston, MA 02114

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Office of Naval Research - Prog Officer: Dr. Joel L. Davis ONR 342CN
 Ballston Centre Tower One
 800 North Quincy Street
 Arlington, VA 22217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)
 ONR

11. SPONSORING/MONITORING AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT
 Approved for Public Release; distribution is Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 The Network of Networks (NoN) model, which is a neurobiologically motivated smart algorithm co-developed by the PI, has been applied for rapid and accurate image processing of forward and side scan sonar images in turbid environments. The model has also been used as a platform for rapid distributed communications for autonomous vehicles. Both of these applications build upon unique features of the NoN for reconfigurable computing across multiple scales of organization, and the approach has direct relevance to several enabling technologies for Future Naval Capabilities.

15. SUBJECT TERMS
 neural networks, sonar, autonomous vehicles, image enhancement, communications

16. SECURITY CLASSIFICATION OF:
 a. REPORT UU
 b. ABSTRACT UU
 c. THIS PAGE SAR

17. LIMITATION OF ABSTRACT SAR

18. NUMBER OF PAGES 1

19a. NAME OF RESPONSIBLE PERSON
 Jeffrey P. Sutton

19b. TELEPHONE NUMBER (Include area code)
 (713) 798-7412

Standard Form 298 (Rev. 8-96)
Prescribed by ANSI Std Z39-18

20020903 031
Reconfigurable Network of Networks for Multi-Scale Computing

Jeffrey Sutton
Massachusetts General Hospital / Harvard
Neural Systems Group MGH Bldg 149, 9th Floor 13th Street
Charlestown, MA 02129
Phone: 617-726-4350 Fax: 617-726-4078 Email: sutton@nmr.mgh.harvard.edu

Award Number: N00014-99-1-0884
Website:

CONCISE SUMMARY

The final phase of the project, which ended April 9, 2002, consisted of refinement and testing of biologically inspired reconfigurable Network of Networks (NoN) using versions 2.0, 2G.0 and 3.0 of the Autonomous Vehicle SYStem (AVSYS) model developed with this research grant. A series of reports have been prepared, with peer reviewed manuscripts being published. A preliminary U.S. patent filing on the AVSYS model was followed with a full patent application. Connections were established to continue work that develops and applies intelligent networking and biologically motivated communication to Navy problems relevant for decentralized and collaborative systems of autonomous vehicles. Applications of the principal findings of this project were also applied to ongoing research for NASA concerning smart, autonomous and reconfigurable systems for biomedical support of human space travel.

LONG-TERM GOALS

1. Transition and implementation of the research to advanced projects for biologically inspired sensing, intelligent autonomy, reconfigurable networking and novel human-machine interfaces.

2. Expand research and development to other areas relevant for DoD, NASA and advanced medical systems.

OBJECTIVES

1. Identify neural system features relevant to (a) image enhancement & object identification in turbid conditions, and (b) communications for reconfigurable networks across scales

2. Implement these features for (a) sonar image processing, and (b) systems of model autonomous vehicles (AVs)

3. Develop and deliver algorithms for (a) mine detection, classification and identification (algorithm fusion), and (b) demonstrations of simulated AV network dynamics based on neural system rules and properties

http://onr342.asciences.com/cgi-bin/reportmain.cfm 8/21/2002
APPROACH

The approach is to refine and apply the NoN computing architecture, based on prior theoretical work and ongoing experimental research in neuroimaging and neurocomputation, to topics of Navy relevance. These topics include enabling technologies for FNCs in areas of situational awareness, networking and communications, and intelligent autonomy. The applications are by means of computer demonstrations utilizing the capabilities of NoN systems. These capabilities include, but are not limited to: (a) a platform for computing at multiple scales simultaneously; (b) high capacity connectivity; (c) dynamically reconfigurable networks; (d) distributed, collaborative planning and data integration; (e) adaptability to changing environments; and (f) sensory processing, decision making, action and control in autonomous settings.

WORK COMPLETED

1. Deliverables: AVSYS v 2.0, 2G.0, 3.0 software, GUI, demonstration and documentation for networks of UAVs and UUVs search, with relevance to communications, reconfigurable networking and intelligent autonomy

2. Elucidation of neurally inspired rules that govern reconfigurable networks

3. Proof-of-principle demonstrations that the rules in #2 can be implemented using the deliverables in #1

RESULTS

Results and deliverables associated with each of the objectives have been described in previous reports. In addition to these results, modes 1 and 2 for the AVSYS model Versions 2.0 and 3.0, respectively, were shown to yield complementary processes for implementing dynamic reconfiguration in autonomous vehicle (AV) networks. Mode 1 is a moderately fast, conflict-resolution mode whereby AVs autonomously reconfigure themselves to perform a coordinated task. Surprisingly, large amounts of information transfer impede the performance of the network. Mode 2 is a rapid, aggressive mode with a traditional sigmoid response relating communication among AVs with the aggregate performance of the network. Preliminary results suggest added value in utilizing both modes in parallel.

IMPACT/APPLICATIONS

This project demonstrates the added value of a system of systems approach relative to a single large scalable system. There are numerous applications for autonomous intelligent agents which can transiently group together to perform a function and then dissipate. The project provides insight and rules into how reconfigurable networks form and successfully carrying out goal-directed cooperative behavior.

TRANSITIONS

This research has inspired the formation of two Massachusetts based companies, eNCog Inc and NewcoGen One-IT Inc, for the purpose of fostering technology transfer of prior and pending patents.
RELATED PROJECTS

- Development of a system of systems, autonomous platform for sensing, interpreting and delivery of care for the "smart" medical system for human space flight. Sponsor: National Space Biomedical Research Institute under subcontract from NASA.

REFERENCES

- No references reported.

PUBLICATIONS

Journal Articles.

Books or Chapters.

Technical Reports.

PATENTS

ADDITIONAL INFORMATION

HONORS

- PI appointed Acting Team Leader for Technology Development, National Space Biomedical Research Institute; PI is already Team Leader for Smart Medical Systems, National Space Biomedical Research Institute (see National Geographic, cover story January 2001).

STATISTICS

Statistics were entered, and they are:

0 Number of Degrees Granted

<table>
<thead>
<tr>
<th>PI/CoPI Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grad Students Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post Doctoral Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td>Men</td>
</tr>
</tbody>
</table>

http://onr342.asciences.com/cgi-bin/reportmain.cfm 8/21/2002
**Under-represented or minority groups include Blacks, Hispanics, and Native Americans. Asians are not considered an under-represented or minority group in science and engineering.

***Supported at least 25% this year on contract/grant.