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1 Introduction

In an effort to transmit information over communications channels corrupted by
narrow-band interference, both military and commercial applications frequently rely
on the use of spread spectrum communications systems. In general, spread spectrum
signaling refers to a class of digital modulation techniques which produce a transmit-
ted frequency spectrum much larger than that of the information being sent. While
this may seem wasteful of bandwidth, the process of “spreading” and “despread-
ing” the spectrum produces some important, desirable properties such as interference

rejection and low power spectral density.

Although an arbitrary level of protection against narrow-band interferers can be
obtained by designing the spread signal with sufficiently large processing gain, which
is the ratio of spread to non-spread data bandwidth, practical considerations such
as transmitter /receiver complexity and available frequency spectrum often serve to
limit reasonably attainable transmit bandwidth. As a result, it is often necessary to
employ signal processing techniques, such as adaptive Wiener filtering [13, 16, 42, 35]
and transform domain excision [11, 28, 29, 30] to augment the processing gain of
the spread spectrum signal without increasing its bandwidth. Of the many different
spread spectrum modulation techniques employed in contemporary communications

systems [3, 9], only direct sequence spread spectrum (DSSS) is considered here.

In this work, narrow-band interference suppression via transform domain Wiener
filtering and transform domain excision are examined. Both block transforms, such
as the discrete Fourier transform (DFT) and the discrete cosine transform (DCT),
along with lapped transforms are considered. In contrast to less complex interference
mitigation techniques such as transform domain excision and notch filtering [1, 2, 7,
10, 12, 26, 38, 40, 41], transform domain Wiener filtering is a technique that minimizes
the mean-square error (MSE) between the estimate of the received data bit and its

actual value and serves as a benchmark against which other interference mitigation
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Figure 1: Discrete-time receiver employing pre-correlation transform domain filtering.

algorithms can be compared and evaluated.

In the following section, orthonormal block and lapped transforms are reviewed.
Pre- and post-correlation transform domain Wiener filters are subsequently discussed
in Section 2.2 wherein optimal transform domain filter coefficients minimizing the
MSE between the estimated data bit and its actual value are derived. An analysis
of the bit error rate achieved via transform domain Wiener filtering is presented in
Section 2.3 with the corresponding analytical and simulation results given in Sec-
tion 2.4. Section 3 demonstrates how LTs can be used in a transform domain ex-
ciser. Section 3.1 presents an analysis of the BER performance of these transform
domain excisers in the presence of tone and narrow-band Gaussian interference with
the corresponding results illustrated in Section 3.2. To demonstrate the performance
improvement realized using LT, these results are depicted alongside those obtained
using traditional block transform domain excision techniques. A brief summary of

the analysis and results presented herein is given in Section 4.

2 Optimal Linear Filtering in the Transform Do-
main

Direct sequence receivers demodulate, despread and detect the received data signal
in an effort to reconstruct or estimate the originally transmitted message symbol; it
is typically assumed that these receivers have a priori knowledge of the spreading

sequence. To make a bit decision, the receiver multiplies the received signal, x[n],



by a locally-generated, synchronized copy of the spreading sequence and integrates
the result over a data bit period. Figure 1 illustrates a generic discrete-time receiver
employing arbitrary transform domain filtering. In this figure, T and T~! denote
arbitrary forward and inverse N-point transforms, respectively, and the weighting
vector, o, where {ag, 0 < k < N — 1}, represents the appropriate transform do-
main filter coefficients. The resynthesized, or filtered, received data vector, Z, is
subsequently correlated with the reference spreading code to produce the appropriate
decision variable. This receiver is referred to as a “pre-correlation” receiver since the
filtering operation precedes the correlation of the signal with the reference code. It
should be clear from this figure that if the identity transform is used, this receiver
reduces to a conventional time domain correlator for the known reference code and

the time-weighted signal, Z[n].

Although practical estimation of the transform domain Wiener filter coefficients
can be achieved by any of a number of adaptive techniques [8, 45], the least mean
square (LMS) algorithm is most commonly employed due to its low computational
complexity. As a result, transform domain LMS algorithms have been well docu-
mented in the literature [4, 8, 15, 21, 32]. Most of the analysis contained in these and
related works includes the use of power normalization in an effort to reduce the spread,
or max,/min ratio, of the eigenvalues associated with the input autocorrelation matrix
and, thus, improve convergence performance. As demonstrated in [4], the frequency
response associated with each of the transform basis vectors, or subbands, directly af-
fects algorithmic convergence — in the presence of narrow-band waveforms, subband
filters with better spectral resolution and stopband attenuation yield improved con-
vergence rates. Although further discussion regarding adaptive algorithms is beyond
the scope of this work, improvement in algorithmic convergence rates, as well as the
need for an optimal performance benchmark, serve as motivation for the derivation

of Wiener filter coeflicients for various transforms with narrow-band basis vectors. In



this work, only the fundamental analysis of transform domain Wiener filters using
various transforms and implementations is discussed; extensions of this analysis to

transform domain LMS algorithms is treated in [22] and [25].

Since the length of the transform basis vectors directly affects spectral resolution
and stopband attenuation, the opportunity to choose longer basis vectors, as offered
by filter banks, may be used to improve transform domain resolution and, ultimately,
enhance algorithmic performance and narrow-band interference suppression capabil-
ity. Fortunately, there exist efficient filter bank structures that allow the longer filters
to be used while only moderately increasing the number of required arithmetic oper-
ations [19].

Recent efforts in filter bank design have focused on the development of perfect
reconstruction (PR) filter banks with higher order subband filters [17, 20]. These
filters, whose length, L, is equal to some even integer multiple of the number of
filter bank subbands, M, i.e. L = 2K M, where K is the overlapping factor, are
implemented as the basis vectors of lapped transforms (LT) [19]. Modulated lapped
transforms (MLT) are considered as a LT subclass for which K = 1. Longer extensions
of the subband filters in which the overlapping factor is greater than two, i.e. K > 2,

are generally referred to as extended lapped transforms (ELT) [19].

2.1 Signal Analysis Using Linear Transforms

Practical solutions to many communications problems often require an efficient means
of identifying, compressing and /or manipulating information bearing waveforms. Ac-
cordingly, an invertible linear transform is commonly employed to map discrete-time
signals into a new domain wherein key features are succinctly represented and pro-
cessed. Linear transforms characterized by narrow-band basis vectors, such as the
DFT, the DCT and cosine-modulated filter banks, are well-suited for narrow-band

signal analysis and are often used to resolve the various components of bandlim-



ited waveforms. The level of frequency domain resolution and, hence, quality of the
analysis depends on how well the basis vectors represent the signal of interest — a
good match typically results in efficient transform domain representation while a poor
match indicates that the proposed transform is most likely unsuitable for the given

input.
2.1.1 Orthonormal Block (Unitary) Transforms

Throughout the following sections, discrete-time signals are treated as vectors in
linear space. Therefore, unless otherwise noted, discrete-time signals, such as x[n],

are treated as N-dimensional vectors, and are denoted in column vector format, i.e.
z=[z[0] z[1]... [N = 1)]" =[z0 z1 ... 2n_1]",

with the indices for individual elements labeled from 0 to N — 1.

