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Abstract 

Direction of Arrival (DOA) estimation of signals has been a popular 

research area in Signal Processing.  DOA estimation also has a significant role in 

the object location process of Passive Coherent Location (PCL) systems.  PCL 

systems have been in open literature since 1986 and their applications are not as 

clearly understood as the DOA estimation problem.  However, they are the focus 

of many current research efforts and show much promise.  

The purpose of this research is to analyze the DOA estimation errors in a 

PCL system.  The performance of DOA estimators is studied using the Cramer-

Rao Bound (CRB) Theorem.   The CRB provides a lower bound on the variance of 

unbiased DOA estimators.   Since variance is a desirable property for measuring 

the accuracy of an estimator, the CRB gives a good indication about the 

performance of an estimator. 

Previous DOA estimators configured with array antennas used the array 

antenna manifold, or the properties of the array antenna structure, to estimate 

signal DOA.  Conventional DOA estimators use arbitrary signal (AS) structures.  

Constant Modulus (CM) DOA estimators restrict the input signals to a family of 

constant envelope signals, and when there are multiple signals in the 

environment, CM DOA estimators are able to separate signals from each other 
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using the CM signal property.  CM estimators then estimate the DOA for each 

signal individually.  

This research compares the CRB for AS and CM DOA estimators for a 

selected system.  The CRB is also computed for this system when single, multiple 

and moving objects are present.  The CRBAS and CRBCM are found to be different 

for the multiple signal case and moving object cases. 
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STATISTICAL ERROR ANALYSIS OF A DOA 
ESTIMATOR FOR A PCL SYSTEM USING THE 

CRAMER-RAO BOUND THEOREM 

1 .  INTRODUCTION 

1.1  Background 

The leading countries in history, the super powers of their own time, have 

always showed great interest in scientific research and development and its 

applications in military matters.  The lifetime of their superiority was related to 

how long they were able to maintain their position as scientific leaders.   

Political uncertainties before WWII sent a message of the upcoming 

conflict and every nation was aware that there were going to be many firsts 

during this war, like the first use of the Radio Detection and Ranging (RADAR) 

systems.  After airpower entered the warfare arena, early detection of airborne 

objects became of great interest, due to the importance of quick reaction against 

enemy airpower [1].  In the last century there have been numerous research and 

development efforts in different aspects of radar systems, causing the “lose sight, 

lose fight” concept to go Beyond Visual Range (BVR) of human eye.  Today, there 

are many different types of radar systems for many different purposes and uses. 

Passive Coherent Location (PCL) and the related terms are explained in 

Chapter 2 but basically it can be thought as a passive radar system which is 

composed of only a receiver unit.  Most of the conventional radar concepts still 

apply to PCL because the illumination of the object still takes place; not by a 
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transmitter which is designed for this purpose but by a transmitter that is 

already in that environment.  Advantages and disadvantages of PCL systems are 

discussed in Chapter 2. 

 

1.2   Problem Statement 

Monostatsic radars follow the generalizations and equations that are 

applicable to bistatic radar.  Monostatic object location errors are functions of 

transmitted pulse width, antenna half power beam width, and signal-to-noise 

ratio [2].   

There are inherent errors in object location caused by bistatic geometry in 

addition to the errors that are caused in monostatic radars.  The most basic 

system architecture scenario of a PCL system is the bistatic case, which is 

illustrated in Figure 1.  θT is the transmit angle and is the angle from the reference 

direction to the line between the transmitter and the object, and θR is the receive 

angle and is the angle from the reference direction to the line between the receiver 

and the object.  Object location errors that apply to monostatic radars also apply 

to bistatic radars but object location errors in bistatic radars have additional 

dependence on the receive angle, θR [3]. 
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Figure 1.  Transmit and Receive Angles (θT, θR).   

To demonstrate the dependence of object location errors on the receive 

angle θR, let’s introduce a basic object location technique for a bistatic system 

from [3].  Measuring the total range from the transmitter to object (RT) and from 

the object to receiver (RR) places the object on an isorange ellipsoid as shown in 

Figure 2.  The range from the transmitter to an arbitrary point on this isorange 

ellipsoid plus the range from the same point to the receiver is the Range Sum 

(RT+RR).  This range sum is constant for all points on an isorange ellipsoid.  The 

foci points of the ellipsoid are the locations of the receiver and the transmitter 

sites.   

 

Figure 2.  Isorange Ellipsoid. 
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Given range sum (RT+RR) and receive angle (θR), RR is calculated by: 

( )
( )( )

2 2
T R

R
T R R

R  + R - L
R

2 R  + R + L sin θ
=  (1) 

where L is the baseline distance.  The object is declared to be at range RR and its 

direction is determined via θR. 

 

Figure 3.  Isorange Ellipsoids and increasing contribution of same amount of 

DOA estimation error to object location with the increase in range sum. 

 

There are many object location methods in PCL systems, with each based 

on different object measurements.  The most basic object location technique is 

done by range sum measurement and DOA estimation.  In Figure 3 two different 

isorange ellipsoids are shown for two different range sums.  DOA estimation 

helps us determine on which point of the isorange ellipsoid the object is located.  

Figure 3 illustrates that for smaller range sums the error in DOA estimation has a 

smaller contribution to object location errors and as the object range increases the 
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same amount of angular error in DOA estimation leads to an increase in object 

location errors.  When the estimated object direction is off from true object 

direction by some error then the spatial error in object location can be 

represented by RX1 and RX2, assuming that range sum is measured correctly.  RX1 

and RX2 in Figure 3 are cross-range values and they demonstrate the increasing 

contribution of same amount of DOA estimation error to object location with the 

increase in object range sum. 

In Figure 5, the root sum square errors are plotted versus receiver look 

angle (θR) for a bistatic system.  The contribution of different kinds of object 

location errors for different receive angles are clearly seen.  When the object is on 

the extended baseline shown in Figure 4 (the straight-line that passes through the 

transmitter and receiver, excluding the line segment between the transmitter and 

the receiver), transmit and receive angles are equal.  This means that when an 

object is on the extended baseline, θT which is equal to θR, and this causes the 

object location errors to converge to the monostatic case [3]. 

 

 

Figure 4.  Baseline, and extended baseline. 
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Figure 5.  Root Sum Square (RSS) of range sum, baseline, and receive angle errors 

for the following conditions: RT+RR =100km, baseline distance (L) = 10 km [3]. 

The receive angle, θR, is determined by Direction of Arrival (DOA) 

estimation.  As seen in Figure 5, the receive angle errors have the greatest 

contribution to total object location error over a wide range of receive angles.  As 

the receive angle approaches +/- 90°, the contribution of receive angle error to 

total object location error is less than other errors.  Section 1.5 introduces the 

system used in this thesis and the antenna is chosen to be an array antenna.  Due 

to array antenna characteristics, reception using the array antenna is chosen to be 

in the approximate region from -70° to 70°.  This region is where receive angle 

has the greatest contribution to total object location errors.   
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Keeping in mind the content of Figure 3 and Figure 5, clearly any increase 

in DOA estimation accuracy (receive angle estimation) leads to more accurate 

results in object location.  The curves in Figure 5 are obtained by applying the 

root sum square (RSS) concept on bistatic object location technique.  It is 

important to note that object location is not determined in this fashion for all PCL 

systems.  However, these figures effectively illustrate the importance of accuracy 

in DOA estimation for a more precise estimate of object location.  Since DOA 

estimation plays a major role in object location of PCL systems, the accuracy of 

DOA estimation is the primary emphasis of this thesis. 

 

1.3 Scope 

Error analysis of PCL systems is a very broad research area.  There are 

electromagnetic based issues, signal processing based issues, hardware related 

issues, software related issues, etc.  This thesis focuses on the signal processing 

side of the problem and performs statistical error analysis.  As mentioned above, 

this analysis is performed on the most essential part of object location, the DOA 

estimation. 

The problem is considered in two-dimensions (object altitudes are 

ignored).  When the problem is reduced to two-dimensions, the ellipsoids in 

three-dimensional cases become ellipses in two-dimensional scenarios.  All 

objects are at zero altitude and the DOA estimation problem is in azimuth only. 
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1.4 Approach/Methodology 

Different statistical approaches in spectral estimation have introduced 

different algorithms in signal processing for estimating signal DOA.  The 

performance of these algorithms is commonly measured using the variance of 

the DOA estimate.  The Cramer-Rao Bound (CRB) is a statistical theorem that 

places a lower bound on this variance for any unbiased estimator, given the 

probability density function of the error is the same among those estimators [4, 

5].   

DOA estimation of different signals using an array antenna has become a 

common approach.  Most algorithms such as Multiple Signal Characterization 

(MUSIC), Maximum Likelihood Estimation (MLE) [6] and Conventional Beam 

Forming (CBF) use the properties of array antennas or their structure and have 

the same statistical error probability distribution function.  This is explained in 

more detail in Chapter 3. 

Improvements in spectral estimation enabled the use of signal properties 

in DOA estimation, in addition to, the array manifold or properties of the array 

structure.  In [7] an algorithm for Constant Modulus (CM) signals has been 

introduced (signals with constant envelope using phase or frequency 

modulation).  An Algebraic Constant Modulus Algorithm (ACMA) uses the 

constant modulus property of signals and makes a source separation among 

signals having the CM property; the DOA estimation problem is decoupled in 
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multiple object scenarios, which is usually the case in real-world applications.  

The CM DOA estimators have a different CRB and this is explained in Chapter 3. 

This thesis discusses the derivation and calculation of the CRB for 

estimators using common algorithms over a wider class of signals (arbitrary 

signals) and the CRB for estimators using CM algorithms (CM signals).  

Therefore, to make a distinction between the two, the CRB for Arbitrary Signals 

(AS) is denoted as CRBAS and the CRB for Constant Modulus (CM) signals is 

denoted as CRBCM. 

The difference in the CRB of arbitrary signals and CM signals is 

demonstrated by calculating the CRB for different scenarios.  The correlation of 

incoming signals is taken into account throughout the calculations.  Changes in 

the CRB with respect to the correlation level of the signals is shown for CRBAS. 

    

1.5  System Description  

The CRB is directly related to a system architecture; thus, a basic system 

model is established for calculating the CRB.  Since all the algorithms mentioned 

above use array antennas, the model consists of an Uniform Linear Array (ULA) 

antenna with 16 elements and element spacing of λ/2.  In each Coherent 

Processing Interval (CPI), 512 realizations (snap shots) are considered.   
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1.6 Assumptions 

To make some approximations and simplify the problem at hand, this 

research is based on the following assumptions: 

• This research assumes the interfering noise e(t) is circular Gaussian 

distributed white noise with zero mean (E[e(t)]=0) and E[e(t)eH(t)] = σI, 

where e(t) is a noise vector and I is the identity matrix.  This is a 

reasonable assumption to model the noise in the environment. 

• Objects are at zero altitude and DOA estimation is performed in azimuth 

only.  This assumption simplifies the problem being faced in the real 

world.  Therefore, the results obtained using this assumption form a 

baseline to extend the results to the real world scenarios.   

