
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

 

THESIS 
 

JPEG2000 IMAGE COMPRESSION AND ERROR 
RESILIENCE FOR TRANSMISSION OVER WIRELESS 

CHANNELS 
 

by 
 

Konstantinos Kamaras 
 

March 2002 
 
 

 Thesis Advisor:   Murali Tummala 
 Second Reader: Robert Ives 

Approved for public release; distribution is unlimited 



Report Documentation Page

Report Date 
29 Mar 2002

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
JPEG2000 Image Compression and Error Resilence for
Transmission over Wireless Channels

Contract Number 

Grant Number 

Program Element Number 

Author(s) 
Kamaras, Konstantinos

Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Naval Postgradaute School Monterey, California

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and 
Address(es) 

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
The original document contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
121



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
March 2002 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:     JPEG2000 Image Compression and Error Resilience 
For Transmission Over Wireless Channels 
6. AUTHOR(S)   Konstantinos Kamaras 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
      This thesis examines the compression performance of the JPEG2000 standard for image transmission over 
noisy channels. Other features of the standard, such as error resilience and region of interest, have been studied 
and their effectiveness tested on several images. The JPEG2000 still image compression standard has provided 
higher compressions performance with lower distortion and better image quality than JPEG. JPEG2000 has the 
capability to define regions of interest of any shape and size and code the selected regions with a higher fidelity 
than the rest of the image.  Compressed image data is transmitted over a noisy wireless channel based on Gilbert-
Eliot model, which simulates both isolated and burst errors. JPEG2000 error resilient tools are used to allow the 
decoder to detect and conceal errors introduced in the channel. The results indicate up to 10 dB improvement in 
the peak signal to noise ratio when these tools are used 
 

15. NUMBER OF 
PAGES  

121 

14. SUBJECT TERMS  Wavelet Analysis, Discrete Wavelet Transform, JPEG2000, Forward Error 
Correction (FEC), Automatic Repeat Request (ARQ), Markov Channel Model 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 

 i 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 ii 



Approved for public release; distribution is unlimited 
 
 

JPEG2000 IMAGE COMPRESSION AND ERROR RESILIENCE FOR 
TRANSMISSION OVER WIRELESS CHANNELS 

 
 

Konstantinos Kamaras 
Lieutenant, Hellenic Navy 

B.S., Hellenic Naval Academy, 1993 
 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
March 2002 

 
 
 

Author:  Konstantinos Kamaras 
 
 

Approved by:  Murali Tummala 
Thesis Advisor 

 
 

Robert Ives 
Second Reader 

 
 

Jeffrey B. Knorr 
Chairman, Department of Electrical and Computer 
Engineering 

 iii 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 iv 



ABSTRACT 
 
 
 
 This thesis examines the compression performance of the JPEG2000 standard for 

image transmission over noisy channels. Other features of the standard, such as error 

resilience and region of interest, have been studied and their effectiveness tested on 

several images. The JPEG2000 still image compression standard has provided higher 

compressions performance with lower distortion and better image quality than JPEG. 

JPEG2000 has the capability to define regions of interest of any shape and size and code 

the selected regions with a higher fidelity than the rest of the image.  Compressed image 

data is transmitted over a noisy wireless channel based on Gilbert-Eliot model, which 

simulates both isolated and burst errors. JPEG2000 error resilient tools are used to allow 

the decoder to detect and conceal errors introduced in the channel. The results indicate up 

to 10 dB improvement in the peak signal to noise ratio when these tools are used.  
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EXECUTIVE SUMMARY 
 
 
 

 The demand for image compression performance superior to the existing 

standards and the need for robust image transmission over wireless channels have 

increased in the last years due to the explosive growth of network applications and 

mobile multimedia. A new still image compression standard, known as JPEG2000, is 

designed to compliment the existing JPEG. JPEG2000 is a wavelet-based codec, which 

supports different types of still images and provides tools for a wide variety of 

applications, such as Internet, image library, and real-time transmission through wireless 

channels.  

 This thesis investigates the compression performance of the JPEG2000 standard, 

in comparison with JPEG, for image transmission over wireless bandlimited noisy 

channels. Other features of the standard, such as error resilience and region of interest, 

have also been studied and their effectiveness tested on several images. The thesis also 

examines the effect of channel coding techniques, such as forward error correction, 

automatic repeat request (ARQ) and hybrid-ARQ, in combination with JPEG2000’s error 

resilient tools on the perceived quality of the image after transmission through an 

unreliable channel. The communication channel used is based upon the Gilbert-Eliot 

model with an embedded two-state Markov process for simulating slow fading 

conditions. 

