Open Systems Ada Technology Demo
Open Systems-Joint Task Force
WALCOFF AUDITORIUM
29 May 1996
FAIRFAX VA

Maj. Glenn Hoppe
AV-8B CLASS DESK
Don Winter
MCDONNELL DOUGLAS AEROSPACE
OUTLINE

BACKGROUND
- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS
- SUMMARY
GENERAL PROBLEM:
- Use of COTS is growing in military embedded applications
- Ada 95 is language of choice where COTS/GOTS can’t be applied
- Mixed language situations may arise as a result
- Risk reduction demonstrations are called for, employing Ada 95 in COTS RT environment (POSIX, C)

SOLUTION:
McDonnell Douglas Aerospace will:
- Develop an air-to-ground ballistics algorithm using Ada 95
- Link this algorithm into the AV-8B demonstration OFP (C, C++)
- Perform a flight demonstration on an AV-8B equipped with COTS MC, POSIX-compliant RTOS
- Apply/evaluate Wright Lab DFIP

BENEFICIARIES:
- AV-8B OSCAR
- F-15 MPDP Upgrade
- F/A-18 Blk 18E
- C-17 CIP
- Joint Strike Fighter

OSAT is a Building Block
OPEN SYSTEMS ADA TECHNOLOGY DEMONSTRATION

- RE-ENGINEERED F-15 RUNGE-KUTTA ALGORITHM
 - ADA 95, OBJECT-ORIENTED DESIGN
 - DFIP FAULT TOLERANT INPUT/OUTPUT PROCESSING
- COTS RUN-TIME ENVIRONMENT
 - POWER PC MISSION COMPUTER
 - POSIX-COMPLIANT OPERATING SYSTEM (VX WORKS)
OUTLINE

- BACKGROUND
- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS
- SUMMARY
Software Development Tasks

- Reengineer/recode F-15 Runge-Kutta (Ada83) ballistics algorithm
 - Object-oriented design in accordance with MDA Common OFP architecture
 - Code in Ada95
 - POSIX-compliant RTOS (VX Works)
 - PowerPC host
 - Implement DFIP input and output algorithms

- Integrate with AV-8B demo (C) OFP, C++ NAV module
 - Enhance demo OFP to add A/G
 - Transform to/from platform coordinates
 - Accommodate 20 Hz algorithm (legacy code is 10 Hz)
 - Hard code Mk 76 Practice Bomb ballistics
- TAV-8 CUM 6 WILL BE DEMONSTRATOR AIRCRAFT
 - BASED AT NAWC-CL

- XN-6 MISSION COMPUTER WILL BE REPLACED WITH POWER PC-BASED UNIT
 - SUPPLIED BY CDI

- WIND RIVER VX WORKS RTOS (POSIX-COMPLIANT)

- BASELINE OFP WILL BE MDA C-OFP WITH C++ COMMON NAV/COMM MODULES (USED FOR MDA DEMO FLIGHT)

- GREEN HILLS ADA 95 NATIVE AND CROSS COMPILERS

- FLIGHTS WILL BE CONDUCTED AT CHINA LAKE
 - MK 76 DROPS WILL OCCUR AT CHINA LAKE’S TEST RANGE
OUTLINE

- BACKGROUND (AGENT BRIEFS)
- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS
- SUMMARY
OUTLINE

- BACKGROUND (AGENT BRIEFS)
- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS
- SUMMARY
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Define and Acquire OO Toolset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Achieve proficiency with new toolset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Requirements Tool Decision</td>
<td></td>
<td></td>
<td></td>
<td>6/3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Architecture Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Initial Mission Computer (MC) Arch. Review</td>
<td></td>
<td></td>
<td>5/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Detailed Arch. Review - A/A & A/G wpn, NAV pt/pt</td>
<td></td>
<td>7/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Detailed Arch. Review - all Common MDA MC S/W</td>
<td></td>
<td></td>
<td></td>
<td>10/2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Navigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Point to Point Steering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A/G Weapons (Targeting/Steering/Zones)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ballistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Gun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12/31</td>
</tr>
<tr>
<td>14</td>
<td>Rockets (OSCAR)</td>
<td></td>
<td></td>
<td></td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Maverick</td>
<td></td>
<td></td>
<td></td>
<td>6/2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GBU-10/12/24/28 (Laser)</td>
<td></td>
<td></td>
<td></td>
<td>7/1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>GBU-15 (TV/IR)</td>
<td></td>
<td></td>
<td></td>
<td>7/1</td>
<td></td>
</tr>
</tbody>
</table>
FY97 RECOMMENDATIONS

- COMPLETE ALL OSAT DEMO OBJECTIVES ($200K REQ’D)

- OSAT FOLLOW-ON CANDIDATES:
 - DISTRIBUTED PROCESSING DEMONSTRATION (MULTIPLE POWER PCs)
 - POSIX/ORB/ADA 95
 - IMPLEMENT/DEMONSTRATE F-15 ZAP MISSILE ALGORITHM
 - 5-DOF MISSILE FLY-OUT ALGORITHM
 - REDESIGN USING ADA 95, OBJECT-ORIENTED DESIGN
 - DEMONSTRATE OFF-BOARD LINK PROCESSING
 - AUTOMATIC TARGET HAND-OFF SYSTEM (ATHS)
 - ELEMENT OF MULTI-SENSOR INTEGRATION
 - IMPLEMENT/DEMONSTRATE OTHER COMMON OFP COMPONENTS USING ADA 95
OUTLINE

- BACKGROUND (AGENT BRIEFS)
- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS

SUMMARY
SUMMARY

- OSAT builds upon MDA’s Common OFP IRAD and offers real risk mitigation
 - Beneficiaries include all avionics programs evolving toward open systems and/or ADA 95

- DFIP analysis and test has immediate payback possibilities
 - Enhancement to common ballistics module targeted for AV-8B, F-15, F/A-18, JSF

- FY97 follow-on objectives should address other key risk areas
 - Distributed processing
 - New functionality (e.g. off-board data)