• Object SNR remains constant during a Coherent Processing Interval (CPI).   

This is a reasonable assumption.   

• Signal DOA remains constant during a CPI.  This is a reasonable 

assumption because the real-world objects can be maneuvering objects.  

But it is a good starting point. 

• The antenna is calibrated so that the array response for each DOA is 

known.  This is a good assumption and is consistent with real-world 

applications. 

• When calculating CRBCM, all signals are assumed to be CM signals. 
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• Object ranges are assumed to be far enough for the signal wave fronts to 

be considered as plane waves.  This is a reasonable assumption since this 

is usually the case in radar application due to the desired object detection 

ranges. 
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2 .  BACKGROUND 

The purpose of this chapter is to explain the Passive Coherent Location 

(PCL) system and its related issues.  The basic terms related to PCL are explained 

thoroughly, and the position of a PCL system in today’s Radar world is made 

clear.   

Therefore, this chapter first discusses developments in radar, during 

which basic concepts that are needed for a good understanding of a PCL system 

are introduced.  Second, the PCL system is explained, including PCL system 

definition, operation, characteristics, and advantages and disadvantages in both 

general and military applications.  Next, the Cramer Rao Lower Bound Theorem 

is explained.  Finally, phased array antennas are introduced because of the need 

to establish a basic understanding of the “big picture” of system description and 

system operation. 

 

2.1  Development of RADAR and Basic Terms 

When Radio Detection and Ranging (RADAR) systems are the topic, the 

detection of aircraft or airborne objects is the typical consideration.  However, 

when radar was first developed the primary objects were typically naval vessels.  

After Hertz showed that radio waves could be reflected from metallic objects, 

and formed the basis for the concept of radar [8], Hulsmeyer built the first 
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operational radar in 1904 to detect ships [9]. Hulsmeyer’s radar was monostatic 

(collocated receiving and transmitting sites).   

Some coincidences also contributed to the development of radar.  In 1922, 

Taylor and Young detected a change in the signal as a ship passed between a 

transmitter and receiver located on opposite sides of a river [10].  This example 

from history is completely compatible with today’s Continuous Wave (CW) radar.  

CW Radars transmit continuously and receive while transmitting [1].  Although 

it is possible to build a CW radar with a collocated receiver and transmitter, CW 

radar applications are much easier to implement with a bistatic design than the 

monostatic design.   

In the very early stages of radar development, detecting ships by radar 

was the primary concern because unlike the aircraft of that time, ships were 

made of metal.  It wasn’t until the late 1920’s that aircraft manufacturers changed 

aircraft designs and started using metal on the fuselage and the wings (versus a 

wooden structure with fabric redundant cover) [1].  After this change in aviation 

design, detection of aircraft by radar became possible.  Each country began 

showing interest in military radar applications for aircraft detection because of 

the political imbalance, which lead the world into the Second World War (WW 

II).  The revolution in technology changed the tactics of war that would be 

fought.  Meanwhile, aviation as a military power became of primary importance.  

These reasons caused radar advancement to exceed a natural development line 

and drew a great deal of attention to this field. 
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In bistatic radars, the transmitter and the receiver are separated, but the 

distance between the transmitter and the receiver is known (Figure 6).  The 

distance between the transmitter and the receiver sites is called the baseline 

distance (L); requirements on the length of the baseline distance are vague in most 

texts.  The IEEE description of bistatic radar also does not completely describe 

this baseline distance [3].  Skolnik provides better explanation; he argues that the 

distance should change relative to the object distance.  A baseline can be 

relatively small for objects that are close in range.  On the other hand it must be 

larger for the long-range objects.  A different way of describing this baseline 

requirement is the need for two different electromagnetic paths for the 

propagation of the transmitted signal from transmitter to the object and 

propagation of the object echo from the object to the receiver [11]. 

Bistatic angle (β) is equal to the difference between the transmit and the 

receive angles θT and θR.  θT and θR are defined in Section 1.2. 

 

 

Monostatic radar can be considered as a special case of bistatic radar with 

RT equal to RR, θT equal to θR, and L = 0.  Since θT equals θR, β is equal to zero in 

monostatic radar.  In bistatic radar applications, the bistatic angle becomes zero 

as the object approaches the extended baseline; this is called over the shoulder 

operation.   

 

 θ - θ  β RT=  (2) 
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Figure 6.  Bistatic Geometry and Bistatic Angle (β). 

 

Most of the earliest radars were bistatic.  In some early applications, 

systems were built to detect objects on the baseline between the transmitter and 

the receiver.  This special case is called the forward scatter case (or forward scatter 

geometry).  In a forward scatter case, the object echo, which is scattered forward 

from the object towards the receiver, is of interest rather than the object echo that 

is reflected back towards the transmitter.  Initially, bistatic radars that could 

detect objects crossing the baseline using the forward scatter from the objects 

were developed, and they were called forward scatter fences.  Japan, the Soviet 

Union, and France had approximately 200 of these forward scatter fences before 

and during WW II [3].  After forward scatter fences, use of bistatic radar was 

extended out of the baseline area.  The Klein Heidelberg device, the first bistatic-

of-opportunity system, was used by Germans in WW II [12].   
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Object detection and location is a much more complicated task in bistatic 

radars, as compared to monostatic radars.  Thus, upon the invention of the 

duplexer, a device enabling the use of a single antenna for both transmission and 

reception by avoiding transmitter and receiver interference, monostatic radars 

gained greater popularity over bistatic radars, especially after WW II [13].  This 

lead to a drastic reduction in bistatic radar research. 

Bistatic radar establishes a basic understanding for multistatic radars.  

When more than one receiver or more than one transmitter is used for object 

detection, and object detection is done coherently by establishing a network 

between the receiver sites, the system established is called a multistatic system [2].  

Each transmitter and receiver pair of a multistatic system is a bistatic system.  

Creating a network of these basic bistatic elements turns these separate bistatic 

systems into a multistatic system.   

Each radar measurement from a different transmitter-receiver pair (or 

basic bistatic element) is sent to a central station where data processing is 

performed.  There is a natural trade-off between the coverage area of the 

multistatic system and the object estimates.  Creating a larger common coverage 

area of the bistatic elements of a multistatic system can enhance object estimates, 

but this reduces the total coverage area of the multistatic system.  If a wider 

coverage area is desired, then the basic bistatic elements must be spread apart, 

thus reducing the common coverage area.  This in turn degrades the object 

estimation [3]. 
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2.2  Passive Coherent Location System 

There was a turn-around on the reduction of bistatic radar research 

around 1980s.  Some applications of bistatic radar became really popular, e.g., 

semi-active missiles.  Improvements in destroying enemy radars lead to the 

development of anti-radiation missiles (ARM).  Bistatic radars are less susceptible 

to ARMs by locating the receiver close to the Forward Edge of Battle Area 

(FEBA) and the transmitter further away in a more secure environment, well out 

of ARMs reach.  Basically in some scenarios bistatic radars have advantages over 

monostatic radars.  This realization made the bistatic radars an interesting 

research topic once again.   

Bistatic radars use regular radar transmitters designed for radar 

applications.  As the researches on bistatic radars kept going new ideas such as 

using different transmitters were considered and that is how idea of Passive 

Coherent Location (PCL) was born.   

PCL systems use ambient radio waves as a source of illumination in order 

to detect and track objects.   The most common type of radio waves, available all 

around the world for this purpose, are television and FM radio broadcasts, even 

though they might differ somewhat from one country to another.  A PCL system 

can be either multistatic or bistatic, depending on the kind of network and 

number of transmitters and receivers used in the system.  The most basic form of 

a PCL system is the bistatic case when only one transmitter and receiver are used 
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for object detection and tracking [2].  Figure 7 shows the basic architecture of a 

PCL system. 

2.2.1  Types of PCL 

There are three types of PCL systems, classified with respect to the kinds 

of signal that they utilize to obtain object estimations.  These are Narrow band 

PCL, Wide band PCL, and Pulsed PCL [14].   

 Narrow band PCL uses the narrow video carrier or audio carrier portion of 

a TV waveform where most of the signal energy is contained.  This type of PCL 

enables Doppler and/or DOA measurements. 

 Wide band PCL uses the modulation spectrum of an FM waveform, which 

has a broader band.  The methods used in Wide band PCL enable range and/or 

DOA measurements.  In some cases Doppler measurements are also obtained. 

 Pulsed PCL system uses pulsed waveforms from pulsed radars. 

2.2.2  System Operation 

Most PCL systems receive a direct signal from the transmitter and another 

signal scattered from the object.  Thus the correlation between the scattered 

signal from the object and direct (reference) signal will give the object’s range 

estimate.  If the reference signal is distorted by any means, this will present some 

deviation from the original object information.  As Howland states in [2], 

“Accurate bearing information can be obtained using two or more antennas, 

using techniques such as phase interferometry, amplitude monopulse, 

conventional beam forming, and super resolution.”  
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There are times when the direct signal from the transmitter interferes with 

the beam looking in the object direction and the receiving object information.  

When this occurs one of the simplest methods to get rid of this direct signal 

interference is to use the reference signal to cancel it out.  The Adaptive beam 

forming technique can be used to null out most interference that might be 

encountered [15]. 

 

Figure 7.  PCL System. 

2.2.3  Characteristics of PCL 

PCL is called a “coherent” system because it uses both the phase and the 

amplitude of the received waveform to obtain object estimates.  PCL measures 

range, Doppler, and DOA parameters of the object when bistatic architecture is 
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used.  In Multistatic cases, Time Difference of Arrival (TDOA) and Differential 

Doppler measurements are also of interest [2].   

A PCL system uses a non-cooperative transmitter, which means the 

system has no control of the transmitter.  Thus, these transmitters are also called 

transmitters of opportunity.  A system can be designed to use different 

waveforms, but it is restricted to use whichever waveform exists in its 

environment. 

Because PCL is bistatic, the transmitter and the receiver must both have 

clear line of sight (LOS) to the object.  This requirement has to be taken into 

consideration for the system deployment.  Because there is no control on the 

transmitter of opportunity, a receiver must be placed to satisfy this requirement. 

Since PCL uses TV and FM radio broadcasts, which are not designed for 

radar processing purposes, these waveforms have poor radar ambiguity function 

[14].  For that reason, a PCL system must use a non-linear estimation or 

optimization algorithm to resolve object range, bearing, heading and velocity, as 

opposed to conventional radars [16]. 

A PCL system differs from a conventional monostatic radar system by the 

frequency spectrum it uses, and its bistatic or multistatic geometry [14].   

Multistatic geometry enables additional object data, and as a result of this much 

more accurate object location estimates can be performed.  A PCL system must 

operate in VHF and/or UHF frequency range in units of MHz; this is the 

frequency range used for all TV and FM radio transmissions.  Most conventional 
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radars operate in the GHz range.  Therefore, processing techniques that are used 

with today’s conventional radar must be modified; this is an arduous task, which 

can be done only by the extensive use of digital processing.   