 JPEG2000 still image compression standard has provided high compression rates 

(better than 80:1) with low distortion, and image quality significantly better than JPEG.  

While its performance is superior to that of JPEG, the JPEG2000 algorithm is more 

complex and computationally more expensive than JPEG. 

Image compression with a specified region of interest using JPEG2000 has also 

been examined. This feature of JPEG2000 enables the user to define regions of interest of 

any shape and size and code the selected regions at a better quality than the rest of the 

image. The effectiveness of the region of interest feature is demonstrated using several 

images and for different shapes. 
 xix 



Both compression schemes have been investigated for image transmission over 

bandwidth-limited, noisy channels. The bitstreams of both JPEG and JPEG2000 were 

encoded using three different error control schemes: convolutional forward error 

correction code, stop-and–wait ARQ and hybrid-ARQ. Based on simulation results, 

baseline JPEG was found to be unreliable for image transmission over noisy channels due 

to frequent loss of synchronization between the bitstream and the decoder. In comparison, 

JPEG2000 provides various error resilient mechanisms that enable the decoder not only 

to achieve synchronization with the bitstream, but also to detect and correct errors that 

were injected into the bitstream during transmission. The results indicate up to 10 dB 

improvement in the peak signal-to-noise ratio of the received images when these tools are 

used.  

An interesting extension of this work may consider more accurate channel 

models, such as a model based on a four-state Markov chain. Additional future effort may 

consider transmission of JPEG2000 bitstream enhanced with other forward error 

correction codes, such as turbo codes or Reed-Solomon codes. A simulation of a multi-

node network for compressed image transmission along with the error resilient tools of 

JPEG2000 under network congestion conditions would be of interest.  
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I. INTRODUCTION 

The demand for image compression performance superior to the existing 

standards and the need for robust image transmission over wireless channels have 

increased in the last few years due to the explosive growth of network applications and 

mobile multimedia. The Joint Photographic Expert Group 2000 (JPEG2000), which is 

both an ITU-T standard (ITU0T.800) and an ISO standard (ISO 15444), addresses the 

compression of a wide spectrum of still images and provides reliable error resilient 

bitstream coding for transmission through unreliable channels.  

JPEG2000 is a wavelet-based codec and is intended to support different types of 

still images, such as bi-level, gray-level and multi-component, with different 

characteristics such as natural, scientific, medical, and text. JPEG2000 allows different 

image models including Internet applications, image library, and real-time transmission 

through channels with limited bandwidth. The new standard is designed to compliment 

the existing JPEG standard rather than replace it. Its coding system provides low bit-rate 

operation suitable for limited bandwidth networks, with low rate-distortion and subjective 

image quality superior to the currently used standard [1].    

JPEG2000 uses the Embedded Block Coding with Optimized Truncation 

(EBCOT) to generate the embedded bit stream [1]. The main advantage of this algorithm 

is that the image need not be compressed multiple times in order to achieve the desired 

bit-rate, unlike with the JPEG compression standard. Another related advantage of 

practical significance is that the bitstream produced with this algorithm provides error 

resilient tools that allow the decoder to efficiently detect and to some extent undo the 

effect of error injections due to a noisy channel over which the image was transmitted.   

A. THESIS OBJECTIVES 

Given the importance of network image applications within the context of the 

present and future commercial and military systems, this thesis investigates the 

performance of the JPEG2000 compression standard and its error resilient mechanisms. 

The compression performance of JPEG2000 is evaluated and compared with that of the 

JPEG standard for different images. Different modes of compression provided by 

1 



JPEG2000 are tested and conclusions related to the performance are provided. The 

effectiveness of the region of interest coding is studied as well.  

The thesis also examines the effect of channel coding techniques, such as Forward 

Error Correction (FEC), Automatic Repeat Request (ARQ) and Hybrid ARQ, in 

combination with JPEG2000’s error resilient tools on the perceived quality of the image 

transmitted through an unreliable channel. The communication channel used is based 

upon the Gilbert-Eliot model with an embedded two-state Markov process for simulating 

slow fading conditions. 