Denoting the N x N block transformation matrix as ®, the time and transform

domain signal representations in vector notation are written as

z=®"X and X=&', (1)

respectively. Clearly, for invertible transformations, these equations imply that the
transformation matrix ® is a unitary matrix, i.e. ®'® = &' = I, where ' denotes

the complex conjugate transpose operator and I is the N-dimensional identity matrix.

2.1.2 Modulated Lapped Transforms

Inherent in the design of lapped transforms is the satisfaction of the perfect reconstruc-
tion (PR) criterion, which implies that for an input sequence, x[n], the reconstructed
signal samples, Z[n], are equal to the original values to within a constant scale and

delay adjustment, i.e.

z[n] = cx[n — n'],

5



where ¢ and n' are constants. Like block transforms, LTs can be represented by a
transformation matrix, ¥, whose rows are the individual basis vectors. Whereas the
transformation matrix for a block unitary transform is square, the LT transformation

matrix, as considered here, is real with dimensions M x 2K M.

Viewing the LT transformation matrix as an infinite-dimensional block diagonal
extension of ¥, i.e. ¥ = diag(--- ¥ ¥ ¥ ... ), and considering only real signals

and transforms, PR for lapped transforms can be achieved if and only if [19]

ol =1 & TP =1 (2)
In this case, diag(-) denotes a matrix whose block diagonal submatrices correspond
to those given in the argument; the superscript 7" denotes the matrix transpose op-
eration. These equations indicate the necessary conditions for orthogonality between

the LT basis vectors and the conditions required for orthogonality of the overlapping

“tails” of the basis vectors.

As in [18, 19], MLTs are considered here as a subset of LTs with K = 1. The basic
premise of the MLT is to use a 2M-tap lowpass filter as a subband filter prototype
which is shifted in frequency to produce a set of orthogonal bandpass FIR filters
spanning the frequency range of interest. Denoting the lowpass prototype as h[n],

the sinusoidally modulated basis vectors can be expressed as [19]

1/1k[n]=h[n]\/%cos (n+M2+1) (k-i—%) =, (3)

where 0 <n<2M —1land 0< k< M —1.

Of central importance to the development of the MLT is the design of the lowpass
prototype, h[n]. To meet the PR requirements imposed by (2), h[n] must satisfy the

following requirements [19],
h[2M — 1 — n] = h[n] 0<n<M-1 (4)

and

R*n] + h’n+ M] =1 0<n< M/2—1. (5)
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Figure 2: MLT and ELT lowpass filter prototype frequency responses.

Note that the range over n in the last equation is limited to M/2 — 1 due to the
symmetry of h[n] as suggested by (4). Although there are many solutions to the

above equations, the half-sine windowing function [19],

hn] = —sin [<n+ %) ﬁ] ;

is used exclusively throughout this work as the MLT lowpass filter prototype. This
windowing function is commonly used since it satisfies both the polyphase normal-
ization, ensuring efficient implementation, and the perfect reconstruction criteria.
Figure 2 illustrates the frequency response associated with the half-sine windowing
function for M = 64. Whereas non-windowed FF'T basis vectors yield sidelobes that
are roughly 13 dB down from the main lobe, the level of attenuation in the sidelobes

associated with the MLT basis vectors is approximately 23.5 dB.

With K =1, the M x 2M transformation matrix, ¥, contains the LT basis set,
{g[n], 0<k< M-1, 0 <n<2M—1}; thus there are M basis vectors with length
2M. Transform domain signal processing using the MLT is illustrated in Figure 3. By

segmenting the continuous input data stream, z[n], into contiguous M-length data
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blocks, successive data vectors, ZTj_1, Z; and Zjiq are defined as

z[IM]

z[IM +1
[ . | J—1<I<j+1

z[(l+1)M —1]
Assuming that the data block of interest is the M x 1 vector, z;, the LT analysis

equations can be expressed in terms of the overlapping composite 2M x 1 input

vectors,
Zy = [—]—ii_l ] and T = [—J—E ]
Z; Ljt+1
as
X; = ¥ (6)
X = ¥z (7)

To obtain the original input vector, z;, from the above set of spectral coefficients,
each of the overlapping input vectors must be reconstructed using the following syn-

thesis, or inverse transform, expressions,
Ty = ‘I’TXI

~ _ T
Ly = v Xlla

where
N Z; N Z,
Ly = l#] and Trr = lTL‘| .
L Ljt1

Denoting the last M elements of Z; and the first M elements of Z;; as Z; ; and Z; y,

respectively, Z; can be reconstructed from the above vectors as

A

Lj=Zjr+ Ly

or, equivalently, as

=v'X, +97X,, (8)

&>

J
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where ¥, and ¥, denote the left and right M x M partitions of ¥, i.e.
v=[¥,|¥]. (9)
2.1.3 Extended Lapped Transforms

As considered in this work, the ELT represents a subclass of lapped transforms with
K = 2 and sinusoidally modulated basis vectors. As was the case with the MLT,
the ELT basis vectors are generated by shifting the lowpass filter prototype, again
denoted as h[n], in the frequency domain such that the resulting M subband filters
span the range of frequencies from zero to m. With an overlapping factor of 2, the
length of the subband filters and, hence, h[n], is four times the number of subbands.
By allowing the time-support of the basis vectors to be spread over four data blocks,
(3), after modifying the range of n such that 0 <n < 4M — 1, can be used to define

the sinusoidally modulated subband filters.

Whereas (4) and (5) were used in the previous section to represent the conditions
placed on the MLT lowpass filter prototype by the PR constraints of (2), similar

constraints for the ELT lowpass prototype can be expressed as [18]

h[4M — 1 — n] = hin] (10)
h%[n] + h*[n + M| + h?[n + 2M] + h?[n + 3M] =1

hinlhln + 2M] + hln + M]h[n + 3M] = 0

with 0 <n <2M —1in (10) and 0 <n < M/2 —1 in the last two equations. A class

10



of windows satisfying the above equations can be defined as [18]

A —1—-i = —sinf;sinfy_1_
h[% + i = sin6;cosOpy_1_;

h[% —1—14] = cosf;sinfy 1 ;
h[% +i] = cosB;cosblp 1

where 0 < i < M/2 — 1 and the set of angles, 6;, is given by

0; = [(12_77) (2i+1) +7] (21';71)@

The additional parameter, 7, is a variable in the range [0, 1] that controls the roll-off
of the prototype frequency response. Consequently, v controls the trade-off between
stopband attenuation and transition bandwidth of A[n] and, thus, the ELT basis

vectors [19].

Figure 2 demonstrates the effect of different v on h[n] - note that for clarity
the frequency responses of the lowpass filter prototypes are plotted only on the range
[0,1/32] instead of [0, 0.5]. Clearly, maximum attenuation is achieved as -y approaches
zero, whereas the bandwidth is minimized as it heads towards unity. Depending on

the value of ~, the level of sidelobe attenuation may be anywhere from 22-34 dB.