2.2.4  Advantages of PCL 

PCL is potentially a low cost system.  It uses transmitters of opportunity 

as sources of illumination; the radiation sources are already out there in the 

environment.  This saves PCL users the money that will be spent on the 

transmitter [16].  On the other hand, the receiver must be more complex than 

conventional radar to compensate for operating on a “free” transmitter, but all of 

the modifications can be done in software.  The hardware requirements for the 

PCL system are the same as the equipment contained in the receiver unit of 

conventional radar; however, this equipment has to be designed to operate in the 

frequency spectrum that PCL uses. 

Therefore, emphasis is on the software in PCL systems.  Software does the 

correlation between the reference signal and the scattered signal to estimate the 

range, the Doppler processing, and the digital beam forming.  The future 

improvements of the system seem to be in more robust software rather than new 

hardware requirements.  The possible mid-life upgrade on a PCL system will 

most probably be cost effective. 

The frequency separation among PCL systems is not as big an issue as it is 

in conventional radars [2].  Conventional radars are designed to transmit and 

receive at one or more frequencies.  Today there are numerous radar designs, 
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and most of these radars are likely to have the same operating frequencies, thus 

causing an interference problem among radars using similar frequency ranges.  

This is not the case in PCL.  VHF and UHF frequencies have many users with 

frequency allocation for each user; more than one PCL receiver can operate out of 

the same transmitter in multistatic cases.  The interference problems in PCL 

occur by the reception of a different transmitter or scattering of different 

transmitter broadcasts from different objects operating at the same frequency.  

Once a PCL system is deployed to an area, and its set-up is complete, these kinds 

of interferences can be experienced.  Appropriate receiver placement to exploit 

the terrain can be used to prevent interfering transmitter broadcasts, but object 

returns from these transmitter signals are harder to eliminate.  These returns 

must be compensated for in the software.   

2.2.5 Disadvantages of PCL 

The most essential disadvantage of a PCL system is having no control 

over the transmitting site.  This can be considered in two ways.  The first is 

having no physical control over the transmitter: when to transmit, etc.  The 

second is having no control on the transmission: the broadcast frequency, 

average power, the transmitted waveform, etc.  Since commercial broadcasts are 

not designed for radar processing, they have a poor ambiguity function.   

Other disadvantages are caused by the bistatic nature of the system.  In 

order to detect an object in a surveillance region both the transmitter and the 
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receiver must have line of site to the desired surveillance region.  When terrain is 

a factor this might cause severe limitations for low altitude objects. 

There are also some limitations on the PCL antenna.  Small antenna size is 

preferred due to the efforts of making the system low cost, mobile, and difficult 

to detect.  The trade off for a smaller antenna size is reduced detection range, 

besides a degraded spatial resolution. 

Some PCL receivers have very high receiver noise figures.  This reduces 

thermal noise-limited detection ranges usually by a factor of two, or even more.  

Interference of Galactic noise is one of the reasons for this reduction.  In [1], 

Skolnik uses the term cosmic noise instead of Galactic noise, and describes it as a 

continuous background caused by electromagnetic radiations from 

extraterrestrial sources in our own galaxy, extragalactic sources, and radio stars.  

Galactic noise decreases with increasing frequency.  Hence, it is negligible at 

frequencies above UHF.  However, the frequency range of most PCL systems is 

still affected by the Galactic noise; this contributes to the increased noise figure of 

the PCL receivers.  Having other transmitters, or the original transmitter of 

opportunity in the surveillance region can also contribute to the higher noise 

figure in PCL receivers [14]. 

After giving the definition to PCL, mentioning its characteristics, 

advantages, and disadvantages now it is time to touch on the CRB theorem 

which is used in this thesis for characterizing the general performance of the 

DOA estimators used for PCL purposes. 
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2.3  Cramer-Rao Lower Bound (CRLB, CRB) 

The analysis of DOA estimation uses the statistical technique Cramer-Rao 

Bound (CRB), which determines the best achievable estimate using the lower 

bound on the error variance.  Therefore, the statistics of the measurement errors 

must be known or modeled. 

In this research the Fisher information matrix depends on the likelihood 

function, which is expressed in terms of variance of errors in the each phase 

measurement of all the array antenna elements, σ.  Therefore, when the Fisher 

matrix is inverted, the result of the CRB is a function of the measurement error 

variance, σ.   

For this reason, CRB enables the evaluation criteria for the marginal 

measurement errors. From that point, accuracy of an estimate of an object’s 

direction can be determined depending upon measurement errors and the 

original direction of the object.   

When a parameter is being estimated, the properties of the estimator –

such as variance, or bias- are usually of great concern.  Greater insight for the 

estimator provides better insight about the actual estimate of the parameter of 

interest, in particular the reliability and accuracy of the estimate.  More detailed 

discussion on these terms is available in [4, 5]. 
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2.3.1  Unbiased Estimators 

If the expected value of the estimator output is the true value of the 

parameter of interest then this estimator is unbiased.  Mathematically an estimator 

θ
^

 is unbiased if:  

ˆE θ =θ,     a<θ<b 
   (3) 

where θ is the unknown parameter, (a,b) is the range of possible values for θ, θ
^

 is 

an estimator for the parameter θ, and E[.] is the expected value operator. 

2.3.2 Minimum Variance Unbiased (MVUB) Estimator 

Trying to design or select an estimator from a family of estimators is 

difficult.  Because of this some criteria are needed to compare how optimal each 

estimator is.  Mean Square Error (MSE) between the estimate θ
^

 and the true value 

θ is one of them and it is defined as: 

( ) ( )2ˆ ˆmse θ  = E   θ - θ   
  

 (4) 

MSE can also be rewritten as: 

( ) ( ) ( ) 2
ˆ ˆ ˆ ˆmse θ   E    θ -E  θ     E  θ   - θ       = +       

 (5) 

( ) ( ){ } ( )( ) ( )2 2

ˆ ˆθ θ
ˆ ˆ ˆ ˆ ˆmse θ   E   θ -E  θ    2 E  θ   µ E  θ   θ   µ  - θ       = + − − +       

 

 (6) 

( ) ( ) ( )2ˆ ˆ ˆmse θ    var θ   bias θ= +  (7) 
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where 
θ̂

ˆµ E θ =   .  

Since 
θ̂

ˆµ -E θ =0 
  , the whole second term in Equation (6) goes to zero and 

the remaining part can be written as a function of the variance and the bias of the 

estimator.   

In an unbiased estimator, the bias2(θ
^

) term in Equation (7) is zero.  In this 

case, MSE is only a function of the variance and is minimized by minimizing the 

variance for the unbiased estimators. 

In order to test whether an estimator is unbiased or not, its expected value 

is checked.  If the expected value of an estimator is equal to the unknown 

parameter θ, then this estimator is unbiased as in Section 2.3.1. The discussion of 

Minimum Variance (MV) is restricted to the class of unbiased estimators. 

 

(a) (b) 

Figure 8.  Minimum Variance Estimators [4]. 

Figure 8a shows the variance of three different unbiased estimators.  Since 

estimator θ
^

3 has the lowest variance for all θ in Figure 8a, it is the MV estimator.  

On the other hand in Figure 8b θ
^

3 is the MV estimator when θ<a and θ>b, and θ
^

2 
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is the MV estimator when a < θ < b.  In this case, there is no single MV estimator 

for all θ. 

A Minimum Variance Unbiased (MVUB) estimator is an unbiased estimator 

that has the minimum variance for all the unknown parameter θ.  Sometimes no 

MVUB estimator can be found in the search for an estimator.  MVUB estimators 

do not always exist.  The MSE of an MVUB estimator is equal to its variance. 

2.3.3  Likelihood, Log-likelihood, and Score Functions 

Observed data enables the estimation of the unknown parameter.  Since 

observed data is dependent on the pdf of the data, estimation starts with the 

determination of the pdf for that data.  If the pdf of the observed data is 

independent of the desired parameter, then that parameter cannot be estimated 

using that set of data.  The pdf of a random variable X parameterized by the 

unknown parameter θ is denoted as fθ(X).   

A simple example makes it easier to understand this concept.  Let x be the 

observed or measured data, n be additive white gaussian noise with zero mean 

and variance σ2, and θ be the unknown parameter.  The relation between these 

terms are formulized as 

[ ] [ ]tn  ψ  tx += . 

In this case a good estimator for θ is θ
^

 = x[t].  Since E{θ
^

} = E{x[t]} = θ, θ
^

 is an 

unbiased estimator.  Its variance is σ2 and the accuracy of the estimator gets 

better as σ2 decreases and the pdf is  ( ) ( ) 



 −−= 2

22ψ ψx[t]
2σ

1exp 
 σ 2π

1  xf . 
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“When the pdf is viewed as a function of the unknown parameter (with x -

the data- fixed) it is termed the Likelihood Function” [4].  Since X is a random 

variable the change in X is random.  Fixing X is done via inputting a set of 

observation data to the joint pdf of X and θ (fθ(X)).  x
^

 is denoted as the observed 

data and the mathematical representation of the likelihood function is: 

( ) ( )θ
ˆ ˆl θ,X   f X=  (8) 

and the Log-Likelihood Function is simply the natural log of the likelihood 

function: 

( ) ( ) ( )θ
ˆ ˆ ˆL θ,X  = ln l θ,X  = ln  f X     

    . (9) 

Differentiating the log-likelihood function with respect to θ gives the score 

function [5], whose mathematical representation is 

( ) ( ) ( )ˆ ˆ ˆs θ,X  = L θ,X  = ln l θ,X
θ θ
∂ ∂  

 ∂ ∂
 (10) 

The maximum likelihood estimate (MLE) of θ
^

 is found by setting the score 

function equal to zero and solving for θ
^

.   

( )ˆ ˆs θ,X  = 0  (11) 

This is equivalent to finding the maximum of ( )θ
ˆ f X . 

Using x instead of x
^

, which represents the observed data is usually done 

for notational convenience and this notation is also used in this thesis. 
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2.3.4  Cramer-Rao Bound Theorem 

The Cramer-Rao Bound is a lower bound on the covariance matrix of any 

unbiased estimator of parameter θ.  Thus, no unbiased estimator can exist whose 

variance is lower than the CRB for each value that θ can take in the parameter 

space.  An unbiased estimator that attains the CRB is by definition the MVUB 

estimator.  Thus, the CRB is a great aid to determine if an unbiased estimator is 

the MVUB.  It sets a benchmark against which we can compare the performance 

of an unbiased estimator.    