B. THESIS ORGANIZATION 
This thesis is organized into five chapters and three supporting appendices. 

Chapter ΙΙ provides an overview of wavelet theory and wavelet analysis. Chapter ΙΙΙ 

describes the Joint Photographic Expert Group 2000 (JPEG2000) standard for still image 

compression. Also, tools that provide error resilience for JPEG2000 image transmission 

over error-prone channels are briefly described. Chapter IV presents the transmission 

schemes that will be used for the evaluation of image compression over unreliable media. 

The channel model used in simulations is also presented. Simulation results of JPEG2000 

image transmission over unreliable channels and the application of optional error resilient 

tools to enhance image quality are presented. Chapter V summarizes the work and 

provides conclusions. Appendix A presents additional examples of comparison between 

JPEG2000 and JPEG. Appendix B includes results of image transmission for different 

channel conditions in addition to those presented in Chapter IV. Appendix C provides 

usage and examples of JPEG2000 VM8.5 source code. 
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II. INTRODUCTION TO WAVELETS AND THE WAVELET 
TRANSFORM 

A. INTRODUCTION 
Wavelet representation of signals provides a more efficient localization in both 

time and frequency or scale than the Fourier transform or the short-time Fourier 

transform. Wavelets also lend themselves to multiresolution analysis in which the signal 

is decomposed in terms of detail and approximation (resolution) coefficients. The 

multiresolution decomposition separates the components of a signal in such a way that it 

is more flexible than most other methods of analysis, processing, or compression. This 

approach can be used for linear as well as non-linear processing of signals and offers new 

methods for signal detection [2], classification [2], filtering [3], [2] and compression [4], 

[5].  

This chapter introduces wavelets in order to understand how wavelet analysis is 

implemented in the JPEG2000 still image compression standard, presented in Chapter III.  

It provides examples of methods based on wavelet analysis in terms of one-dimensional 

signals and then extends them to image processing. MATLAB is the programming 

software used for most of the examples and figures presented. 

B. SIGNAL TRANSFORMATIONS 

The Fourier transform of a signal is given by ( )x t

 

( ) ( ) 2 j ftX f x t e dtπ
+∞

−

−∞

= ∫                                              (2.1) 

 

and its inverse transform is 

 
 
                              (2.2) 

 

( ) ( ) 2 j ftx t X f e dfπ
+∞

−∞

= ∫

 

Although Fourier transform is widely used, it does not provide a desirable time-

frequency representation when the signal is non-stationary [5]. One approach to this 

3 



problem is to use the short-time Fourier transform, which assumes that short segments of 

non-stationary signals are stationary. A window function W t  is chosen to represent the 

segment over which the stationarity of the signal is valid. The mathematical expression 

for short-time Fourier transform is 

( )

 
                                                              (2.3)         ( ) ( ) ( ) 2, ' j ft

t

t f x t W t t e dtπ∗ − Χ = − ∫
 

where the asterisk on W  indicates complex conjugation. The short-time Fourier 

transform provides a true time-frequency representation of the signal.   

( )* t

Due to the uncertainty principle, the short-time Fourier transform can estimate the 

time intervals in which certain bands of frequencies exist but not the exact time a 

frequency of a signal changes. The time-frequency representation using the wavelet 

transform, on the other hand, has the capability to provide an exact time frequency 

characterization.  

1. Wavelet Transform 

The signal can be represented as a linear combination  ( )x t

 
                                                                                            (2.4)  ( ) ( )l l

l
x t w tψ= ∑

 

where  are the real-valued expansion coefficients and lw ( )l tψ  are a set of real-valued 

functions of  [4]. The reader may note that the representation of Equation (2.4) is similar 

to that of the Fourier series. The set of functions 

t

( )l tψ  that uniquely represent a signal 

are referred to as a basis set.  

From a function called the mother wavelet, a basis set can be realized through 

scaling and translation. The scaled and translated version of a mother wavelet function 

can be expressed as [4] 

 
                      (2.5)                  

 

( ),
1

b
t btαψ ψ
αα
− =  

 
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where and b represent the scale and translation parameters, respectively. Figure 2-1 α

shows the Meyer mother wavelet as well as its translated and scaled versions. Both 

translation and scale parameters are set equal to 2.  

