Metal Foams as Compact High Performance Heat Exchangers

K. Boomsma, D. Poulakakos, F. Zwick*

Laboratory of Thermodynamics in Emerging Technologies
Institute of Energy Technology
Swiss Federal Institute of Technology, Zurich

*ABB Corporate Research, Ltd., Baden-Dätwil, Switzerland
<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (FROM - TO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-05-2001</td>
<td>Workshop Presentations</td>
<td>30-05-2001 to 01-06-2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Foams as Compact High Performance Heat Exchangers</td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boomsma, K.</td>
<td></td>
</tr>
<tr>
<td>Poulikakos, D.</td>
<td></td>
</tr>
<tr>
<td>Zwick, F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB Corporate Research, Ltd.</td>
<td></td>
</tr>
<tr>
<td>Baden-Datwil, Switzerland</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research International Field Office</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>APUBLIC RELEASE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Also ADM001348, Thermal Materials Workshop 2001, held in Cambridge, UK on May 30-June 1, 2001. Additional papers can be downloaded from: http://www-mech.eng.cam.ac.uk/onr/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Public Release</td>
<td>21</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>Unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenster, Lynn</td>
<td>International Area Code</td>
</tr>
<tr>
<td>fenster@dtic.mil</td>
<td>Area Code Telephone Number</td>
</tr>
<tr>
<td></td>
<td>703767-9007</td>
</tr>
<tr>
<td></td>
<td>DSN</td>
</tr>
<tr>
<td></td>
<td>427-9007</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18
Contents

• Thermal management of IGBT’s
• Metal foam heat exchanger configuration
• Experiments & Results
• Numerical Simulations
• Structure improvement
• Conclusions
Enhanced Heat Dissipation

- Thermal management of IGBT modules
 - Heat dissipation +100 W/cm²
 - Low, uniform operating temperatures increase chip life

- Current configuration
 - Simple flat plate
 - High coolant velocity
 - Significant temperature gradients on the chip

- Possible improvements
 - Implement a highly conductive solid
 - Increase heat convection area
 - Better flow mixing structures
Aluminum Foam Properties

- High surface area to volume ratio
 - ~3000 m²/m³ uncompressed (natural form)
 - ~10,000 m²/m³ compressed
- Highly conductive solid (~218 W/m•K)
- Tortuous flow path
- Easily machined to final size

Aluminum foam in as-manufactured, unaltered state (92% porous)

Aluminum foam (73% porous) compressed by a factor of four

10 cm

6.5 cm
Typical Heat Exchanger Configurations

- Simplest design
- High flow velocity
- Mixing depends on upstream channel configuration

- Relatively simple
- Minimal increase in surface area
- Improved mixing through turbulence enhancers
Metal Foam Heat Exchanger Configurations

- Similar to turbulence enhancement array
- Lower flow resistance
- Less foam required
- Lower clogging likelihood

- Distributes heat throughout the coolant stream
- Provides a better basis for comparison of metal foam performance data
Compressed Foam Experimentation

- Utilize compressed foam—specific surface area $\sim 10,000 \text{ m}^2/\text{m}^3$
- Porosities between 48 – 89%
- Coolant (water) flow velocities up to 2 m/s
- Convection coefficient (measured at plate) $+150 \text{ kW/m}^2\cdot\text{K}$
Experimental Apparatus

- Pressure drop measurement
- Coolant temperature at various locations
- USB data acquisition device
 - Temperatures
 - Pressure
- 1200 W delivered by cartridge heaters
- Power input
 - Oscilloscope measurement
 - Temperature change in coolant
Pressure Drop and Heat Convection Coefficients

- Forchheimer-extended Darcy equation

\[\frac{\Delta p}{L} = \frac{\mu}{K} v + \frac{c_F}{\sqrt{K}} \rho v^2 \]