For both simplicity and convenience, only ELT basis vectors derived from the
above equations are considered in this work. For completeness, however, it should
be noted that several techniques by which to develop optimal prototype filters have
been presented in the literature [14, 33, 37]. A particularly appealing approach intro-
duced by Vaidyanathan and Nguyen [33, 34, 44] utilizes eigenfilter design techniques
to minimize the quadratic error in the passband and stopband of the prototype fil-
ter, h[n]. The resulting subband filters typically have very high attenuation in the

stopbands and, thus, are characterized by low levels of inter-subband aliasing. Using

11



the eigenfilter approach, lowpass filter prototypes can also be designed with complex

coefficients [34].

Whereas MLT (K = 1) domain processing involves the use of three distinct data

blocks, the ELT requires that seven different data segments, {Qj,:;, Zj 9y Xj 1,L55Ljq15 L0, £j+3},

be considered, where

z[IM]

z[IM + 1] . _
T = i j—3<1<j5+3.

z[(l+1)M — 1]
Using these vectors, augmented 4M x 1 input vectors can be constructed as
x .

T X,

Lj_3 Lj_o Lj1 L
T;_ T;_ L L,
z; = | L= 2 Ty = |—L— 1 Lrrr = L Ly = =L
2j—1 2 2j+1 2542
L Ljt1 Zjt+2 Zjt3

The corresponding analysis and synthesis equations thus become

Analysis Equations <= Synthesis Equations

X I = Uz I z I = ‘I’TX I
X = Yy T;p = ‘I’TX:H
X = ¥y T = ‘I’TXAIH
Xy = Yo Ty = ‘I’TXIV-

As in ( 8), partitioning the M x 4M ELT transformation matrix as
Q = [\PIV | ‘I’III | ‘I’II |QI:| ?

allows the filtered data vector to be reconstructed from its ELT spectral representa-

tions as
Z; = ‘I’ITXI + ‘I’zin + ‘I’ITHXUI + ‘I’,TVXIV- (11)

One can obtain a physical description of an ELT domain signal processing system
by simply extending the MLT-based system shown in Figure 3 with two additional
stages[22].

12



As considered in this work, the ELT represents a subclass of lapped transforms
with K = 2. As was the case with the MLT, the ELT basis vectors are generated by
shifting the lowpass filter prototype, again denoted as h[n], in the frequency domain
such that the resulting M subband filters span the range of frequencies from zero to
0.57. With an overlapping factor of 2, the length of the subband filters and, hence,
h[n], is four times the number of subbands. By allowing the time-support of the basis
vectors to be spread over four data blocks, viz. 0 < n < 4M — 1, (3) can be used to
define the sinusoidally modulated subband filters. As before, the selection and design
of appropriate lowpass filter prototypes is not discussed here. In keeping with the
discussion in [17, Section 5.2], the analysis and subsequent results presented herein

assume that the chosen ELT lowpass prototype is designed with v = 0.5.

Whereas MLT (K = 1) domain processing involves the use of three distinct data
blocks, the ELT requires that seven different data segments, {z; 3,2; »,2; 1,2, %11, %19, 213},
be considered, where

z[IM]

z|IM +1
[ . | J—=3<1<j+3.

(I +1)M —1]

Using these vectors, augmented 4M X 1 input vectors can be constructed as

Ti g Ti_g Ti g z

= | =2 = | &=l = =j = [ =il
Ty = |——— Lir = |[—— Lrrr = Ly = | 7| -

Lj1 L Ljt1 Ljio

Z; Ljp1 Ljyo Lji3

The corresponding analysis and synthesis equations thus become
X;=¥z; and 2 =9"Xy (12)

respectively, where Z € {I,II,111,IV}.

As in (8), partitioning the M x 4M ELT transformation matrix as
‘P = I:@IV | \IJIII | \IIII |@Ij|

13
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Figure 4: Receiver employing pre-correlation transform domain Wiener filtering.

allows the filtered data vector to be reconstructed from its ELT spectral representa-

tions as

;=Y OrX,. (13)
T

One can obtain a physical description of an ELT domain signal processing system

by simply extending the MLT-based system shown in Figure 3 with two additional
stages [26].

2.2 Transform Domain Wiener Filtering

As illustrated in Figure 1, transform domain filtering offers a means of directly ma-
nipulating the spectral coefficients of the received data vector in an effort to suppress
undesired interference. When the received data vectors are time-aligned with the
data bits, i.e. each data block contains one complete data bit, detection may be
performed directly in the transform domain. Under this condition and assuming that
synchronization has been obtained, the inverse transform and correlation operation of
Figure 1 may be replaced with a single dot product as shown in Figure 4. Here, o has
been replaced by the appropriate, possibly complex, set of Wiener filter coefficients,
w*; w when the coefficients are strictly real. Note that if the identity transform is
used and the Wiener filter is approximated using the LMS algorithm, this receiver

reduces to the adaptive correlator receiver [35].

As an alternative to the pre-correlation receiver structure of Figure 4, one can

equivalently use the receiver shown in Figure 5, which is called a “post-correlation”

14
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Figure 5: Receiver employing post-correlation transform domain Wiener filtering.

receiver due to the fact that the transform domain weighting function follows the cor-
relator. In this receiver, the input signal, z[n], and the reference spreading sequence
are both processed by forward transforms and the results are multiplied point-by-point
to perform the despreading operation. The point-wise products are then weighted by

the adjustable taps and summed in order to generate the decision variable, d[n].

Pre- and post-correlation receivers yield identical BER results when their respec-
tive Wiener filter coefficients are utilized. As a result, the remainder of this work only
considers the pre-correlation receiver structure where the despreading and interference
suppression are performed with a single set of weights as in Figure 4. The follow-
ing analysis and subsequent results can easily be rederived for the post-correlation

receiver [22].
2.2.1 Block Transforms

The set of transform domain coefficients corresponding to the nth input data vector
can be obtained using (1). The dot product of these coefficients and the complex

conjugate of the weights, w*, produces an estimate of the transmitted data bit,

with the associated error signal defined as

e[n] £ d[n] — d[n), (14)

15



where d[n] is the transmitted data bit. Assuming that the desired signal energy is
normalized to unity and that antipodal signaling is used, the corresponding MSE is

given by
J(w) = E{eln]e’[n]} =1 - w'kjy — kgyw" + w'Kyxw, (15)
where
Kix =E{dnX"} and ki, =E{d'[n]X"}

define the cross-correlation between the transform of the input vector and desired

signal and

Kyx = E{XX'}

denotes the transform domain covariance matrix.

Setting the derivatives of J(w) with respect to the weighting vector to zero and

solving yields the optimal transform domain Wiener filter coefficients,
Wpre = Kﬁkdi .

Inserting w,,, into (15) yields the transform domain minimum MSE,

_ T 1% T * t
jmin =1- wprekdﬁ - k@wp,«e + wpreKﬁwprea

which upon simplification can be rewritten as

Assuming that the input data vector contains the spread data bit and zero-mean
noise and interference, the expected value of the cross-correlation between its trans-

form domain coefficients and those of the desired signal can be written as

kix=FE {din]X} =C,
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where C represents the transform domain coefficients corresponding to the pseudo-

noise spreading code, c. Under these conditions, the minimum MSE is given by
Tmin =1 - K¢, (16)

where K, is the time domain covariance matrix.