 

 
 

Figure 2-1. Meyer Mother Wavelet and its Translated and Scaled Versions.   

he expansion coefficients of Equation (2.4) can also be denoted as a continuous 

valued 

t dt                      (2.6)                               

where and b are continuous valued parameters. The signal then can be represented as  

 

 

T

wavelet transform ,bwα  as given by the inner product [4] 

 

                              ( ) ( ) ( ) ( ), , , ,  b b bw t x t t xα α αψ ψ
+∞

−∞

= < > = ∫
 

α

[4] 

( ) ( ), , 2

1  
b b

d dbx t w t
C α α

ψ

α
ψ

α

+∞

−∞
= ∫                                                                      (2.7)                               

where ( ) 2

0

| |
C dψ

ψ ω
ω

ω

+∞
= ∫  and . ( ) ( )( )tFTω ψΨ =
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2. Discrete Wavelet Transform 
As with other signal transforms, it is desirable to discretize the wavelet transform 

by discretizing the scaling and translation parameters α  and . A commonly used way 

to discretize α  and is as follows [5] 

b

b

 
                                   α α                         (2.8) 0 0,j jb kb j kα− −= = , ∈

k

 

where  represents all the integer numbers. The most common choices for  and b  are 

2 and 1, respectively. This results in a two-dimensional representation of the wavelet. The 

value of parameter k  represents the parameterization of time or space, and the value of  

the frequency or the logarithm of scale. The discrete version of the wavelet set of 

Equation (2.5) is then given by [4], [5] 

0a 0

j

 
                                      ( ) ( )/ 2

, 2 2 ,    ,j j
j k t t k jψ ψ= − ∈

dt

                           (2.9)                                
 

The function  can now be reconstructed from the wavelet coefficients as 

follows [4] 

( )x t

 
                                                                                   (2.10)                               ( ) ( ), ,j k j k

k j

x t w tψ= ∑∑

where the wavelet coefficients  are given by ,j kw

 
                                                      (2.11)                               ( ) ( ) ( )/ 2

, , ( ),  =2 2 .j j
j k j kw x t t x t t kψ ψ= < > −∫

 
C. MULTIRESOLUTION ANALYSIS 

Let  be a vector space of signals. If , then it can be expressed as [4] S ( )x t S∈

 
                                                                                             (2.12)                               ( ) ( )k k

k

x t a tφ= ∑
 

where φ  form the basis set for space  for unique representation and can be obtained 

from the scaling function  φ  as follows [4] 

( )k t S

( )t
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                                   φ φ                            (2.13) ( ) ( ) 2           ,  k t t k k φ= − ∈ ∈ L

)t k−

}φ

)

 

A two-dimensional expression of Equation (2.13), similar to that of Equation (2.9), is 

desirable [5]: 

 
                                             φ                                        (2.14)                               ( ) (/ 2

, 2 2j j
j k t φ=

 

where as in Equation (2.9) of the wavelet function,  represents the translation and  the 

scale. This two-dimensional family of functions, generated from the basic scaling 

function by scaling and translation, spans over  

k j

k

 

                                                 V                             (2.15) ( ){ } ( ){
_______________ _______________

,2 j
j k j k

kk

span t span tφ= =

 

where  denotes the nesting of spans of φ  and is graphically illustrated in 

Figure 2-2. Consequently, V V  [4]. From Figure 2-2, as 

the resolution increases toV , the approximation signal converges to the original [6]. 

Subspaces W  are explained in the next subsection.  

jV (2 j t k−

1 ,j jV V +⊂ ⊂0 1 2...V j⊂ ⊂ ∀ ∈

∞

j

 

 
Figure 2-2. Nested Vector Spaces Spanned by the Scaling Functions from [4]. 

 

Also, the nested vector spaces must satisfy the following scaling condition 
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This condition allows φ to be expressed as a weighted sum of shifted φ as    ( )t ( )2t

 
                                   ( ) ( ) ( )2 2 ,

n

t h n t n n= −∑φ φ                            (2.17) ∈

 

where  is a sequence of real or complex numbers called scaling function 

coefficients. This is the multiresolution analysis (MRA) equation or the dilation equation 

[4]. 