As mentioned above, values of θ
^

 that makes the score function equal to 

zero are Maximum Likelihood (ML) estimates for θ.  The score function has mean 

zero; in [4] this is called the Regularity Condition and mathematically: 

( ) ( ) ( ) ( )( )θ θ θE s θ, E  ln f dx f  ln f
θ θ

              

∞

−∞

∂ ∂ = =    ∂ ∂  ∫X X X X  
 

( ) ( ) ( )( ) ( )θ θ θ
θ

1            dx f   f f  dx 1 0
f θ θ θ

∞ ∞

−∞ −∞

∂ ∂ ∂= = = =
∂ ∂ ∂∫ ∫X X X

X
 (12) 

 The Fisher Information Matrix ( J(θ) ) is the covariance matrix of the score 

function: 

( ) ( ) ( ) ( ) ( )T
θ θθ E s θ, s θ, E  ln f  ln f

θ θ

T ∂ ∂  = =     ∂ ∂   
J X X X X  (13) 

  

Some simplifications in (13) lead to another formula for the Fisher Information 

matrix [5]: 
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( ) ( )
T

θθ E   ln f
θ θ

 ∂ ∂ = −   ∂ ∂   
J X  (14) 

The individual elements of the Fisher Information matrix can be found by: 

( ) ( )

( )

ij θ θ
i j

2

θ
i j

J E  ln f  ln f
θ θ

      E -  ln f
θ θ

 ∂ ∂=  ∂ ∂  
 ∂=  ∂ ∂  

X X

X

 (15) 

The Cramer-Rao Bound theorem indicates that each diagonal element of 

the covariance matrix (Cθ
^

) of an unbiased estimator θ
^

 is greater than or equal to 

the corresponding element of the matrix obtained by inversing the Fisher 

Information matrix.  This also means that J(θ) has to be invertible.  That is, 

( )1
θ̂
  θ−≥C J  (16) 

The (i,i) element of Cθ
^

 is the mean-squared error of the θ
^

i estimate of the 

unknown parameter θi and the (i,i) element of J-1(θ) lower bounds it: 

( ) ( )θJθ-θEC 1
ii

2

θii

−≥



= ˆ

ˆ . (17) 

 An efficient estimator is an unbiased estimator whose covariance matrix is 

equal to the inverse of Fisher Information matrix [5]: 

( )1
θ̂
  θ−=C J . (18) 

Each efficient estimator is the MVUB estimator but the opposite is not 

true. 
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2.4  Phased Array Antennas 

Phased Array Antennas are mounted on a steady platform and their beam 

is steered electronically instead of moving the platform of the antenna to 

mechanically change the direction of the beam.  Controlling the phase difference 

of the radiating elements both at transmission and reception does the electronic 

steering (Figure 9).  Therefore in some literature these antennas are also called 

Electronically Steered Array Antennas (ESAs).   

[1, 17, 18, 19] present more detailed information on phased array 

antennas; here the relation between the phase delay between the radiating 

elements and the desired angle of transmission/reception is shown. 

 

Figure 9.  Phased Array Antenna [17]. 

In Figure 9, it can be seen that the radiating element in point A must lead 

the other radiating elements.  Each element leads the one that is located on its 
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right side (because of the way it is illustrated in Figure 9).  When all the elements 

of an array antenna are uniformly separated, this type of antenna is called 

Uniform Linear Array (ULA).  In a ULA the phase difference between any of the 

two elements located next to each other is the same.   

The total change in phase over a distance of one wavelength (λ) is 2π.   The 

ratio of 2π to λ gives the phase per unit distance.  Phase difference (∆Φ ) over a 

specific distance (∆R) is: 

2πΦ
λ

R∆ = ∆  (19) 

As can be seen from Figure 9, ∆R is equal to ( ) ( )αd1nR sin×−=∆ .  Substituting 

this into (19) yields: 

( ) ( )αd 1n
λ
π2∆Φ sin−×=  (20) 

where α is the angle off broadside of the antenna, the angle between the antenna 

broadside direction and the direction that the main beam is pointing at. 

∆Φ  is the total phase difference between the first and last elements.  

Element to element phase difference is the same between all the elements of a 

ULA and it can be calculated by (20) by substituting 2 for n.  Result of this is the 

phase difference between the first and the second elements, which is equal to the 

phase differences between all the adjacent elements. 

The phase differences calculated using the formulas above hold in theory 

but in real life this might not be the case.  The near field interaction of the 

radiating elements (also called mutual coupling of the elements) affects the 
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radiation pattern.  Therefore each antenna must be calibrated in order to steer the 

beam to the exact angle off the antenna broadside direction.   

 

2.5  Summary 

This chapter explained the terms required for a better understanding of 

PCL systems and discussed PCL characteristics, advantages, and disadvantages.  

The CRB theorem was discussed, and the use of array antennas in the DOA 

estimation applications was shown.  All of these sections mentioned above 

provide insight for the methodology outlined in Chapter 3. 
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3 .  METHODOLOGY 

As mentioned in Section 2.4 the phase differences between the elements 

under noise free conditions results with Equation (20).  But the noise measured 

along with the signals affects the measured phase differences between the array 

elements and therefore, additive noise contributing to the measurements causes 

the error in DOA estimation when using array antennas.  In order to determine 

the CRB for an estimator, the statistical distribution of the error or pdf of the 

interfering noise must be known.  If these statistics are unknown, then they must 

be modeled as accurately as possible. 

3.1 System Model  

As mentioned shortly in Chapter 1 a Uniform Linear Array (ULA) antenna 

is modeled whose element spacing is half a wavelength or λ/2.  The number of 

antenna elements is m =16; the number of realizations (or snap shots) N = 512.   n 

is the number of signals impinging on the antenna. 

 Figure 10 illustrates how the DOA angles are referenced throughout this 

thesis.  0° represent the antenna broadside direction; the angle is measured in a 

clockwise fashion, 90°represents a one quarter rotation to the right, while -90° is 

a rotation to the left.  Thus, -90° and 90° can also be referred as 90° left and 90° 

right. 
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Figure 10.  Direction of Arrival Angles with respect to the antenna.   

 

3.2  Derivation of CRB for Arbitrary Signals (CRBAS) 

Derivation of CRBAS for DOA follows [6].  Measured data can be modeled 

by, 

( ) ( ) ( ) ( ) N ,2, 1,        t tetx θty R =+= A  (21) 

where  

y(t) is a m-by-1 data vector including measurement noise,  

x(t) is a n-by-1 vector and its elements are signal amplitudes,  

e(t) is the m-by-1 noise vector, 

A is a m-by-n array response matrix, which is given by Equation (22).   

( ) ( ) ( )R R1 Rnθ a θ   a θ=   A  (22) 

Each a(θRi) in  Equation (22) is a steering vector of the ith signal and contains the 

phase delays of the corresponding elements; θR is a n-element receive angle 

(DOA) vector whose elements are real parameters [θR1, … , θRn]T.  One must be 

cautious with notation.  θ all by itself represents the unknown parameters,  as 
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mentioned in the definition of CRB in Section 2.3, and θR represents the DOA or 

receive angle. 

Figure 11 shows how additive noise affects the measured signal in one 

channel of the array.  The in-coming signal is corrupted by an in-phase (real part, 

e
_

i(t)) and quadrature (imaginary part, e
~

i(t)) component of the noise (ei(t) indicates 

the ith element of noise vector e(t)).  The resultant phase error is ψe which causes 

DOA estimates to deviate from the true value. 

 

Figure 11.  In Phase and Quadrature components of additive noise [16]. 

 

From Equation (21) e(t) can be written as in Equation (23): 

( ) ( ) ( )txtyte A−=  (23) 

In Section 1.6, each noise vector e(t) is assumed to have a circular Gaussian 

distribution with zero-mean and covariance σI.  (For more information on 

circular Gaussian distributions see [20]).  Therefore, random matrix Ec which is 

formed from N random vectors and given by Equation (24), is circular Gaussian 

distributed (subscript “c” denotes circular):  
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( ) ( ) ( )C   e 1 , e 2 ,  , e N  =   E  (24) 

Since ( ) ( ) ( )tejtete ~+=  and both e
_

(t) and e
~

(t) are real-valued, a real random matrix 

ER can be formed as in Equation (25), and each random vector, either e
_

(t) or e
~

(t) 

forming ER, has a Gaussian distribution with zero mean and covariance of (σ/2)I 

(subscript “R” denotes real):  

( ) ( ) ( ) ( ) ( ) ( )R  , e 1 , e 2 ,  , e N , e 1 , e 2 ,  , e N = =    E E E  (25) 

Since the real and the imaginary parts are statistically independent, the 

multidimensional Gaussian pdf [21] for the measured data y(t) is dependent on 

the set of unknown parameters θ and can be written as in Equation (26): 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

N N

θ
t=1 t=1

N N

θ θ
t=1 t=1

F P Y t   y t , θ     P Y t  + jY t     y t  + jy t , θ

          P Y t   y t ,  θ  P Y t   y t , θ F  F

= ≤ = ≤

= ≤ ≤ =

∏ ∏

∏ ∏

Y

Y Y
 

( ) ( ) ( ) ( ) ( ) ( )θ Y θ θ θ θ θY Yf  = F  = F  × F  = f  × f∇ ∇ ∇Y Y Y Y Y Y  

Since covariance matrix K is given as (σ/2)I for each y
_

(t) and y
~

(t), Equation (26) 

takes the form of: 

( ) ( ) ( ){ } ( ) ( )( ) ( ) ( )( )

( ) ( ){ } ( ) ( )( ) ( ) ( )( )

NNNm T-- -122
θ

t=1

NNNm T-- -122

t=1

1f = 2π det exp - y t - x t y t - x t
2

1         × 2π det exp - y t - x t y t - x t
2

 
 
 
 
 
 

∑

∑

Y K A K A

K A K A

 

(26) 
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( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
-Nm N NT T-Nm

θ
t=1 t=1

σ 1f = 2π exp - y t - x t y t - x t  + y t - x t y t - x t
2 σ

   
        

∑ ∑Y A A A A

 

( ) ( ) ( ) ( )( ) ( ) ( )( )
-Nm N H-Nm

θ
t=1

σ 1f  = 2π exp - y t - x t y t - x t
2 σ

  
  

   
∑Y A A  (27) 

The likelihood and log-likelihood functions simply become, 

( ) ( ) ( ) ( )
-Nm N

-Nm H

t=1

σ 1l θ, = 2π exp - e t e t
2 σ

  
  

   
∑Y  (28) 

( ) ( ){ } ( ) ( ) ( )
N

H

t=1

1L θ, =ln l θ, =const - Nm ln σ  - e t e t
σ∑Y Y  (29) 

where the vector of unknown parameters  θ =  [σ  ( )txT  ( )tx~T  θR]T.   