2.2.2 Modulated Lapped Transforms

For the MLT, it is assumed that the number of filter bank subbands, M, is equal to
the length, N, of the spreading sequence and, hence, the input data vector, x, and
that the length of each subband filter is 2M = 2N. In the following analysis, it is also
assumed that successive data bits are independent and that the power of the desired

signal is normalized to unity. Only real signals and transforms are considered.

Since the MLT operates on overlapping data segments whose total lengths are the
same as those of the subband filters, two sets of transform domain coefficients must
be generated per data bit. Data bits modulated by the spreading code, ¢, thus have

their energy distributed among these sets of coefficients as
’ln)=1=c"c=C]C; +CT;Cy,
where
Cr =Wy, Ze{lIl} (17)

and the time domain composite vectors, ¢;, are given as

Cr = l%] and Crr = [%] 3

0 denotes the N x 1 zero vector. By partitioning the N x 2N transformation matrix

as in (9), (17) can be rewritten as

CI:‘IJ

~ ZQ'
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Figure 6: Receiver structure using pre-correlation MLT domain Wiener filtering.

Using both sets of transform domain coefficients, the original spreading sequence can

be reconstructed as
c=1C,+9]Cy. (18)

Focusing on the received data block z,,, as in Section 2.1.2, (6) and (7) establish the

=n>

necessary expressions for the transform domain coefficients, X; and X,;, associated
with each input vector. MLT domain filtering using the appropriate sets of tap
weights, denoted as w; and wy;, produces the following estimates of the transmitted

data bit,
CZI [n] = X?MI and CzH [n] = X?leb
which, when combined, yield the total estimate,
d[n] = dy[n] + dp[n). (19)

Note that data block z,, is assumed to contain the actual data bit, d[n]. In practice,
this process can be implemented using a pre-correlation MLT domain receiver like

the one shown in Figure 6.

Given the definitions above, the total error between the estimate and the original

data bit, as written in (14), is defined as
A
eln] = dln] — X7w; — X7wy;.
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Following the analysis used for block transforms, the corresponding MSE is given by

J(wr,wy) = 1—2kgy wp —2kgx wy + w; Kxxw;

+2wi Kx, x,, wir +wi, Kxxwy,
where the cross-correlation vectors,
kix, =E {d[n] X1},
the autocovariance matrices,
Kxx = Kx,x, = Kx, x,, = E{X,X]}
and the cross-covariance matrix Ky x

KLL, =E {XIX?I} )

(20)

are evaluated in terms of the transform domain coefficients. Setting the partial deriva-

tives of (20) with respect to w; and w;; to zero, one obtains the following expressions

for the MLT domain Wiener filter coefficients,

_ -1
Wyre, = KXX (kdij - KKIKIIMII)

and

_ -1
Wprer = KXX (kdiu - KK]]KIMI) .

Simple substitution of w, for w;; in (21) yields

prern

-1 -1 -1
KXXde - KXXK&&I KXXkdXH

w =
Wore, 1 1
INxN - KXXKKIKU KXXKKUKI

(22) can likewise be rewritten as

-1 -1 -1
KXXkdXH - KXXKXUXI KXXkdXI

wpre“

-1 -1
INxN - KXXKXIIXIKXXKKIKII

19
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Assuming that successive data blocks are independent, expansion of the cross-

covariance matrices yields
KK}&]} = E {XIX?I} = ‘I’IKH‘IIF;’;
and
K =v K,vT
XX — Ir-*xx = -

(23) and (24) can thus be rewritten as

"  Kxkkax, — Kyx ¥, K P7 Kxikgx
—prer | I K&@,K&\pg Kﬁxp,, K, O
and

o Kk, - K K ¥ Ky
—pren I,.v— KQ\IIHKE\IITK&\PIKH\IJ}FI

with the corresponding minimum MSE given by

jmin = j(wprelu wprell)
= 1- deX prC] deXII Wyyrer, -+ wp?"e]KXpr'l'el

+2 KX X + wpreIIKXprT6]1 (25)

PTGJ II—p"'eII

At this point, it is not necessary to fully expand the above expression in terms
of the cross-correlation vectors and matrices since an additional assumption may be
made. In fact, if it is further assumed that the set of transform domain coefficients,
X; and X, are also independent, then the cross-covariance matrices can be set to

zero. Under this assumption, (23) and (24) simply reduce to

e, = Kxxkax,, T e{l,II}, (26)

thus simplifying the expression for the MSE as
j(wprela preu Z k deI' (27)

20



Given the input vector consisting of the spread data bit plus zero-mean noise and

interference,
kd X, — QI-

The corresponding Wiener filter coefficients are given by

Consequently,
T Wprep, Wprey) =1 — ZQ%KQQI (28)
T

represents the minimum MSE.

Clearly, with the assumption that X; and X;; are independent, (26) does not
represent the true set of transform domain Wiener filter coefficients. Hence, the MSE
expressions presented in (27) and (28) do not represent the true minimum MSE.
If exact solutions for the Wiener coefficients and, hence, the minimum MSE are

required, w,,,, and w as given by (23) and (24) must be used in (25). Through

Epres Lprers
both analytical and experimental evaluation, however, the difference between these

two sets of expressions for w,,,. and w has been determined to be negligible for

prer —=prerr
the input signals under consideration. Thus, without significantly compromising the
analysis, the assumption of independence between the transform domain coefficients

is maintained throughout this work.

2.2.3 Extended Lapped Transforms

The development of the Wiener coefficients for the ELT is directly analogous to
that presented for the MLT [22] and, consequently, is not presented. The major
difference when using the ELT is that four sets of transform domain coefficients must
be computed for each input data bit instead of two. These additional weights result

from the fact that the ELT processes overlapping data segments consisting of four
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N-length input vectors as discussed in Section 2.1.3. As in the case of the MLT, the
longer basis vectors associated with the ELT improve spectral resolution by increasing
stopband attenuation in neighboring subbands. For narrow-band interference, such
an improvement enhances excision performance and is expected to yield a high fidelity

power spectral estimate for use in normalized transform domain LMS algorithms.

2.3 Bit Error Rate Analysis

Assuming that the receiver has knowledge of both carrier frequency and phase and
that binary antipodal signaling is used, modem operations appear distortionless and
yield real data signals; such a system is thus viewed as a coherent baseband BPSK
communication system. Under these conditions, the generalized discrete-time trans-

form domain filtering receiver shown in Figure 4 is analyzed.

With respect to Figure 4, the receiver input, x[n], is assumed to consist of the

sum of the transmitted signal, additive thermal noise and interference, i.e.
z[n] = +s[n] + n[n] + j[n].

Each data bit is modulated by an entire length-N PN sequence and sampled once
per chip with the energy-per-bit, Ej, normalized to unity. Thus, each spread data bit

may be expressed as
sln] =d[n]e[n] n=0,1,...,N—1

where d[n] € {+1,—1} and ¢[n] € {—I—ﬁ, _\/LN} represent the random binary data
bit sequence and PN code samples, respectively. The thermal noise samples, n[n|,
are assumed to be additive white Gaussian noise (AWGN) samples with two-sided
power spectral density, Ny/2, and the interference samples are assumed to be gener-
ated from the single-tone interferer, j[n] = A, cos[dwn + 6], where A; is a constant
denoting amplitude, dw is the offset from the carrier frequency and € is a random

phase uniformly distributed in the interval [0, 27). The received signal data samples
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Figure 7: Receiver structure using pre-correlation ELT domain Wiener filtering.

are divided into disjoint sets corresponding to individual data bits and are processed

and detected independently.