- Convection coefficient measured at plate

\[h'' = \frac{mc(T_{w, outlet} - T_{w, inlet})}{(T_{plate} - T_{w, inlet}) \cdot A_{foam-plate}} \]

- Symbols:
 - \(c_F \): Forchheimer coefficient
 - \(K \): permeability
 - \(L \): foam length
 - \(v \): flow velocity
 - \(\Delta p \): pressure difference
 - \(\mu \): dynamic viscosity
 - \(\rho \): fluid density
 - \(A \): area
 - \(c \): specific heat
 - \(h'' \): convection coefficient
 - \(m \): mass flux
 - \(T \): temperature
Flow Characterization Experimental Results

- Porosity decrease = pressure drop decrease
- Significant pressure drop compared to flat plate

- Monotonic increase of K with porosity
- Increase in sensitivity of K with increase in porosity
Heat Transfer Experimental Results

- Higher solid fraction provides a higher heat convection coefficient
- Results are independent of heater attachment

- Control of temperature gradient
- Poor performance by plate
- Note: Limited range for full power for the bare plate
Power-Thermal Resistance Comparison

- Basis for real-world performance comparison
- Favorable power—thermal resistance curve
- Poor performance by bare plate
- Locate optimum configuration
Scaled Performance Comparison

- Scaled to predict behavior with 50% ethylene glycol-water solution
- Assumptions/Considerations
 - Identical K and c_F
 - Similar operating temperature
 - Increase in flow rate compensates lower heat capacitance

Heat Exchanger with Turbulence

0.2 mm Narrow Gap (clear)

Behr Heat Exchanger
Numerical Approaches

• Experimentally measure flow characteristics
 – Requires a wide variety of foam samples
 – Large time expenditure
 – Limited applicability
 • Foam configuration
 • Coolant type & flow rate range

• Pore-based analysis
 – Idealized three-dimensional solid matrix structure
 – Determine periodic flow behavior
 – Calculate interstitial convection coefficient
Foam Structure Idealization

- 14-sided tetrakaidecahedron
- Tetrahedral angle (~109°)
- Adjustments of shape

Close-up of a single open cell
Model of the tetrakaidecahedron

5 mm
Periodic Cell Boundary Conditions

- Periodic Length L
 - Velocity
 \[\vec{V}(x, y, z) = \vec{V}(x + L, y, z) = \vec{V}(x + 2L, y, z) = \ldots \]
 - Pressure
 \[p_x(x, y, z) = -Bx + P(x, y, z) \]
 where
 \[B = \frac{p_x(x, y, z) - p_x(x + L, y, z)}{L} \]
 then
 \[p_y, z(x, y, z) = p_y, z(x + L, y, z) = p_y, z(x + 2L, y, z) = \ldots \]
Visualization of the Flow Field

- Colored pressure gradient
- Red particle traces
- Non-turbulent flow
 - \(\text{Re}_K < 100 \) where
 - \(\text{Re}_K = \rho VK^{1/2} \mu^{-1} \)
- Vortex development in wake
 - Describe lack of “transitional range” in porous media
 - Insight into dispersion effects
Periodic Configuration

- Tetrakaidecahedron base unit
- Not numerically optimized to minimize surface energy
- Possible tunneling effects
- Inconsistent porosity
- Improvement needed
Improvement in Periodic Cell Representation
Wetted Form

- Wetted Weaire-Phelan form
- Numerically optimized surface energy
- 0.3% lower surface energy
- Composition
 - 8 equal volume cells
 - 2 dodecahedra
 - 6 fourteen sided figures
 - 2 hexagonal faces
 - 12 pentagonal faces
Conclusions

• Aluminum foam heat exchanger experiment:
 – Significantly higher heat convection coefficient
 – More uniform chip operating temperature
 – Favorable power input to thermal resistance curve

• Approach of pore-based numerical analysis
 – Analyze “transitional” region in porous media
 – Possibly directly calculate dispersion effects
 – Reduce extensive experimentation