The derivation of CRBAS follows from [6].  The derivate of the log-

likelihood function L(θ,Y) is taken with respect to the unknown parameters σ, 

Tx (t) , Tx (t) , θR in Equations (30), (31), (32), and (33): 

( ) ( ) ( ) ( )∑
=

+−=
∂
∂=

N

1t

H
2 te te

σ
1

σ
mN ,θL

σ
σ,s YY  (30) 

 

( )( ) ( ) ( ) ( ) ( )[ ]
( ){ } N1k                                      ke

σ
2                 

keke
σ
1 ,θL

kx
,kxs

H

TH

,,ARe

AAYY

==

+=
∂

∂= ∗

 (31) 

  

( )( ) ( ) ( ) ( ) ( )[ ]
( ){ } N1k                                   ke

σ
2                 

kejkej
σ
1 ,θL

kx
kxs

H

TH

,,AIm

AAY~Y,~

==

+−=
∂

∂= ∗

 (32) 
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( ) ( ) ( ) ( )∑
= 








=
∂

∂=
N

1t Ri

H
H

Ri
Ri te

θd
dtx

σ
2,θL

θ
θs AReYY,  

n1i ,,=  

(33) 

Define new matrices, D and X as: 

( ) ( )[ ] ( ) ( )








==

Rn

Rn

R1

R1
RnR1 θd

θad
θd
θad

θdθd ,,,,D  

( ) ( )( )
( )

( )














==

tx            0 
         

 0            tx
txdiagt

n

1

X  

Using D and X, Equation (33) can be rewritten as: 

( ) ( ) ( ) ( ){ }∑
=

=
∂

∂=
N

1t

HH

R
R tet

σ
2,θL

θ
θs DXReYY,  (34) 

 

CRBAS is given by: 

( ) ( )[ ]{ } 1T1  ,θs,θsE
−− = YYJ  (35) 

where s(θ,Y) is called the score function, and J is the Fisher Information matrix as 

explained in Section 2.3.  The score function is given by Equation (10). 

 The derivation of the Fisher Information matrix is shown below.  The 

covariance of s(θ,Y) must be computed.  The first step is to compute the 

correlation of each unknown parameter with itself, and with the other unknown 

parameters. 
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( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
                 

se se te teE
σ
1te teE

σ
mN2

σ
Nm                  

te te
σ
1

σ
mNEσ,sE

N

1t

N

1s

HH
4

N

1t

H
32

22

2N

1t

H
2

2

∑∑∑

∑

= ==

=

+−=



















 +−=Y

 

Since ( ) ( )HE e t  e t =mσ    and e(t) independent of e(s) for all s≠t 

( ) ( ) ( ) ( ) ( )

2 2
H H

2

m σ               for t s
E e t  e t  e s  e s =

m m+1 σ     for t = s

 ≠    
 

(for proof see PRF 1 in Appendix A), E[s(σ,Y)2] takes the form of: 

( )[ ] ( ) ( )[ ] 222

22

2

22
2

σ
mN1mm1N

σ
Nm

σ
Nm2

σ
Nmσ,sE =++−+−=Y  (36) 

Using ( ) ( ) ( )H HE  e t  e t  e s = 0    (See Appendix A for proof), s(σ,Y) is 

uncorrelated with the other score functions for the remaining unknown 

parameters.   

To simplify the equations written below, transformations between the real 

and imaginary parts of different complex variables, which are given in Appendix 

A for all t and s, are used. 

( )( ) ( )( )TE s x k ,  s x p ,  Y Y  is found below using  (31). 

( )( ) ( )( ) ( ){ } ( ){ }
( ) ( ){ } ( ) ( ){ }( )

TT H *

T HH * H
2

2 2E s x k ,  s x p , =E Re e k Re e p
σ σ

4 1         = Re E e k  e p +Re E e k e p
2σ

       

      

Y Y A A

A A A A

 (37) 

( ) ( )TE e t  e s = 0    (38) 
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( ) ( )HE e t  e s = σ   I  (39) 

Substituting Equations (38) and(39) in Equation (37) leads to Equation (40). 

( )( ) ( )( )[ ] { } pk,
HT δ 

σ
2pxs kxsE AAReY,Y, =  (40) 

( )( ) ( )( )TE s x k , s x p ,  Y Y  is found in a similar manner from Equations (31), and 

(32). 

( )( ) ( )( )[ ] ( ){ } ( ){ }
( ) ( )[ ]{ } ( ) ( )[ ]{ }( ) pekeEpekeE

σ
2               

pe
σ
2ke

σ
2EpxskxsE

HHTH
2

THT

AAImAAIm

AImAReY,~Y,

−=





=

∗

∗

 (41) 

Substituting Equations (38) and(39) in Equation (41) leads to Equation (42). 

( )( ) ( )( )[ ] { } pk,
HT δ

σ
2pxskxsE AAImY,~Y, −=  (42) 

( )( ) ( )T
RE s x k , s θ ,  Y Y  is found below using Equations (31), and (34). 

( )( ) ( )[ ] ( ){ } ( ) ( ){ }

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }( )∑

∑

=

∗∗

=

∗∗

+=








=

N

1t

HHTH
2

N

1t

TH
2R

T

ttekeEttekeE
σ
2   

tteke
σ
4EθskxsE

DXAReXDARe

XDReAReY,Y,
 (43) 

Once again using Equations (38) and (39), Equation (43) simplifies to Equation 

(44). 

( )( ) ( )[ ] ( ){ }k
σ
2θskxsE H

2R
T DXAReY,Y, =  (44) 

( )( ) ( )( )TE s x k ,  s x k ,  Y Y , and ( )( ) ( )T
RE s x k ,  s θ ,  Y Y , which are 

obtained in the same manner  that  ( )( ) ( )( )TE s x k ,  s x k ,  Y Y , and 
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( )( ) ( )T
RE s x k ,  s θ ,  Y Y  are obtained in Equations (40), and (44), are given below 

in Equations (45), and (46).  

( )( ) ( )( )[ ] ( ) ( )[ ]{ } { } pk,
HTH

2
T δ

σ
2pekeE

σ
2pxskxsE AAReAAReY,~Y,~ ==  (45) 

( )( ) ( )[ ] ( ){ } ( ){ }k
σ
2k

σ
2θskxsE HTHH

R
T DXAImADXImY,Y,~ =−=  (46) 

( ) ( )T
R RE s θ ,  s θ ,  Y Y  is shown as the last step. 

( ) ( )[ ] ( ) ( ){ } ( ) ( ){ }

( ) ( ) ( )[ ] ( ){ } ( ) ( ) ( )[ ] ( ){ }( )∑∑

∑∑

= =

∗∗

= =

∗∗

+=








=

N

1t

N

1s

HHHTHH
2

N

1t

N

1s

THH
2R

T
R

sse teEtsse teEt
σ
2            

ssetet
σ
4Eθs θsE

DXDXReXDDXRe

XDReDXReY,Y,
 

Substituting Equations (38) and (39) leads to Equation (47). 

( ) ( )[ ] ( ) ( ){ }∑
=

=
N

1t

HH
R

T
R tt

σ
2θs θsE DXDXReY,Y,  (47) 

Now the complete Fisher Information matrix can be constructed: 

( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )
( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )

1

2
σ,

1 ,  1 ,     1 ,  1 ,

1 ,  1 ,     1 ,  1 ,

,  ,     ,  ,

,  ,     ,

0

1 ,  ,

1 ,  ,

0

T
R

T
R

E s

T T
E s x s x E s x s x

T T
E s x s x E s x s x

T T
E s x N s x N E s x N s x N

T
E s x N s x N E s x N

E s x s

E s x s

θ

θ
−

 
 

         
          

=
      
  

Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y

Y Y

Y Y

J

( ) ( )( )
( )( ) ( )
( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

 ,

T T
1 ,  ,     1 ,  , ,  ,   ,  ,

,  ,

,  ,

θ ,  θ ,

T
R

T
R

T
R R

T
s x N

T T
T T T TE s x s E s x s E s x N s E s x N sR R R R

E s x N s

E s x N s

E s sθ θ θ θ

θ

θ

 
 
 
 
 
 
 
 
    
        
 

                  

Y Y

Y Y Y Y Y Y Y Y

Y Y

Y Y

Y Y

 

(48) 

The following terms are introduced for notational convenience. 
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( ) ( ){ }

( )

( )k
σ
2

σ
2
mN
σσ

tt
σ
2

H
k

1

H

2

CR

N

1t

HH

DXA

HG

AAH

var

DXDXReΓ

=∆

=

=

=

=

−

=
∑

 

G is defined with respect to H and they are related in an inverse sense.  

This special relation between H and G becomes useful while inverting the Fisher 

Information matrix.  Simply 1
∆

−=G H , but the following relation also holds (for 

proof see PRF 3 in Appendix A).   












=












−

G     G

G-   G

H     H

H-   H
1

~

~

~

~
 

The H matrix is Hermitian and therefore its imaginary part must be skew-

symmetric H~H~ −=T . 

J(θ) introduced in Equation (48) can be rewritten by using the newly 

defined terms: 

( )





























∆∆∆∆
∆

∆

∆

∆

=

−

−

Γ~~
~HH~

H~H

~HH~
H~H

var

J

T
N

T
N

T
1

T
1

N

N

1

1

1
CR

1

    
    

-  
0

    

-  
0σ

 (49) 
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In order to obtain the CRB as a function of DOA angles (θR), J(θR) is 

needed.  J(θR) is found in (50) by partitioning J-1. 

( )

1

1

1 1

1

1

0

θ       

0

T T T T
R N N

   ∆
   ∆   
    = − ∆ ∆ ∆ ∆     

∆   
   ∆   

G  - G

G    G
J Γ

G  - G

G    G

 (50) 

Using 
( )
( )






=









+
=





















G∆Im
G∆Re

∆~ G  ∆ G~
∆~ G~ - ∆ G

∆~
∆

G    G~
G~-  G

and [ ] ( )
( ) [ ]G∆∆Re
G∆Im
G∆Re

∆~∆ HTT =







 , 

Equation (50) takes the form in Equation (51).   

( ) [ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]∑

∑

=

−

=

−=

−=

N

1t

H1HHHHH
R

N

1t

H
R

tttt
σ
2θ

θ

DXAAAADXDXDXReJ

G∆∆ReΓJ
 (51) 

Finally in Equation (52) J(θR) is inverted in order to obtain the formula for 

CRBAS(θR).   

( ) ( ) ( ) ( ) ( )
1N 11 H H H H

R RAS
t=1

σCRB θ θ  Re t t  
2

−
−−    = = −      

∑J X D I A A A A DX

 
(52) 

For sufficiently large N, the CRBAS(θR) is given by Equation (53) (see 

Appendix B for proof).  The dependence of the CRBAS on θR is shown: 

( ) ( )[ ]( ){ }[ ] 1
TH1H

RAS      
N2
σθCRB

−−∗ −= P*.DAAAAIDRe  (53) 

where ( ) ( )HE x t  x t
∆

 =  P  and “.* ” is array multiplication operator. 
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Equation (53) implies that when N is sufficiently large, the CRB can be 

determined depending on σ, P, and the true DOA of the signal i (θRi) without the 

need for the eigenvalue decomposition of the covariance matrix R of the 

observation data, y(t).   In this case, the CRB for θRi is given by (54). 

( ) ( )[ ]( ){ }[ ] 1 

ii 
TH1H

RiAS      
N2
σθCRB

−−∗ −= P*.DAAAAIDRe  (54) 

In our model, the number of realizations N is 512 which makes Equation 

(54) a good approximation for determining the CRBAS for different DOA and 

different number of signals with different correlation levels. 

 

3.3  Derivation of the CRB for Constant Modulus Signals 

(CRBCM) 

Constant Modulus signals have constant envelope and these signals are 

modulated via a change in frequency.  Some examples of constant modulus 

signals include Frequency Modulation (FM), Phase Modulation (PM), Frequency 

Shift Keying (FSK), and Phase Shift Keying (PSK).  The Constant Modulus 

Algorithm  (CMA) was first considered in [22, 23].   