To facilitate further analysis, a +1 data bit is assumed to have been transmitted,
i.e. s = c¢. Thus, in accordance with Figure 4, the bit decision variable, cz, for the

block transform domain pre-correlation receiver can be expressed as

A

d = wh X

Hpre>

= w  (C+N+J),

where C', N and J represent transforms of the input vectors ¢, n and j. In a similar
manner, d associated with the pre-correlation receivers based on lapped transforms

shown in Figures 6 and 7 is given by
d = wamzlz
T
= Zw;)rez (QI + MI + iI) J
z

where Z € {I, 11} for the MLT and Z € {I,II,I1II,IV} for the ELT.

Given that its polarity indicates the value of the transmitted data bit, d is put
through a threshold device with the decision boundary set to zero to yield a bit
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decision. By determining the first and second order statistics of cz, BER expressions
can be derived and evaluated for arbitrary z[n]. Since Z[n| depends explicitly on
the transform or filter bank used, the evaluation of these equations is equivalent to

directly relating the receiver BER to the analysis/synthesis techniques employed.

Since the jammer phase, 6, is unknown, the conditional mean, Ido of d is first
determined for a fixed value of . Assuming that the transform domain filter coeffi-
cients and transformation matrix are fixed, the conditional expectation of d may be

expressed as
M(ﬂ@ = w;)re (Q + 19) )

where J, emphasizes the conditioning on #. Since the noise term is independent of
the narrow-band interference, the variance of d is not a function of # and can be
written as

2

NO N—-1
03 = o Z ‘wpre,k
k=0
When using lapped transforms, the conditional mean is given by

Hijg = D Wore, (QI + iz,a)
T

with the corresponding variance,

N-1
o2 = Nog
2 =0

[, N

2
Z preIJc.
T

bl

Using these expressions for e and ag, the BER performance of the various
pre-correlation receivers can be evaluated for an arbitrary set of basis vectors and

spreading codes. Assuming equiprobable data bits, the probability of bit error is

2T 2
P, = i/ Q (@) de,
21 Jo 0;

where the ()-function is defined as

A 1 9
Q(k):\/—Q_W/k eV dt.
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2.4 Analytical and Simulated BER Results

In this section, the results of several computer simulations are used to illustrate
the BER performance of the spread spectrum communications receivers depicted in
Figures 4 and 5 and are compared to theoretical predictions based on the analysis
of the previous section. In each case, a 64-chip augmented PN sequence is used
to directly modulate a binary input data stream sampled at a rate of 64 samples
per bit; simulations are performed at baseband at a normalized data rate of 1 Hz.
The resulting spread data signal is transmitted over an AWGN channel with narrow-
band interference and, at the receiver, non-windowed block (64 x 64) and lapped
(64 x 128 - K) transforms map the received time domain waveform into the transform

domain.

Since the presentation of Wiener filtering results by themselves offers little in-
sight into the receiver’s interference mitigation ability, Wiener-based performance is
illustrated alongside that obtained via transform domain excision. As in [26], exci-
sion is performed using a fixed k-bin excision scheme in which the spectral weights
corresponding to the bins with the largest average magnitude are set to zero; those
remaining are set equal to unity. Given that excision performance is dependent on
the number of transform domain bins excised, preliminary analyses and simulations
have been performed to determine the optimal number of bins to excise in each case.
The actual number of bins removed in each jamming scenario is shown in parentheses

in the figure legends.

Figures 8 — 9 show BER results obtained using block transform (BT) domain
excision and and Wiener weights in the presence of single-tone jammers with frequency
offsets from the carrier, dw, of 0.117, 0.127 and 0.252, respectively, relative to a
normalized chip rate of unity. Each jammer has a power level 20 dB above that of
the signal, thus causing the BER performance to approach 0.5 when no suppression

techniques are used. Since, as in (16), BT domain Wiener filtering performance is
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Figure 8: BER performance using excision and Wiener coefficients, dw = 0.1171875

independent of the underlying transform [22], both DCT and DFT-based Wiener
filtering results are depicted by a single plot in each figure. From these figures, it is
clear that Wiener filtering is less sensitive to jammer frequency and consistently yields
BER performance within 0.25 dB of the theoretical performance in AWGN alone.
In practice, however, such an approach typically necessitates the use of adaptive

algorithms which require more time to converge.

In contrast to Wiener filtering, transform domain excision algorithms converge
faster, thus making them more adept at suppressing rapidly time-varying interferers,
and are typically easier to implement. As demonstrated in Figures 8 — 9, however,
BER performance is dictated by how well the transform basis vectors match the inter-
fering signal of interest. For best performance, excision requires that the interference
energy be confined to a small number of transform domain bins as is the case for the
DCT in Figure 9. Although in this case, the simple exciser performs as well as the

Wiener filter, Figures 8 and 10 clearly show different scenarios in which the excision
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Figure 9: BER performance using excision and Wiener coefficients, dw = 0.251953125

algorithm may yield insufficient BER improvement. Asin most engineering problems,
a fundamental trade-off exists between Wiener filtering and excision; it is up to the
user to decide whether BER performance or algorithmic convergence rates are more

critical.

Figure 11 demonstrates the agreement in BER between the analytical expressions
and simulation results obtained using lapped transform domain excision and Wiener
filtering. Since MLT and ELT domain Wiener filter performances are virtually identi-
cal, only one set of results, labeled LT, are depicted. From this figure, it is clear that
the disparity between the excision and Wiener filtering results is much less than that
corresponding to the block transform implementation. Such a result suggests that
narrow-band interference suppression via lapped transform domain excision may be
used in lieu of Wiener filtering approaches using either block or lapped transforms.
Despite this suggestion, however, Wiener filtering still displays a non-negligible level

of additional improvement that is likely to be more robust with respect to jammer
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Figure 10: BER performance using excision and Wiener coefficients, dw = 0.126984

frequency and bandwidth. A more thorough comparison of these excision results with

those illustrated in Figure 10 is presented in [26].

3 Nonlinear Filtering in the Transform Domain

Transform domain filtering using real-time Fourier transforms and surface acoustic
wave (SAW) devices was originally proposed as a means to suppress narrow-band
interference in continuous-time spread spectrum receivers [28]. In related works [6, 29,
39], it was further developed and extended to transform domain excision techniques
based on the Fourier transform. Within the past few years, several authors have
proposed the use of wavelet transforms and related filter banks as an alternative to the
fast Fourier transform (FFT) [12, 24, 27, 36, 40, 41]. In one of the earliest applications,
the efficient implementation of digital filter banks using polyphase structures was
used to demonstrate the effectiveness of multirate filter banks in excising narrow-

band interference [12]. It has since been shown that the data compression ability
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Figure 11: BER performance using lapped transform domain excision and Wiener
filtering, JSR = 20 dB, dw = 0.126984 rad/sec.

associated with wavelet transforms can be used to compactly represent sinusoidal

interferers using hierarchical subband trees [24, 27, 36, 43].