( )h n

Figure 2-3 shows how scaling functions can be used to approximate an envelope 

of speech signal. The first plot is the original signal and the following plots are the 

approximations of the signal after projection onto subspaces V V and . As can be 

seen, by moving to a higher resolution vector space, the approximation of the signal 

becomes better. The subscript  of φ  represents the scale of the basis function. For 

this example, the basis function is Daubechies’3 (db3).  

0 1 2, ,V 3V

j ( )j t
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                                                V

which is illustrated in Figure 2-2. 
time index, 

 

a Signal by using the Scaling Function 
echies’3 or db3.    

( )x t

 
nd Wavelet Function 

al  is not by using a set of scaling functions 

 by defining a set of functions that span the 

. These functions are the wavelets 

( )x t

etc,..., ( ),j k tψ  

aces spanned by the wavelet functions are denoted 

scaling and wavelet spaces satisfy the following 

V                                               (2.18)                                 1j j W+ = ⊕ j
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Similar to Equation (2.17), a mother wavelet function can be represented as a 

weighted sum of scaled and translated functions 

 
                                   ( ) ( ) ( )2 2 ,

n

t w n t n nψ φ= −∑ ∈

)ψ −

,

1 m

1 m

n

                         (2.19)                               

 

where is a set of expansion coefficients. Equation (2.19) is a fundamental wavelet 

equation and will be used later for implementing the wavelet multiresolution analysis. 

( )w n

D. IMPLEMENTATION OF MRA 

1. Wavelet Representation of Signal  

The signal can be represented as [4]   ( )x t

 

                             (2.20)                   ( ) ( ) (0 0

0

0

/ 2 / 2
, ,2 2 2 2j j j j

j k j k
k k j j

x t c t k d t kφ
∞

=

= − +∑ ∑ ∑
 

where can take any value depending on the resolution level to which the representation 

corresponds. The coefficients  are the scaling and wavelet coefficients, 

respectively, and are defined by [5] 

0j

,  and j k j kc d

 
                                              (2.21) ( ) ( ) ( ), , ( ),  2j k j k j

m
c x t t h m k cφ += < > = −∑

                                            (2.22)    ( ) ( ) ( ), , ( ),  2j k j k j
m

d x t t w m k cψ += < > = −∑
 

where . The first term, a sum of all the scaling functions at scale  for all 

translations, will give the approximation of .  The second term, a double sum of all 

the scales of the wavelet function starting from  for all translations, will give the 

details.  

2m k= + 0j

( )x t

0j

Figures 2-4 and 2-5 illustrate the wavelet decomposition of a signal by showing 

the components of the signal that exist in the wavelet spaces W  at different scales . 

Figure 2-4 shows a signal with a discontinuity. Figure 2-5 shows the wavelet 

decomposition of this signal. The scaling function φ  by itself can approximate the 

j j

( )0 t
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signal but it is not able to preserve the discontinuity. However, as we move to higher 

resolutions, we observe that the discontinuity is isolated and located by the wavelet 

function ( )j tψ .  

 

 

 

t 
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2. Implementation of Wa
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decomposition structure consisting of 

(highpass) . These two filters are

j

( ) w

( )w n

  

 

time index,

 

nalysis of a Signal with Discontinuity. 
 

velet Analysis using Filters 
dicate that the scaling and wavelet coefficients at 

the expansion coefficients at scale  with the 

[4]. Mallat [6] first implemented a wavelet 

a scaling filter (lowpass) h n  and a wavelet filter 

 related as given by 

1j +

( )n

( )
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
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
 =


∑

∑
 

where N is the length of the filter. The above equation shows that the high pass filter is a 

mirror filter of the low pass filter. The filter pairs are referred to as the quadrature mirror 

filter (QMF). The decomposition structure is shown in Figure 2-6. 

 
 

Figure 2-6. Mallat Wavelet Decomposition of Signal  x(t) in Two Levels. 
 

The above procedure is followed in reverse order for signal reconstruction. The 

reconstruction process in this case is made easy due to the fact that the filters form 

orthonormal bases. The signals at every level are up-sampled by two, passed through the 

synthesis filters  and  and then added.   ( )'w n ( )'h n
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Figure 2-7 shows the scaling and wavelet function of Daubechies’3 (db3) and 

their lowpass and highpass filters for signal decomposition or reconstruction. Note that 

the filter coefficients are time reversed between the decomposition and reconstruction 

operations.   

 

 

Figure 2-7. Scaling and Wavelet Function of db3 with their Decomposition and 
Reconstruction Filters. 