Derivation of CRBCM follows [24].  For CM signals, measured data is 

modeled by, 

( ) ( ) ( )tetsty += AB  (55) 

where  

y(t) is m by 1 measured data vector at time t, 
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( ) ( )[ ]RnR1 θaθa ,,A =  where a(θRi) is m-by-1 array response vector 

from direction θRi, and θR = [θR1, … , θRn] is the DOA vector of the 

signals, 

B is n-by-n channel gain matrix and has the amplitudes of the 

signals (β = [β1, … , βn]) on the main diagonal.  Amplitude of the 

ith signal as received by the antenna is a real parameter and is 

denoted as βi, 

s(t) is an n-by-1 vector of source signals at time t with unit 

amplitude, equal to[s1(t), … , sn(t)], 

e(t) is an m-by-1 additive noise vector with complex parameters. 

Different signal amplitudes are absorbed into the B matrix.  Therefore the 

s(t) vector only has phase information corresponding to observation time t.  

Hence, the phase of the ith signal can be written as ( ) ( )tj
i

iets Φ= , where ( )iΦ t is the 

unknown phase modulation for ith signal.  A source vector can be defined as 

( ) ( ) ( ) T
1 nΦ t = Φ t ,  ,Φ t   , the phase vector for all signals at time t. 

Maintaining assumptions of additive noise as for the AS case, the 

likelihood function given in Equation (28) also holds true for CM signals except 

that the form of e(t) is different.  In each case Likelihood and log-likelihood 

functions are given in Equations (56), and (57) respectively: 

( ) ( ) ( ) ( )( ) ( ) ( )( )
-Nm N

-Nm H H H H

t=1

σ 1l θ, = 2π exp -  y t - s t    y t  - s t  
2 σ

  
  

   
∑Y B A AB  (56) 
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( ) ( ) ( ) ( )( ) ( ) ( )( )
N

H H H H

t=1

1L θ, =const - Nm ln σ - y t - s t   y t  - s t
σ∑Y B A AB  (57) 

Taking derivates of the log-likelihood function with respect to the 

unknown parameters ( )Φ t , β(t), and θR leads to the individual score functions.  

The set of unknown parameters are represented by a vector, denoted as θ, where 

( ) ( ) ( ) ( )T T T T T
Rθ= Φ 1 ,  , Φ N , β 1 ,  , β N , θ   . 

The partial derivative with respect to ( )Φ t is found by,  

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )Y,~
~

Y,Y,Y, θL
tst

txθL
tst

txθL
t

ts
∂

∂
Φ∂

∂+
∂

∂
Φ∂

∂=
Φ∂
∂=Φ  (58) 

and 
( ) ( ) ( ) ( )L θ, ,  L θ,

s t s t
∂ ∂

∂ ∂
Y Y  follows from Equations (31), and (32). 

( ) ( ) ( ){ }te2θL
ts

HH ABReY,
σ

=
∂

∂
 

( ) ( ) ( ){ }te2θL
ts

HH ABImY,~ σ
=

∂
∂

 

Since the s(t) vector only carries phase information (the observed signal 

amplitudes are contained in the matrix B), its real and the imaginary parts are   

( ) ( ){ } ( )( )ttsts Φ== cosRe , and ( ) ( ){ } ( )( )ttsts Φ== sinIm~ .  Therefore  
( )
( )t
ts

Φ∂
∂

 and 

( )
( )t
ts

Φ∂
∂~

are simply found as: 

( )
( ) ( )( ) ( )

( ) ( )( )s t s t
 = -sin Φ t ,   = cos Φ t

Φ t Φ t
∂ ∂
∂ ∂
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Let Xt be a matrix that has s(t) on its main diagonal, ( )( )tsdiagt

∆
=S ; then 
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Then Equation (58) becomes, 
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( )Y,Rθs  is found with a similar manner as Equation (34) 
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( )Y,βs  is obtained from [6].   
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Fisher Information matrix can be derived as, 
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where 
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Inversion of the Fisher Information matrix is carried out in block-

partitioned form using Schur complement formulas and the Woodbury identity 

as in [24].  The CRB for DOA of CM signals is given by: 

( ) ( ) 1
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1
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3.4  CRB Calculation 

The CRBs for different scenarios are calculated and plotted by using 

Matlab® software to illustrate performance under different conditions.  The first 

scenario is where only one object is assumed to exist in the surveillance region.  

The CRB for different object locations in azimuth (θR) and different SNR levels is 

observed. 

The second scenario includes two objects.  One of the objects simulates a 

moving object and its DOA changes between Coherent Processing Intervals 

(CPIs) and as it moves from one angular location in azimuth to another.  The 

second object remains stationary at a fixed location in azimuth throughout all 

CPIs.  A stationary object does not necessarily imply the object is a non-

maneuvering object; it implies the object does not change location in azimuth. 

The CRB for both objects is plotted separately on different figures.    

Interference from multiple transmitters in the surveillance region is one of 

issue in PCL systems.  Thus, to observe the effects of having a transmitter in the 
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surveillance region on the bounds of the object echo signals, a third scenario is 

introduced and includes two object echo signals and a direct signal from a 

transmitter of opportunity in the surveillance area.  The transmitter is simulated 

by choosing a relatively high SNR level compared to the SNR levels of the object 

signals, and having zero Doppler shift.  The object signals are chosen to be a 

moving object and a stationary object as in the second scenario.  Last but not 

least, fourth scenario observes the CRB of the moving target for AS and CM cases 

for different transmitter of opportunity DOAs.  This experiment should yield 

additional insight into antenna placement and orientation. 

Correlation between object returns is also implemented for the arbitrary 

signal case.  The matrix P, defined in Equation (70), includes the correlation of 

the signals.  In the case when two objects have the same SNR values and they are 

uncorrelated, the correlation coefficient, ρ = 0.  For fully correlated signals, ρ = 1. 









=

1ρ
ρ1

P  (70) 

 

SNR variation is implemented by assigning new values of σ.  Signal 

power is assumed to be 1 Watt and the relation between the σ and the SNR level 

is given in Equation (71) for SNR expressed in dB: 

10
SNR

10

1σ =  (71) 
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Dimensions of P change according to the number of signals being 

received. To illustrate how the cross correlation of multiple signals for different 

numeric SNR levels take place, a matrix P for three signals is given in Equation 

(72) (See Appendix C for proof).  Signal one has been normalized to 1 watt. 
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3.5  Summary 

This chapter explained and showed the derivation of CRBAS and CRBCM. 

The implementation of correlation between two signals is also explained and 

expanded to multiple correlated signals for AS case. The formulas given here are 

used for the CRB calculations.  

Equation (54) which is approximated for sufficiently large number of 

realizations (N) is used for the CRBAS calculations. 

( ) ( )[ ]( ){ }[ ] 1 

ii 
TH1H

RiAS      
N2
σθCRB

−−∗ −= P*.DAAAAIDRe  (54) 

Equation (69) is used for the CRBCM calculations. 

( ) ( ) 1
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1
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−−−= ΨΨΨΨ  (69) 
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4 .  CONTRIBUTIONS OF RESEARCH 

This chapter presents results computed for the CRB of Arbitrary Signals 

and Constant Modulus signals in different scenarios.  The CRBs for moving 

signal sources are plotted versus the true DOA of the moving signal sources, and 

CRBs of the stationary signal sources are plotted versus angular separation of the 

stationary signal sources with the moving signal sources.  Matlab® software is 

used for calculating the CRBs and for generating the plots. 

 

4.1  Scenario 1: Single Signal 

The simplest case considered includes only one signal impinging on the 

antenna.  This case is studied because it is a good way of evaluating the system 

performance before moving on to more complicated scenarios.  The single signal 

provides an understanding of basic system performance and gives a reference for 

comparison when studying more complicated scenarios. 

CRBAS and CRBCM are equal to each other when there is only one signal.  

This is because the CM signal model in Equation (55) can also be represented 

using the arbitrary signal model given in Equation (21) in the single signal case.  

Since the pdfs of CM and arbitrary signals are basically identical (differing only 

in the way that their means are represented), then the single signal case results in 

identical pdfs for the CM and arbitrary signals.   
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Figure 12 shows the CRB of a single object.  The CRB is a function of the 

true DOA of the signal, or in other words, it is a function of the angular 

difference between object location in azimuth and the antenna broadside 

direction.  As the location of the signal source in azimuth shifts away from the 

antenna broadside direction, there is a nonlinear increase in the CRB.  The CRB is 

symmetric in this case because it is a function of the signal angular location in 

azimuth, as measured from the antenna broadside direction.  For example, a 

signal source has the same CRB when it is either located at -10° or 10° from 

antenna broadside (assuming all other parameters such as SNR remain constant).   

 

Figure 12.  CRB for single signal case when SNR = 0dB. 

An increase or decrease in SNR results in a linear change on the CRB in an 

inverse sense; increasing SNR causes a decrease in the CRB and decreasing SNR 

causes an increase in the CRB.  The effect of SNR changes on the CRB is 
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demonstrated in Appendix D where the CRBs for –10dB, 10dB, and 20dB SNRs 

are plotted.  The shape of the CRB does not change but there is an increase or a 

decrease of the CRB amplitude inversely proportional to the change in the SNR.  

This result is expected; as signal power increases one expects the variance in the 

DOA estimate to decrease. 

 

4.2  Scenario 2: Two Signal Sources 

When receiving multiple one signals, the CRBAS and CRBCM show 

differing characteristics.  This is due to the CM constraint on the received signal 

type [25].   

DOA estimators that utilize signals with the CM property separate the 

incoming signals using different techniques, and then utilize the signal 

properties, such as signal phase, in addition to the array antenna manifold, that 

conventional DOA estimators use.  Not only is the phase difference between 

array antenna elements used to estimate DOA, but also the actual phase 

information of the incoming signal.   

Since the phase of the incoming signal is also processed in CM estimators, 

a derivative is taken with respect to the signal phase when the Fisher Information 

matrix is being constructed.  The signal phase is added to the vector of unknown 

parameters when the CM constraint is brought into the estimator.  This is the 

reason why CM estimators have a different CRB than AS estimators. 
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4.2.1  CRBAS of Two Signal Sources 

In Figure 13, the CRB for the so-called “moving object” is illustrated.  One 

signal is a stationary signal source sitting at 0° and the other signal source is a 

moving signal source.  It is called a “moving signal” because the source remains 

fixed at one angle during 512 realizations of measurement data, after which it is 

moved to the next DOA where it remains fixed for another 512 snapshots.  

Basically, the moving object remains fixed during a CPI but is moved to the next 

DOA angle between CPIs. The stationary signal source remains at the same exact 

location throughout all CPIs.  This is a fair approximation to a moving object 

scenario; recall from Section 3.2 that the number of realizations must be kept 

large (in this case, N = 512) for the CRB approximation of Equation (53) to remain 

valid. 