Most recently, excision using filter banks [22] and “spectrally-contained orthogonal
transforms” (SCOT) [40, 41] has also been shown to be very effective at mitigating
narrow-band interference. The analysis presented in [22] focuses on the develop-
ment and analysis of transform domain filtering and data demodulation/detection
schemes using orthonormal block and lapped transforms (LT) and forms the basis for
this work. In a similar manner, the work presented in [40] essentially addresses the
application of narrow-band excision using time-weighted discrete Fourier transforms
(DFT) to data demodulation and closely examines its corresponding bit error rate
(BER) performance. In contrast, the excision analysis offered in [41] focuses primarily
on the use of time-weighted DFTs and cosine-modulated filter banks for radiomet-

ric signal detection. Whereas [40] and [41] independently address BER performance
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Figure 12: Discrete-time receiver employing transform domain filtering.

and the application of SCOTSs, particularly cosine-modulated filter banks, to interfer-
ence suppression, the primary goal of this work is to present a thorough analysis and
evaluation of the lapped transform domain excision process as a means of mitigating

narrow-band interference.

Transform domain excision is frequently performed using a receiver such as the one
shown in Figure 12. Here, blocks T and T~! represent arbitrary forward and inverse
M-point transforms, respectively, and the transform domain weighting vector, q, is
assumed to contain binary elements, i.e. {ay € {0,1}, 0 <k < M — 1}. The indi-
vidual components of the binary weighting vector vary in response to the changes in
the distribution of interference energy present in each received data vector — excision
is a simple technique that suppresses narrow-band interference by setting portions of
the transform that are primarily interference to zero. Due to its binary nature, the
excision process typically yields poorer BER performance than more sophisticated
transform domain Wiener filtering schemes [22] unless all of the interference energy
is contained in a very small number of transform domain bins. Nevertheless, in many
cases, the simplicity of the receiver structure and the ability of the exciser to react
rapidly to changes in the interference make it a prime choice in many narrow-band

interference suppression applications [1, 2, 5, 10, 23, 38].

As previously mentioned, this work further develops the excision process by con-
sidering the application of lapped transforms [19] in the transform domain exciser.
With LTs, the basis vectors are not restricted in length as they are in conventional

block transforms like the DFT and discrete cosine transform (DCT). Indeed, whereas
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the lengths of the block transform basis vectors are limited to the number of trans-
form domain cells, or bins, the LT basis vectors have length, L, that is equal to some
even integer multiple of the number of bins, i.e. L = 2K M, where M is the number
of bins and K is the overlapping factor [19]; the inputs to successive transforms are
produced by overlapping segments of the received signal. Thus, in comparison to tra-
ditional length-M basis vectors, the basis vectors associated with LTs typically yield
improved stopband attenuation in the frequency domain for a given filter bandwidth.
Fortunately, there exist efficient filter bank structures that allow these longer basis
vectors to be used while only moderately increasing the number of required arithmetic

operations [19].

3.1 Transform Domain Excision and Detection

In this section, the bit error rate (BER) performance of lapped transform domain ex-
cisers in the presence of single-tone and narrow-band Gaussian interference is derived.
Although not considered here, the extension of the BER analysis to multiple-tone in-
terference is straightforward and is discussed in some detail in [31]. An expression for
the BER is first derived using the MLT and then modified to yield a similar expres-
sion for ELT domain excision. The BER performance analysis for transform domain
excision using orthonormal block transforms [24, 22| is not presented here; however,
results for block transforms will be used for comparison in the next section. Through-
out this section, modulation/demodulation operations between the transmitter and
receiver are assumed to be transparent. Hence, the receiver is assumed to have per-
fect knowledge of the carrier frequency and phase and the corresponding received
data signal is real. Antipodal signaling is used and each data bit is spread using one
full length of the spreading sequence. Furthermore, the received signal is sampled
once per chip, the length of the spreading sequence equals the number of transform

bins, M, and the boundaries of the transform input vectors are aligned with those of
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the data bit.

The received signal is assumed to consist of the sum of the transmitted signal,

additive thermal noise and interference, i.e.
r=s+n+j.
Here, s represents the spread data bit,
s = d[n]c,

where d[n] is the current data bit with d[n] € {+1,—1} and c is the spreading code
with chip values of iﬁ, and 7 is a vector of zero-mean white Gaussian noise
(AWGN) samples with two-sided power spectral density Ny/2. Samples of the in-
terference vector, j, are assumed to be generated from the single-tone interferer,
jln] = Ajcos[dwn + 6], where A; is a constant denoting amplitude, dw is the off-
set from the carrier frequency and f is a random phase uniformly distributed in the

interval [0, 27).
3.1.1 Modulated lapped transforms

Assuming synchronization, the current data block, denoted as z; in Section 2.1.2, can
be equivalently represented by the received data vector, i.e. z; = r. As defined in
Eqs. 6 and 7, the ML'T domain coefficients corresponding to the received data vector,

r, are thus given as

RI = \II£[

Ry = Wryp.

Since MLT domain processing necessitates the use of two sets of transform domain
filter coefficients, denoted as a; and «;;, the modified spectral coefficients may be
expressed as

EI = diag(gl)ﬂl and EH = diag(gn)ﬂn. (29)
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Note that here diag (-) denotes the M x M matrix whose diagonal elements correspond

to the components of its M x 1 argument. Given Eq. 8, the M x 1 filtered data vector

may be written as

iPo= Y OTR, Tel{llII}. (30)
z

The filtered data vector can be correlated with the reference spreading code to

yield the bit decision variable,

T ~
gnmLT = CT.

With the additional assumption that the overall system is linear, gy a7 may be

rewritten in terms of the individual signal components using Eqgs. 29 and 30 as [22]

gNMLT = ZQ%diag(Qz)Ez
I

= Y Crdiag(as) [Sz+ Nz + Jo],
T

where C'; = ¥_c. S7, N7 and J; correspond to the transform domain representations
of the desired signal, additive white Gaussian noise and interference components,
respectively. This expression shows how detection can be performed in the transform
domain, i.e. without performing an inverse transform. Figure 13 illustrates a generic
communications receiver employing MLT domain excision and detection. In this
system, the spectral coefficients of the observed data signal are point-wise multiplied
with the weighting vector elements. The corresponding outputs are then correlated
with the known transform domain reference vectors, using a dot product, to yield the

decision variable.

In practice gn,mrr is typically put through a threshold device with the decision
boundary set to zero to make a bit decision. By determining the first and second-
order statistics of gy, arrr, the conditional and unconditional bit error rate expressions

can be evaluated for arbitrary input signals, spectral weights and linear transforms.
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Figure 13: Receiver employing MLT domain excision and detection.

