Open Systems Ada Technology (OSAT) Program

Don Winter
Boeing - Phantom Works
1. REPORT DATE (DD-MM-YYYY) 01-06-2002
2. REPORT TYPE Briefing
3. DATES COVERED (FROM - TO) xx-xx-2002 to xx-xx-2002

4. TITLE AND SUBTITLE Open Systems Ada Technology (OSAT) Program
Unclassified
5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S) Winter, Don

7. PERFORMING ORGANIZATION NAME AND ADDRESS Boeing Phantom Works
xxxxx
xxxxx, xxxxxxx

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
Open Systems Joint Task Force (OSJTF)
1931 Jefferson Davis Highway
Crystal Mall 3, Suite 104
Arlington, VA22202

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE

13. SUPPLEMENTARY NOTES

14. ABSTRACT
See Report.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Public Release

18. NUMBER OF PAGES 19

19. NAME OF RESPONSIBLE PERSON
(Blank)
fenster@dtic.mil

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN 427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18
Open Systems Ada Technology Program

• Dual emphasis - Ada95 and POSIX
 • Proved mixed language support attributes of software architecture (Ada95, C, C++)
 • First flight application of Ada95
 • Utilized POSIX features of VxWorks, collected metrics
 • First live demo of Common OFP 30-step ballistics integrator
 • First flight of Computing Devices International (CDInt) PowerPC mission computer
 • Accuracy was not an explicit test objective, but scored 6/6 hits
 • Pilot feedback very favorable
Project Objectives

- Convert the mission computer of an AV-8B to a COTS, open standards-based platform
 - PowerPC 604 Processor
 - Wind River VxWorks POSIX-compliant RTOS
 - Boeing’s Common Operational Flight Program (COFP)
 - Ada95 (AV-8B compatible) F-15 Ballistics Algorithm

- Develop/demonstrate an HOL OFP
 - Basic Navigation, Communications and HUD display functions (C++ from Common OFP)
 - A/G Ballistics and Stores Management functions (new Ada95)
 - Continuously Computed Impact Point (CCIP) calculation
 - Release of Mk-76 Bombs
Comparing the observed CEP from this demonstration with the AV-8B Fleet OFP CEP

Integrating the Data Fusion Integrity Process (DFIP) Algorithm into the AV-8B OFP
 - Test DFIP functionality in the AV-8B Flight Simulator
 - Report results in Final Report

Collecting and reporting lessons learned:
 - POSIX
 - Ada95, mixed language OFPs
 - DFIP
Project Participants

- Sponsors
 - Ada Joint Program Office: Demo flight application of Ada95
 - Open Systems Joint Technology Force: Demo COTS, POSIX
 - JSF Program Office: Avionics risk reduction
 - Wright Laboratory: Demo of DFIP, reuse adapter

- Contractors
 - Boeing/ McDonnell: System analysis, development and test
 - Computing Devices International: COTS MC, support S/ W
 - Green Hills Software: Ada95 / C++ Development Tools
 - Wind River: VxWorks Real Time Operating System

- Project Management and Technical Evaluation
 - NAWC-WD, China Lake: Aircraft integration and flight test
Flight Test Results

● Flight Test Data
 • Weapons Delivery Flight (20 March 1997, Baker Range)
 • 6 X MK-76 all South-North runs
 • 3 X MK-76 @10 Degree Dive
 • First @xx Feet
 • Second @xx Feet
 • Third @xx Feet
 • 3 X MK-76 @45 Degree Dive
 • First @xx Feet
 • Second @xx Feet
 • Third @xx Feet

● Data Evaluation
 • Based on limited number of releases, bomb impacts were as good as current fleet AV-8B Night Attack software
Open Systems Components

- Computing Devices International Mission Computer
 - Single card has PowerPC 604e Processor, program memory, two 1553 channels, Ethernet, RS232, and discrete I/ O
 - Sun Laptop used as support computer - OFP compile, reload
- Baseline C/ C++ MC OFP
 - Microsoft Visual C++ Desktop Development
- C++ Executive, POSIX-compliant
- Green Hills MULTi Ada95 and C++ Tool Set
 - Mixed language OFP linking, loading, and debugging
- Wind River VxWorks RTOS

Gaining experience with commercial tools and POSIX API contributes to the maturation process of open systems avionics
OFP Configuration