When CRBAS plots are observed it can be seen that the CRBAS out to 70° is 

relatively high due to the system performance shown in single signal case (see 

Figure 13 (b)).  This is actually seen in the CRB plots for single signal case.  As the 

moving object gets closer to the other signal source, a nonlinear increase in the 

CRBAS is observed (see Figure 13 (a) and (c)).  This is caused by both signals 

having close DOA angles, thus causing the phase delays between the elements of 

the array antenna to become very similar.  Hence, the array response vectors 

a(θ1), and a(θ2) become more alike as the angular difference between the two 

signals is reduced in the azimuth plane.  When two signals are exactly on the top 

of each other, the A matrix formed by a(θ1) and a(θ2) and the D matrix formed by 
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( )1
1

θa
θ∂
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 and ( )2
2

θa
θ

 
∂
∂

, become singular and cause the CRBAS to approach 

infinity.  Therefore, as the DOA of two signals gets close to each other the CRBAS 

increases. When they are exactly at the same DOA we say that it is unbounded.  

 

(a) (b) 

 

(c) 

Figure 13.  The CRBAS of a moving object with 0dB SNR with a stationary object of 

the same SNR located at 0°. 
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Figure 13 (b) shows the decrease in CRBAS as the moving signal source 

moves away from 70° off broadside towards broadside.  Figure 13 (a) shows the 

increase in CRBAS in the DOA angle range of 1°-10°.  When the moving object is 

at 1° of DOA its CRBAS is nearly ten times as more than when it is out at 70°.  

Finally, the DOA range of 0° - 1° is shown in Figure 13 (c) and the increase in 

CRBAS is shown when two signal sources are very near to each other. 

To gain a better understanding of the increase in CRBAS as the angular 

separation between the signals decrease, the CRBAS of the stationary signal 

source is plotted versus its angular separation with the moving object in Figure 

14.  Therefore, the CRBAS of the stationary object is calculated for each DOA of 

the moving signal and plotted versus the angular separation with the moving 

signal source.   

The CRBAS of the stationary object does not exhibit a monotonic increase 

or decrease.  In Figure 14 (a), the minimum CRBAS of the stationary object is 

achieved when the moving signal source is furthest away.  As the two signal 

sources get closer in azimuth, the difference between the minimum and 

maximum points increases.  The CRBAS values in Figure 14 (b) and (c) are similar 

to CRBAS values of the moving object; this is because the A and D matrices 

become nearly singular as two signal sources gets closer to each other in 

azimuth.   

Correlation between the arbitrary signals should also be incorporated into 

our DOA estimate, since the bounds change with respect to the correlation level 
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of the signals.  The effect of correlation between two signals is shown in 

Appendix E, where bounds for the moving and the stationary signal sources are 

plotted.  The higher the correlation between the arbitrary signals, the higher the 

bound becomes.   

 

(a) (b) 

 

(c) 

Figure 14.  The CRBAS of a stationary object with 0dB SNR with a moving object 

of the same SNR. 
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When the CRBAS in the two signals case is compared with the CRB in 

single signal case, the bound increases in the antenna broadside direction in the 

CRBAS of two signals when the DOA of the two signals are near to each other. 

4.2.2  CRBCM of Two Signal Sources 

As mentioned in Section 3.3, the CM constraint on the signal changes the 

CRB.  In this research the CRBCM is unique because of the effects of the changes 

in the Doppler shift and the start phase of the signal sources.  These parameters 

are modeled using the FM signal model.  Estimators having the CM signal 

constraint use many signal properties, especially properties of the signal phase.  

Therefore different effects on the phase of the incoming signals, such as different 

Doppler, different start phases of the signals, or different information messages 

being modulated can cause the signals to be distinguished from one another. 

As different signal sources get closer to each other in azimuth, the A and 

D matrices become singular, but the CRBCM is not as susceptible to reduced 

angular separation between signal sources in azimuth plane as the CRBAS.  This 

is because of the CM constraint on the signal; a new unknown parameter vector 

of phase must be added to the unknown parameter vector (θ) for arbitrary 

signals.  Hence, the derivative of log-likelihood function with respect to phase 

vector of the signal sources is found in Equation (59).  The correlation of the 

unknown parameter vector phase with itself and the other unknown parameters 

given in Equations (63), (64), and (65) makes the Fisher information matrix 

invertible even when two signal sources are closely located in the azimuth plane.  
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(a) (b) 

 

(c) (d) 

Figure 15.  The CRBCM of the moving signal source with 0dB SNR with a 

stationary signal source of the same SNR when the Start Phases and the Doppler 

Shifts of the two signal sources are the same. 

The CRBCM is also found to be a function of start phase and Doppler shift 

differences.  In Figure 15, the start phase and the Doppler shift of the incoming 

signals are the same, so this can be thought of the case when the phases of the 

two incoming signals are fully correlated.  Due to the reason, the signal model 



 62

used in this thesis assumes identical FM modulation (message) signals for the 

two signals, and that this FM signal remains constant during the sampling of the 

data.  Therefore, having the same Doppler shift and starting phase for the two 

signal sources should be considered as a worst-case scenario.   

In Figure 15 (b) the CRBCM for the moving object seems to be almost 

identical to the CRBAS of the moving object within the DOA range of 10° - 70°.  

The real problem is in the two signals case, especially when the two signals get 

closer in azimuth; this research now focuses on the region where the signals are 

relatively close in azimuth.  When the moving object is within 10° of the 

stationary object, its CRBCM is initially lower than CRBAS.  But, as the moving 

object approaches the stationary object at 0°, the increase in the CRBCM is greater 

than the increase in CRBAS.  This is because to the two signals have exactly the 

same phase properties (due to our initial assumptions of identical starting phase 

and Doppler). 

When the two signals have a starting phase difference and a Doppler shift 

difference, the CRBCM varies because it can better separate two signals from each 

other.  This is shown in Figure 16 by choosing an arbitrary starting phase and 

Doppler shift difference between the signals.   

Figure 16 (a) shows that when there is a difference in the phase 

parameters of the two signal sources, the CRBCM of the moving object remains 

the same as the CRBAS of the moving object in Figure 13 (a) and CRBCM of the 

moving object in Figure 15 (a) between the DOA range of 10° - 70°.  The CRBCM  
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(a) (b) 

 

(c) 

Figure 16.  The CRBCM of moving signal source with 0dB SNR with a stationary 

signal source of the same SNR when Start Phases/Doppler Shifts of the moving, 

and stationary signal sources are [2,4]/[8,-2] respectively. 

in Figure 16 (a) takes a better look at the behavior of the bound for the moving 

object when the two signals approach each other in azimuth plane.  CRBCM does 

not increase as much when compared with the previous cases and it is the most 
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robust bound obtained, considering the increase in the CRB of the previous cases 

(when the two signals became near to each other in azimuth).  

 

 

(a) (b) 

 

(c) (d) 

Figure 17.  The CRBCM of the stationary signal source with 0dB SNR with a 

moving signal source of the same SNR when the Start Phases, and the Doppler 

Shifts of the two signal sources are the same. 
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The final CRBCM analysis for this case involves the CRBCM of the 

stationary signal source.  Figure 17 shows the worst case scenario for the CM 

signal estimators when the phase parameters of the two signals are fully 

correlated.  As a result, (just as in the case of the CRBAS of the stationary object) 

there is not a constant increase in the bound as the separation between the two 

signal sources gets smaller.  After noting the similarity of Figure 15 (a, c, d) with 

Figure 17 (a, c, d), it becomes apparent that once the separation between the 

moving and stationary signal sources becomes less than ten degrees, the CRBCM 

of the stationary object and moving object is identical.   

As a result, the CRBCM of both signal sources having identical phase 

parameters yield similar bounds with the CRBAS when the signal separation is 

between 10° – 70°.  On the other hand, when the angular separation of the two 

signals in azimuth is less than ten degrees, the CRBAS is lower than the CRBCM 

for the same phase parameters.  It must be remembered that when both of the 

signals have the same phase parameters, this implies both signals are fully 

correlated in phase and represents a worst case scenario for CM signals.  This is 

rarely the case in real-world scenarios.   

The arbitrary phase parameters used for generating Figure 16 are also 

used to generate Figure 18.  When the separation between the two signal sources 

are in the 10° - 70° range, the CRBAS behavior illustrated in Figure 14 (a) is similar 

to the CRBCM response of Figure 18 (b).  However, when the signal separation is 

less than ten degrees, the CRBCM of the stationary object achieves the CRBCM of 
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the moving object.  Note that the plots in Figure 16 (b, c) for the moving signal 

source are exactly the same as those in Figure 18 (b, c) for the stationary signal 

source.  

 

(a) (b) 

 

(c) 

Figure 18.  The CRBCM of the stationary signal source with 0dB SNR with a 

moving signal source of the same SNR when Start Phases/Doppler Shifts of the 

moving, and stationary signal sources are [2,4]/[8,-2] respectively. 
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The CRBCM of signals with different phase parameters seems to be a lower 

bound, especially when angular signal separation in azimuth gets smaller.  When 

the angular separation of the signals in azimuth is relatively large (in the 10° - 70° 

range), the CRBCM of the signals with different phase parameters seems to be 

slightly lower than if not almost the same as the CRBAS of two signals with zero 

correlation. 

 

4.3  Scenario 3: Two Signal Sources and a Transmitter of 

Opportunity (Interferer)  

PCL systems can be susceptible to interfering signals in the environment, 

or even interfering signals from their own transmitters of opportunity.  In this 

section, the effects of a transmitter on the bounds of CM and arbitrary signals are 

illustrated.  Figure 19 shows the CRBAS when all three signals are uncorrelated.  

Figure 20 shows CRBCM for the phase parameters that are specified on the 

figures.  

4.3.1  CRBAS of Two Signal Sources and a Transmitter of Opportunity 

(Interferer) 

To determine the CRBAS performance for the selected conditions, compare 

Figure 13 (c) with Figure 19 (b); clearly, a transmitter in the surveillance region 

does not have a big impact on the CRBAS of the moving signal source when it is 

in the proximity of the stationary signal source in azimuth plane.  This is true in 

this scenario because the transmitter is further apart from the stationary signal.  
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When the CRBAS of the moving signal source is observed in the azimuth 

region near where the transmitter of opportunity is located, the CRBAS of the 

moving signal source is truly degraded.  When the moving object is at 69° its 

bound is approximately 4 degrees2, which is approximately equal to 2° standard 

variation.  This value is relatively large, but as the moving object is within 1° of 

the transmitter, this increase in the bound is crucial. 

 

(a) (b) 

 

(c) (d) 
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(e) 

Figure 19.  The CRBAS of the moving signal source with a stationary signal source 

at 0° and a transmitter of opportunity at 70° when SNR of the moving and 

stationary signal sources are 0dB and transmitter SNR 50dB.   