Since the jammer phase, 0, is unknown, the conditional mean, g arr7i, of gnMLT
must first be determined for a fixed value of . Assuming that the transform domain
filter coefficients and transformation matrix are fixed and that a 4+1 data bit has been

sent, i.e. s = ¢, the conditional expectation of gy rrr may be expressed as

pomrrie = E{gnmrr|dn] =+1,0}
= Y Crdiag(as) (QI + lz,a) ; (31)
T

where J7 g is defined as
Jro=E{J[0}. (32)

Clearly, if the weighting vector elements are set to unity, the receiver simply correlates

the transforms of the received signal with those of the spreading code.

Assuming that the zero-mean noise terms are independent of the signal and inter-
ference components and that each set of transform domain coefficients is independent

of the others, the conditional second-order moment of gy arzr may be written as

E {912V,MLT \d[n], 0 } = /j'i,MLTw + Zdiiag(gz)Kﬂzﬂzdiag(gI)QI,
z

where



Thus, the variance of gy arrr is given by

U;,MLTW =k {gIZV,MLT |d[n], 9} - :u'z,MLT|0

N, . .
= 5 X Cidiag(az)diag(az)Cs. (33)
T

. 2 _ 2
Clearly, since the dependence on 6 has been removed, oy ;1 = 0y MLT|9-

Using the expressions for jigar17)s and 03, v s given by Egs. 31 and 33, one can
evaluate the BER performance of the receiver depicted in Figure 13 for an arbitrary set
of basis vectors and spreading code. Assuming equiprobable data bits, the probability

of bit error is given by [22]

1 27
Pe,MLT = /O Q <M> doa

27 Og,MLT

where the (-function is defined as

1 o0 2
e —— et
QE)=—7=] e
3.1.2 Extended Lapped Transforms

Using Eq. 11 and denoting the four sets of transform domain filter coefficients as a;,

gy, arrr and gy, the ELT domain filtered input vector is written as
i o= Y OTR,, Te{lIIIIIIV} (34)
T
where the modified ELT domain coefficients are given by
EI = diag(az) Rz (35)

Given Egs. 34 and 35, the ELT domain decision variable can be expressed as

T
gNELT = C

= Y Crdiag(az) [S;+ N7+ Jo].
T

=3
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Figure 14: Receiver employing ELT domain excision and detection.

From this expression, the conditional mean of gy grr with respect to d[n] = +1 and

f is given by
porre = Y Crdiag(as) (Qz + lz,a) ; (36)
T

where the Jz, terms follow directly from Eq. 32.

Having already obtained the mean, the second-order moment of gy grr can be
obtained by following the steps used in the MLT domain analysis. As a result, the

variance of gy grr may be written as [22]

N, . :
UE,ELT = %Zdilag(QI)dlag(QI)QI-
I

This expression, together with Eq. 36, yields the probability of bit error,

1 27
Popir = /0 Q(M> do.

2T 04, ELT

A receiver employing ELT domain excision and detection is shown in Figure 14.
As in the case of MLT domain excision, each of the weighting vectors, o, has binary
valued elements, i.e. zero or unity, based on the interference energy distribution

among the appropriate set of transform domain coefficients, R;. Note that in this
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figure, as in Figure 13, the spreading code is assumed to be purely real since only real

signals and transforms are considered.
3.1.3 Gaussian Interference

In many applications, the narrow-band interference can be approximated by an equiv-
alent narrow-band Gaussian process. For a given amount of interference power, the
narrow-band Gaussian interferer affects a larger frequency range than a single-tone
jammer but with lower power spectral density. Denoting the percentage of the spread
signal bandwidth which is jammed as p and the total interference power as A2, the
two-sided power spectral density of j[n] is simply %%’1. The corresponding jammer-
to-signal ratio (JSR) is given by
2,

JSR = P,

Denoting the spread spectrum signal bandwidth as w,s and the jammer bandwidth
as wnppy = Pwss, the lower and upper cutoff frequencies of the narrow-band spectral
response are defined as w; 2 5w — 9w and Wo 2 5w + “nb - respectively. With the

2 27

narrow-band interference power spectral density given as

A%y
)= % sl s
0 otherwise

the corresponding elements of the covariance matrix, K, are defined as

A2, sin [%& (n— m)]

p 7w(n —m)

Kjj(m,n) = cos (ow|m — nl).

Assuming that the discrete-time sampling frequency is twice the spread spectrum

bandwidth, i.e. f; = 2wss, wss is normalized to .

In this case, since the interference term is zero-mean, the mean of the MLT domain

decision variable becomes [22]
pomrr = ) Crdiag(er)Cr,
T
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with the associated variance given as

N, . . i )
oovir = 70 3" Cldiag(az)diag(az)Cr + Y CFdiag(az)Ksdiag(az)Cy.
A A

Likewise, the mean and variance associated with the ELT domain decision variable

are given by

poerr = . Crdiag(ar)Cr
A

and
N . : . :
Ogmr = - 3 Cidiag(a)diag(as)Cy + C7diag(ar) K diag(o)Cr,
z

respectively. Note that above, Z € {I,II} for the MLT and Z € {I,II,III, IV}
for the ELT. The probability of bit error associated with the MLT and ELT domain
excision systems can be obtained by substituting the appropriate mean and variance

into

3.2 Analytical and Simulated Results

In practice, since transform domain excision decisions are typically a function of the
spectral distribution of the interfering signal’s energy, many applications evaluate
the magnitude of each transform domain bin and remove those that exceed a preset
threshold. Such an excision scheme is easily implemented in hardware and is simply
termed as “threshold excision”. Unfortunately, the stochastic nature of the thresh-
old excision process makes its analysis mathematically impractical. As a result, an
analytically tractable excision scheme allowing objective evaluation of various linear

transforms and filter banks is considered here.

To obtain the average probability of bit error, transform domain vectors corre-

sponding to the received data signal with the £ largest magnitude bins removed are
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determined for several different phases of the interferer - this technique is referred to
as the “k-bin” excision algorithm. Using these conditional vectors, the corresponding
bit error probabilities are obtained and averaged over a large number of phases to
obtain the final bit error rate expression. To simplify the analysis, the selection of
the k£ bins to be excised is based solely on the transform domain distribution of the
narrow-band interference energy; this approach is valid provided that relatively large
JSR ratios are considered and that only a small percentage of bins are removed. Al-
though not considered here, excision analysis may also be performed by determining
the optimal number and location of bins to excise to minimize the probability of bit

error for each phase [22].

Excision-based receivers using the MLT and the ELT have been shown previously
in Figures 13 and 14, respectively. Although not explicitly shown in the receiver
diagrams, the transform domain weighting vectors are based on the transform domain
distribution of interference energy using the k-bin excision algorithm. Regarding the
MLT domain excision process, the transform domain weighting vectors, a; and o,
might be expected to be identical since each of the transform domain vectors, R; and
R;;, are merely delayed replicas of one another. Due to the fact that the desired data
bit energy is not equally divided among these transform domain representations,
however, such an assumption is unwarranted and may lead to slightly less reliable
results. Similar statements apply equally well when excision is performed in the
ELT domain. Throughout this section, lapped transform domain excision vectors are
based on the entire set of transform domain coefficients and evaluated simultaneously,
thereby inherently taking into account the distribution of data bit energy throughout

the transform domain.