 

Another way to decompose a signal using wavelets is the wavelet packet 

decomposition. In this case, the approximation and the details are further symmetrically 

decomposed into approximation and details. This technique gives more flexibility for 

signal representation than Mallat’s decomposition. In Mallat’s n-level decomposition, 

there are n+1 possible ways to decompose a signal. With n-level wavelet packet   
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decomposition, there are more than different ways to decompose the signal. Figure 

2-8 illustrates the difference between the two techniques. For instance, the signal, in the 

case of packet analysis, can be represented as: A1+AD2+DD2 or A1+D1 or 

AA2+DA2+D1.   

122
n−

   

  
       (a) Mallat 2-Level Decomposition (b) Wavelet Packet 2-Level Decomposition 

 
Figure 2-8. Comparison between Mallat Wavelet Decomposition and Wavelet Packet 

Decomposition. 
 

E. IMAGE PROCESSING USING WAVELET ANALYSIS 
Wavelet decomposition can be extended to two-dimensional signals, such as 

images. Like in the case of one-dimensional processing, analysis and synthesis using 

Mallat’s or wavelet packets method can be implemented.  

In practice, there are two ways to realize the subband decomposition of an image. 

The first is to use two-dimensional wavelet filters and the second is to separately 

transform the rows and columns with one-dimensional filters. A decomposition based on 

the latter approach was proposed by Mallat [6]. As shown in Figure 2-9, rows and 

columns are filtered using one-dimensional quadrature mirror filters w and h.   

The LL, LH, HL, HH sub-images of Figure 2-9 are obtained by lowpass filtering 

of rows and columns, lowpass filtering of rows and highpass filtering of columns, 

highpass filtering of rows and lowpass filtering of columns, and highpass filtering of 

rows and columns, respectively. In practice, the LL sub-image gives the approximation of 

the image (low frequencies), LH the horizontal details, HL the vertical details and HH the 

diagonal details (high frequencies).  The above decomposition is sometimes represented 
15 



as shown in Figure 2-10. The approximation sub-image (LL) obtained in this fashion can 

be further filtered and subsampled to obtain four more sub-images. This process can be 

continued until the desired subband structure is obtained. In order to implement wavelet 

packet decomposition of an image, we have to follow the above process for all the sub-

images of Figure 2-10. 

Following the above procedure in reverse order, the image can be reconstructed 

from the decomposed components or sub-images. The synthesis filters, like in the case of 

one-dimensional processing, are identical to the analysis filters except for a time reversal.  

 

   Columns 

 

HH     Rows 
   w   2 
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HL 
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Image 

LH 
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    h   2 
LL 
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Figure 2-9. Decomposition of an Image using Mallat Decomposition.  
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Figure 2-10. First Level Decomposition  

 

Figure 2-11 shows the wavelet representation of an image decomposed on two 

resolution levels using Mallat’s method. The upper left image of the figure is the original. 

The lower right one is the decomposition of the original image, and the lower left is the 

synthesized image. We observe that the synthesized image looks the same as the original 

and preserves almost all the details. The pattern of arrangement of the sub-images is as 

shown in Figure 2-10. The LL sub-image (approximation) of the original at the first 

resolution level is further decomposed into approximation and detail sub-images. The 

approximation at the second resolution level is shown as the upper right image of the 

figure.   

Figure 2-12 shows the decomposition of the same image using wavelet packets on 

two resolution levels. As the decomposition tree at the upper left corner of the figure 

shows, after the initial decomposition each subband is further decomposed to four 

subbands. The lower left image shows the packet (2,0), which is the approximation sub-

image of the LL subband of the first level decomposition. 

The discrete wavelet transform (DWT) can be used to reduce the image size 

(image compression) without losing significant image quality. For a given image, the 

DWT can be computed, and all values of the DWT that are below a certain threshold can 

be discarded. Only those DWT coefficients that are above the threshold are saved, and 

during the image reconstruction process, each row and column is first padded with as 

many zeros as the number of discarded coefficients and then the inverse DWT is applied 

to reconstruct each row and column of the original image. Image compression using 
17 



wavelet decomposition is the topic of the next chapter in which the JPEG2000 still image 

compression standard is described. 

 

 
 
 

 

Figure 2-11. Two-Dimensional Subband Decomposition using Mallat’s Method. 
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Figure 2-12. Two-Dimensional Subband Decomposition using Wavelets Packets. 
 