 

4.3.2  CRBCM of Two Signal Sources and a Transmitter of Opportunity 

(Interferer) 

The CRBCM of the moving object seems to be a lower bound than CRBAS 

especially in the proximity of the both stationary signal source and the 

transmitter in azimuth.  As the moving signal source moves away from the 

antenna broadside, the bound increases due to the array antenna performance; 

this is shown in Section 4.1.   
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(a) (b) 

  

(c) (d) 

Figure 20.  The CRBCM of the moving signal source with a stationary signal 

source at 0° and a transmitter of opportunity at 70° when SNR of the moving and 

stationary signal sources are 0dB, and transmitter SNR 50dB; and Start 

Phases/Doppler Shifts of the moving, and stationary signal sources, transmitter  

are [2,4,6]/[8,-2,0] respectively . 

Figure 16 (b) shows that the CRBCM of the moving signal source for the 

two signal case is the same as Figure 20 (b).  Figure 20 (b) shows, the CRBCM of 
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the moving object near the stationary object when there is also a stationary object 

present out at 70°.  This is because of the transmitter being located so far from the 

object of interest.  In order to show the effect of a transmitter on the CRBCM of the 

moving signal source in the vicinity of the stationary, the CRBCM of the moving 

signal source is plotted in   

Figure 21 considers the same conditions as in Figure 20, except that the 

transmitter of opportunity is located at 15° instead of 70°. 

  

Figure 21.  The CRBCM of the moving signal source with a stationary signal 

source at 0° and a transmitter of opportunity at 12° when SNR of the moving and 

stationary signal sources are 0dB, and transmitter SNR 50dB; and Start 

Phases/Doppler Shifts of the moving, and stationary signal sources, transmitter 

are [2,4,6]/[8,-2,0] respectively . 

 

When Figure 20 (d) is compared with Figure 19 (e) it is observed that the 

CRBCM remains well below the CRBAS when the moving object is in the 

transmitter region.  Also comparing Figure 20 (b) with Figure 19 (b) shows that 



 72

bound of the moving signal source is lower when its estimator has the CM signal 

constraint.  To make a long story short it can be rephrased as follows; the CRBCM 

is a lower bound than CRBAS when the phase parameters of the incoming signals 

have different characteristics, and the CRBCM goes even lower when the phase 

parameters of each signal are less correlated.   

 

4.4  Scenario 4: Moving Object vs. Different Transmitter of 

Opportunity (Interferer) Locations 

This section demonstrates the case when there is one transmitter in the 

surveillance region.  The CRBAS and CRBCM are presented below for one moving 

object signal whose DOA changes from -70° to 70° for different transmitter 

locations.  The transmitter location in the azimuth plane is only changed from the 

DOA spectrum of –70° to 0° because the CRB is symmetric about the antenna 

broadside direction. This experiment should yield additional insight into antenna 

placement and orientation.  

4.4.1  CRBAS of the Moving Object for Different Transmitter Locations 

As discussed earlier, AS DOA estimators are more susceptible to increases 

in the variance estimate when more than one signal is being received from the 

surveillance region.   This is more pronounced when the signal of interest has 

less signal power compared with the others.  
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Figure 22 show the CRBAS of a moving object when the transmitter is 

located at –70°, -50°, -30°, -15°, 0°.  

 

 

(a) (b) 

 

(c) (d) 
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(e) 

 

(f) 

 

(g) (h) 
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(i) (j) 

Figure 22.  The CRBAS of the Moving Object with a transmitter of opportunity at 

different locations [–70°, -50°, -30°, -15°, 0°] when SNR of the moving is 0dB, and 

transmitter SNR 50dB. 

  

The figures above show that the effect of the interfering transmitter signal 

on the CRBAS decreases as the transmitter location shifts towards the antenna 

broadside.  Therefore, having the transmitter closer to the antenna broadside 

direction enables less degradation in the bound.  Of course, this results in greater 

DOA estimation error in the direction of the antenna.  When the array antenna 

orientation can be arbitrarily chosen, placing the transmitter out of the coverage 

area results in the best accuracy for DOA estimation.  If it is not possible to place 

the transmitter out of the coverage area, then the transmitter should be towards 

an edge of the array antenna where DOA estimation accuracy is already 

degraded due to system configuration.  Although this results in greater errors 
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around the DOA of the interfering signal from the transmitter, the DOA for other 

angular regions remains free of interference and yields higher accuracy 

estimates. 

4.4.2  CRBCM of the Moving Object for Different Transmitter Locations 

The CRBCM has been found to be much lower than the CRBAS in the 

presence of multiple signals.  The results presented in this section still support 

this conclusion. 

Figure 23 shows the CRBCM of a moving object when the transmitter is 

located at –70°, -50°, -30°, -15°, 0°. 

 

 

(a) (b) 
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(c) 

 

(d) 

 

(e) (f) 
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(g) (h) 

 

(i) (j) 

Figure 23.  The CRBCM of the Moving Object with a transmitter of opportunity at 

different locations [–70°, -50°, -30°, -15°, 0°] when SNR of the moving is 0dB, and 

transmitter SNR 50dB; and Start Phases/Doppler Shifts of the moving, and 

transmitter are [2,6]/[8,0] respectively. 

 

There is a slight increase in CRBCM when the object DOA is near the 

transmitter DOA.  The CRBCM almost keeps the form of the single object case but 
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there is a slight increase near the transmitter DOA when the object is in the same 

azimuth plane region.  

In the CM case, it is still preferable to place the transmitter outside the 

surveillance region if possible. If the transmitter cannot be placed out of the 

surveillance region, but the antenna orientation can be varied, then the 

transmitter should be placed towards the edge of the array.  By doing this, the 

DOA region near the antenna broadside direction, which provides the most 

accurate DOA estimates, is kept free from interference.  It must be noted that the 

need to change the array antenna direction in the CM signal case is not as nearly 

pronounced as in the AS signal case. 
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5 .  DISCUSSION 

5.1  Conclusions 

Performance of the Arbitrary Signal (AS) and Constant Modulus (CM) 

signal DOA estimators were evaluated using the Cramer-Rao Bound (CRB).  The 

CRB theorem was found to be useful because it enables the analysis of the error 

variance for different cases.  As discussed in Section 2.3.2, minimal error variance 

is desirable and the CRB provides a lower bound on this variance. 

In the single object case, both AS and CM signal DOA estimators achieve 

the same bound.  CM DOA estimators use the phase information of each 

incoming signal to separate signal sources from each other and DOA estimation 

is done separately for each signal.  However, when only one signal is present in 

the environment, the CRBCM is identical to the CRBAS. 

In the case of multiple signals, the CRBCM is a lower bound around the 

region where the angular separation between two signals in azimuth gets 

smaller, even when one of the signals is strong interference from a transmitter.  

The CRBCM is found to be slightly above the CRB for the single object case, 

including the case with the interfering transmitter.  On the other hand, the CRBAS 

for Arbitrary Signals increases greatly when the angular separation between two 

signals becomes small, and CRBAS is also affected dramatically by interfering 

signals with large signal power, (such as the interfering transmitter signal).  

Hence, this research demonstrated that, in general, the bounds of the CM DOA 
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estimators are lower than the bounds for AS DOA estimators; CM DOA 

estimators are declared to have better performance. 

As mentioned in Section 2.3, the CRB shows the performance of a 

Minimum Variance Unbiased (MVUB) estimator.  In spectral estimation, the 

search for a MVUB estimator is a challenging task.  Since the bounds for CM 

DOA estimators show good characteristics in scenarios closely representing real-

world applications, the CM DOA estimators prove to be promising.  Hence, in 

the search for the MVUB, giving consideration to CM Signal DOA estimators is 

highly encouraged. 

 

5.2  Future Work 

In this thesis a single Uniform Linear Array (ULA) configuration was 

studied and there was only one DOA estimate obtained from the array.  Dividing 

the array into smaller sub-arrays results in degraded estimation performance [6].  

On the other hand, combining all sub-array estimates and creating mutual 

coupling between the sub-arrays resulted in a new estimator with different 

performance.  The change in overall DOA estimation performance should be 

studied and its performance compared to a non-divided array.  As demonstrated 

in this thesis, the CRB provides an excellent tool for such a study. 

As was demonstrated in Sections 4.2 and 4.3, the DOA CRB of a signal 

when other signals exist in the environment show different characteristics.  The 

CRB was found to increase when the DOA of a signal gets close to the DOA of 
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other signals.  This is especially true when there is correlation between the 

signals; the increase in the CRB becomes more significant.  Correlation effects 

between two signals was implemented in this research using a correlation 

coefficient and the effect of the correlation level between the Arbitrary Signals on 

their CRB was shown.  However, modeling correlation between CM signals is 

not as simple.  In the thesis it was mentioned that worst case for CM signals 

occurs when the phase parameters of two signals coming from the same 

direction are exactly the same.  This is the case when the phases of two signals 

are fully correlated.  The changes in the CRBCM with respect to correlation level 

of the two signals with close DOA angles should be studied by parameterizing 

the correlation level of the CM signals.  This would possibly require a new 

derivation of the CRB for correlated CM signals. 

One assumption that simplified the extent of the research is that the 

objects are zero altitude objects with DOA only changing in azimuth.  Adding 

elevation to the individual objects and including their altitude in the calculations 

will reflect results that are more suited to real-world applications.  Bounds for 

DOA error in elevation and azimuth can be achieved by using a planer array 

antenna model. 

The numerical calculations of the CRB are based on the system described 

in Section 1.5, which is composed of a single ULA antenna configuration.  As 

mentioned above, this can easily be extended to sets of smaller ULA antennas, 

although the composite estimate becomes somewhat more complicated.  
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However, ULA antenna configurations are only one of many.  Cramer-Rao 

Bounds for other types of array configurations can also be determined and the 

advantages/disadvantages of different array types, shapes, radiating elements 

and element spacing can be studied. 
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Appendix B 
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Appendix C 
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Appendix D 

This appendix shows the CRB for a single signal over a DOA range of 70° 

to -70°, along with effects of different SNR levels.  In Section 4.1, the CRB for a 

single signal is shown when SNR is 0dB.  Here the CRB of a single signal is 

plotted for the SNR levels of 10, 20, -10dBs.  In numerical representation of the 

SNR this corresponds to the increase of SNR from 0dB by 10, 100 and 1/10 

respectively.  There is an inverse relation between the SNR and CRB.  When the 

SNR is increased by factors of 10, 100, and 1/10; CRB is reduced by factors of 

1/10, 1/100, 10.  This can be observed in the plots below.  Please note that the 

shape remains the same but the magnitude on the axis where CRB is shown 

changes by the factors that have been mentioned above. 
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Appendix E 

CRBAS of the moving and the stationary signal sources are given in the 

figures below.  As the correlation between the signal sources increases, the 

CRBAS increase dramatically when two signal sources are close to one another in 

the azimuth plane.  When the signal sources are further apart from each other in 

azimuth, then CRBAS is still higher for the highly correlated signals case but it is 

not as pronounced as when angular signal separation of the signals is 

comparatively less. 
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The CRBAS of the moving signal source when there is a stationary signal source 

located at antenna broadside with 0dB SNR values for both. 
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The CRBAS of the stationary signal source located at the antenna broadside when 

there is a moving signal source getting closer to the stationary signal source in 

azimuth plane with 0dB SNR values for both. 
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