In the following sections, analytical BER results illustrate the performance of
spread spectrum receivers employing lapped transform domain excision in the pres-

ence of narrow-band interference. In each of the interference scenarios considered,
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Figure 15: Excision in the presence of single-tone interference, JSR = 20 dB and dw
= 0.126984 rad/sec.

a 64-chip augmented spreading code is used to modulate the binary data. Conse-
quently, the dimensionality of the transformation matrix is 64 x 64 for block trans-
forms, 64 x 128 for the MLT and 64 x 256 when using the ELT. The ELT lowpass
prototype filter is generated using v = 0.5. In each case, the number of bins excised

is indicated in parentheses in the figure legend.

3.2.1 Single-Tone Interference

Based on the analysis of Section 3.1, receiver performance using transform domain
excision and a variety of orthonormal block transforms in the presence of a single-
tone interferer with dw = 0.126984 rad/sec and JSR = 20 dB is shown in Figure 15.
As in [22], the block and subband transforms tested include the DFT, DCT and
the Karhunen-Loéve transform (KLT); the number of transform domain bins excised
in each case is shown parenthetically in the figure legend. As expected, the KLT,
which confines the interfering sinusoids to two basis vectors, yields the best BER
performance [22]. Among the fixed transform techniques considered, both lapped

transforms produce results comparable to the KLLT and significantly better than those
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Figure 16: Excision in the presence of single-tone interference as a function of JSR,
Ey/Ny = 5 dB and éw = 0.126984 rad/sec.

achieved by most of the block transform implementations. In fact, with respect to
the KLT performance results, the ELT and MLT bit error rates are within 0.2 dB
and 0.4 dB, respectively, whereas the DCT generates the lowest BER of all the block

transforms considered yet is roughly 1.2 dB worse.

As suggested in the design of the ELT lowpass prototype filters in Section 2.1.3,
there is always a trade-off between the bandwidth of the main lobe and the level
of attenuation in the sidelobes. Due to windowing effects and, thus, relatively poor
attenuation in the sidelobes, the performance obtained using the DFT is rather poor
for the given interference environment. In contrast, the lower BER associated with
lapped transform domain excision can be attributed to the relatively small bandwidth
and high stopband attenuation associated with the LT subband filters, a direct result

of the longer basis vectors.

Figures 16 and 17 illustrate the performance of the excision-based receivers as a
function of the JSR and dw, respectively. In Figure 16, the number of bins excised
is held fixed as the jammer power is allowed to increase. In this figure, the KLT

basis vectors have not been recalculated for each JSR value tested. Although the two
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Figure 17: Excision in the presence of single-tone interference as a function of fre-
quency, E,/Ny = 5 dB and JSR = 20 dB.

KLT basis vectors excised optimally characterize the interfering tone [22], as the JSR
increases the interference energy present in the remaining basis vectors increases al-
most uniformly in each bin. As a result, the residual interference acts as a white noise
source with its power commensurately related to that of the single-tone jammer. Due
to the high levels of stopband attenuation associated with the lapped transforms, the
MLT and ELT are capable of tolerating larger power interferers without significantly
compromising performance. In fact, for both the MLT and ELT, relatively low BER
results, i.e. less than 0.0095, are maintained up to a JSR of approximately 30 dB. As
in practice, if the jammer power is sufficiently large, the excision process is rendered
ineffective and alternative measures, such as coding or longer spreading codes, must

be implemented.

Figure 17 illustrates the BER obtained as a function of jammer frequency offset,
dw. In these figures, the KLT is not considered since it has been previously optimized
only for dw = 0.126984 rad/sec. Here, the robustness of lapped transform domain
excision relative to the jammer frequency is demonstrated as the performance of

both the MLT and the ELT does not deviate significantly from the theoretical BER
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Figure 18: Excision in the presence of narrow-band Gaussian interference, JSR = 10
dB, dw = 0.126984 rad/sec and p = 0.1.

performance in AWGN over all frequencies. In contrast, the block transform imple-
mentations are highly sensitive to frequency. This sensitivity is once again a function

of the frequency responses of the transform basis vectors.
3.2.2 Narrow-Band Gaussian Interference

In this section, the excision-based receivers are evaluated in the presence of narrow-
band Gaussian interference. As discussed in Section 3.1.3, the parameters charac-
terizing this type of interferer are the JSR, the center frequency, dw, and the frac-
tional bandwidth, p. Regarding the following results, F,/Ng = 5 dB, JSR = 10 dB,
dw = 0.126984 rad/sec and p = 0.1 unless otherwise noted.

Figure 18 illustrates receiver performance as a function of Ey/Ny. As in the case of
the single-tone interference shown in Figure 15, the best performance is obtained using
the lapped transforms, which consistently yield BER results within 1.0 — 1.5 dB of that
obtained in AWGN alone; in contrast, all of the block transforms considered clearly
produce substantially poorer results. Such performance results are rather impressive

considering that the removal of 10% of the spread spectrum signal energy results in an
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Figure 19: Excision in the presence of narrow-band Gaussian interference as a function
of JSR, Ey/Ny = 5 dB, éw = 0.126984 rad/sec and p = 0.1.

immediate loss of roughly 0.46 dB in performance. Although these results correspond
to a very specific jamming environment, additional analytical and experimental results

have verified that similar performance is achieved over all frequencies.

Figure 19 shows that the lapped transform domain excision schemes provide the
best performance as the JSR increases. Note, however, that in this case, the ELT
requires the same percentage of bins excised as the MLT and is slightly more toler-
ant of higher power jammers at this frequency. Although not shown, the MLT and
ELT are, once again, less sensitive to jammer frequency than the block transforms

considered [22].

4 Conclusions

The analysis presented herein establishes the optimal transform domain Wiener filter
performance attainable using either block or lapped transforms. Although the con-
cept of block transform domain Wiener filtering is not new, this work establishes a
benchmark for BER performance in the presence of narrow-band interference and pro-

vides the groundwork for subsequent analysis of transform domain LMS algorithms
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and the effects of their underlying transforms on such performance characteristics
as convergence rate, misadjustment noise and BER. As shown in Figures 8 — 11,
there is not much difference between the BER performance obtained using block and
lapped transform domain Wiener filters. The fundamental advantage of transform
domain Wiener filtering over conventional time domain approaches is in the potential

improvement in convergence rates when adaptive algorithms are used [21].

As demonstrated above, transform domain excision performance is largely depen-
dent on the transform’s ability to compactly represent the interfering signal energy
in the transform domain. To efficiently suppress narrow-band interference signals via
excision, transforms with similarly narrow-band basis vectors are required. Theoret-
ically, narrow-band interference is best removed using a uniform bank of bandpass
filters with unity gain in the passband and infinite stopband attenuation. Of the
transforms considered here and in [22], lapped transforms most closely approximate

this ideal.

Herein, it has been shown that the lapped transform domain excision algorithms
are relatively insensitive to jammer frequency. Such a characteristic is often advanta-
geous in practice since one is seldom guaranteed that the frequency of the interfering
tone is known or constant. Considering that these algorithms are also relatively
insensitive to jammer power and that their complexity using polyphase filter bank
structures rivals that of conventional block transform algorithms [19], the MLT and
ELT must be considered as worthy transforms for narrow-band interference excision

applications.
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