F. SUMMARY 

This chapter provided the basic concepts of wavelet analysis. The purpose was to 

highlight the main ideas and introduce the terminology. Wavelets offer a powerful tool 

for signal and image processing. Wavelets provide more accurate time and frequency 

representation than other signal analysis methods and can handle signals with 

discontinuities. The next chapter briefly describes the JPEG2000 still image compression 

standard, which is based upon wavelet decomposition and synthesis of images.     
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III. THE JPEG2000 STILL IMAGE COMPRESSION STANDARD 

A.  INTRODUCTION 

With the increased use of multimedia technologies, image compression requires 

greater performance as well as new features. In order to address this need in the specific 

area of still image compression, a new standard called JPEG2000 is currently being 

developed. The new standard is intended to complement the existing DCT-based JPEG 

standard [7]. 

JPEG2000 is suitable for different types of still images, such as bi-level, gray-

level and multi-component. It supports natural images, scientific, medical and text, and 

allows different imaging models, such as image library, and real-time transmission 

through channels with limited bandwidth [1]. JPEG2000 provides low bit-rate operation 

with rate-distortion and image quality performance superior to the existing JPEG 

standard. Some of the features of JPEG2000 are [7]: 

• State-of-art low bit rate compression performance 

• Progressive transmission by quality or resolution  

• Lossy and lossless compression   

• Random access to bitstream 

• Pan and zoom (while the compressed data is not entirely decompressed)   

• Region of interest (ROI) coding by progression   

This chapter introduces the JPEG2000 standard. It also presents the error resilient 

tools to be used in Chapter IV for the simulation of image transmission through 

unreliable networks. The performance of JPEG2000 (using VM8.5 Part II source code) is 

compared with the widely used JPEG Baseline source code. 

B. STRUCTURE OF THE STANDARD 

1. JPEG2000 Codec 
JPEG2000 is based on wavelet/subband coding techniques. The schematic 

diagrams of the encoder and the decoder are shown in Figure 3-1. In the following 

subsections, the functionality of each of the blocks in Figure 3-1 will be described. The 

discussion here focuses on the encoder since the decoder simply undoes the encoding 
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process of the image. Parts of the decoder that work differently are mentioned and briefly 

described. 

  

 

Original 
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Figure 3-1. JPEG2000 Codec Structure. The Structure of the (a) Encoder and (b) 
Decoder from [8]. 

 

a. Preprocessing  
An image typically consists of one or more components; for example, a 

RGB image has three components and a grayscale image has only one component.  

Components are allowed to have a different number of bits per component sample (1 to 

32 bits/sample). Since different components may have different sizes, JPEG2000 

provides a common description using a system called the canvas coordinate system.  

Figure 3-2 illustrates the canvas coordinate system as well as the position of the image 
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component on the canvas. The origin of the canvas is the upper left hand corner of the 

figure, and the lower and right hand boundaries are defined by the image [7]. 
 

 

 

 

 

 

        
           

 

 

Image 
 

 

              (0,0) 
Canvas origin 
              (0,0) 
Canvas origin 

    Canvas 
        
               Canvas 

 
 
Image 
 

Figure 3-2. Placement of an Image on the Canvas from [7]. 
 
After its placement on the canvas, the image component is divided into 

nonoverlapping segments called tiles, which are coded independently (see Figure 3-3). 

All the tiles need to be of the same size. Figure 3-3 shows that in case the tiles in the 

image boundaries cannot be all equal, then the image is zero padded to ensure that all 

tiles are of the same size. Tiling requires low memory and provides the ability for spatial 

random access [9].  

In the description of the following blocks of Figure 3-1, we will present the 

details of processing one tile of the image since the same applies to all tiles.  