- Rehosted “C” OFP (Common OFP) from AV-8B Flight Simulator
 - AV-8B Night Attack functionality
- VxWorks RTOS With POSIX
- C++ Executive utilizing VxWorks POSIX calls
- COFP C++ Navigation components
 - Same as used in F-15 and F/A-18 flight demonstrations
- AV-8B C++ Communication components
- Re-engineered F-15 Ada95 Ballistic Integrator
- Ada95 DFIP Algorithm
POSIX Usage

- Message queues for communication between interrupt service routines and rate group tasks
- Semaphores in bus controller services to protect simultaneous access of scheduled I/O chain linked list
- Timers and synchronous real-time signals in tasks to perform scheduling of I/O
- Retained VxWorks native specific calls
 - Tasking
 - Interrupts
 - System set-up
POSIX Lessons Learned

- Execution times of POSIX and VxWorks features are similar
- POSIX features were easy to employ and intermingle with native features within VxWorks
- VxWorks POSIX is not complete; it doesn’t support POSIX threads
- For future projects, recommend that POSIX options be used wherever possible
 - Utilize any individual native OS calls where needed for additional functionality or increased efficiency.
Data Fusion Integrity Process

- Wright Lab’s / TASC DFIP algorithm provides detection, limiting and recovery from intermittent data errors
- Ada95 DFIP filter was applied to four Ballistics input data channels and the Weapon Range output
 - Filter can be used to stabilize CCIP solution
- Typical results when applied to Weapon Range output, given input data drop-outs:
DFIP Evaluation

- Performance was tested in AV-8B Flight Simulator
 - Short-duration (induced) data drop-outs were managed
 - Longer-term drop-outs and highly dynamic valid data would require a compromise design
 - Matrix style filters are expensive with respect to memory and execution time
 - Execution time for five channels was approximately 1 MSec
- Current algorithm requires further refinement to add value to Boeing’s ballistics applications
 - Short-term drop-outs not seen in simulators, rarely in flight
 - Other protection methods are already in place in fleet OFPs
Ballistic Algorithm Design

Re-engineered F-15 Runge-Kutta Ballistics Algorithm (BA) from Ada83 to Object Oriented Ada95

- Employed Rational Rose design tool and OO methodology
- Higher performance processor allowed improvements to the accuracy of the Ballistics solution over AV-8B
 - Position differential equation solved
 - Velocity differential equation solved
 - Throughput available to run 30 steps rather than 10, 3D rather than 2D
 - Trajectory completed in one frame at 20 Hz
 - Step size picked every trajectory step
 - Last step adjusted to complete trajectory at target elevation
Ada95 Feature Usage

- Tagged types - including extension of tagged type
- Abstract types and functions
- Aliased types
- Access-to-constant types
- Reused legacy Ada83 generics for vector operators
Ada 95 Annex Feature Usage

- Annex A - Predefined Language Environment (Numerics)
 - package Ada.Numerics.Long_Elementary_Functions
- Annex B - Interfaces to Other Languages
 - pragma Import and Export
 - package Interfaces.C
- Annex C - Systems Programming
 - pragma Preelaborate
 - Machine Code Insertion - used in Timing builds only
- Ada not the Main Program
 - Ada95 components were called from a C++ main program
• Encountered very smooth language transition for experienced Ada83 engineers
 • New object oriented features are a natural extension to the language
• Learning OO design methodology can be difficult, especially for structured top-down programmers
• Good training leads to success - Designers attended AJPO’s Transitioning to Ada95 course (Ada95 for Ada83 Programmers & Embedded / Real-Time Programming)
Features for mixed language support were easy to implement

- Interfacing to C software was simple with the new Ada95 features
- Interfacing to C++ was more difficult since C++ is not standardized, and so no package Interfaces.Cpp exists yet.

Ada95 is very portable

- OSAT OFP Ada95 components were run on Sun Workstation (Rational), PC/ Pentium Workstation (Object Ada), Motorola PowerPC Card (Green Hills), DY-4 PowerPC Card, and the CDInt MC PowerPC Card
- Conversion of Ada83 software to use Ada95 compiler (without re-engineering) was relatively simple
- Changes were isolated to low-level design areas such as processor-dependent data formats
Conclusions

OSAT demonstrated Ada95 and OO methodology in a flight-worthy avionics application.

The demonstration included an application of POSIX with a COTS real-time operating systems.

Multi-language OFP components were combined and reused, demonstrating the capability of COTS tools, OO architecture and wrappers (adapters).

The DFIP Algorithm was implemented and evaluated in a flight-worthy application.

A commercial processor and board support package was flown in an avionics Mission Computer.

The performance of the prototype MC and software in flight test was equivalent to AV-8B fleet performance.