                                                             

              (0,0) 
Canvas origin               Canvas 

 
 

      
            Image 

Image tile 

Figure 3-3. Tiling of the Images in JPEG2000 [7]. 
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b. Intercomponent Transform 
Intercomponent transform is applied to multicomponent images, such as 

RGB, in order to decorrelate their components. JPEG2000 allows two types of 

component transforms: YCrCb transform and reversible component transform. The 

YCrCb transform is similar to the one used in JPEG, and the reversible component 

transform allows both lossy and lossless reconstruction [7], [9], [10], [8]. 

c. Intracomponent Transform 
In the intracomponent transform, the image component values are 

subjected to wavelet decomposition. Using wavelet filters, components within the tile are 

mapped into the wavelet domain. Presently, two kinds of wavelet filters are used in 

JPEG2000. The default is the Daubechies 9-tap (lowpass)/7-tap (highpass) filter, which 

implements a nonreversible floating point wavelet transform. The other wavelet filter is 

the Daubechies 5-tap/3-tap filter, which implements a reversible (integer-to-integer) 

wavelet transform [7]. Tables 3-1 and 3-2 list the coefficient values of Daubechies 9/7 

and Daubechies 5/3 filters, respectively. 

 
n  [ ]h n  [ ]w n  
0 0.6029490182363576 1.115087052456994 
1±  0.2668641184428723 -0.5912717631142470 
2±  -0.07822326652898785 -0.05754352622849957 
3±  -0.01686411844287495 0.09127176311424948 
4±  0.026748757410809765  

 
Table 3-1. Daubechies 9/7 Analysis Filter Coefficients for Reversible Wavelet 

Transform of JPEG2000 from [7]. 
 

n  [ ]h n  [ ]w n  
0 6/8 1 
1±  2/8 -1/2 
2±  -1/8 0 

 

Table 3-2. 5/3 Analysis Filter Coefficients for Reversible Wavelet Transform of 
JPEG2000 from [7]. 

 

After transforming the image tile components to the wavelet domain, each 

subband of every resolution level is further partitioned into blocks called precincts [10]. 

The size of all precincts must be the same and need to be a power of 2. Figure 3-4 shows 
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a precinct partition for a single resolution level of an image tile. Compressed data of 

precincts will later form a packet. The above partitioning plays an important role in 

organizing the data within a code-stream. Precincts are further partitioned into code-

blocks, which form the smallest geometric structure of JPEG2000. The main advantage of 

code-blocks is that they provide fine grain random access to spatial regions and also help 

the quantization process and bit-plane coding, which are described in the following 

subsections [10].  

 

               

Figure 3-4. Partitioning of a Wavelet Subband into Precincts and Code-Blocks from 
[10]. 

 
d. Quantization/Dequantization 
In the encoder, after all partitions are formed, the resulting coefficients are 

quantized. There are two methods of coefficient quantization: scalar dead-zone 

quantization and trellis coded quantization. A different quantizer step size is applied for 

the coefficients of each subband. Both methods quantize wavelet coefficients  to 

form sequences of indices  for each code-block . Since scalar dead-zone 

quantization is the default quantizer in the encoder as well as the one used for simulations 

in this thesis, we will further examine it here [7]. 

[ ]ix n

[ ]iq n iB
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The scalar dead-zone quantizer relates the sample values, , to 

indices, q ,  as follows [7], [8]: 

[ ]ix n

[ ]i n

 

                                          [ ] [ ]( ) [ ]
sgn i

i i
b

x n
q n x n

 
= ⋅ 

∆  


) b∆

                                    (3.1)                               

 

where  is the scalar quantizer step size for the subband that contains block .  In the 

decoder, a coefficient is reconstructed from the corresponding index using the expression 

[7], [8] 

b∆ iB

 

                                                                       (3.2)                               [ ] [ ] [ ]( sgni i ix n q n r q n
∧

= + ⋅ ⋅
 

where  is the bias parameter, which  is typically equal to ½. r

e. Tier-1 Coding 
The Tier-1 coding process is a bit-plane coding technique. It is based on 

the Embedded Block Code with Optimize Truncation (EBCOT) algorithm and is 

performed independently on each code-block.  First, each code-block is scanned as 

shown in Figure 3-5. Then, bit-planes for each code-block are created. Bit-planes are 

defined as a sequence of arrays; each array contains one bit of each quantized index. The 

first of the arrays contains the most significant bit of all the indices, the second contains 

the next most-significant bit and the last contains the least significant bits. The number of 

bit-planes will be transmitted as side information [11].    

In order for these bit-planes to be encoded, there are three passes per bit 

plane, starting with the most significant bit-plane. The three passes are the significant 

pass, the refinement pass and the cleanup pass [1], [7], [12]. 

After the bit-plane coding is completed, all the resulting symbols are 

entropy coded with an adaptive binary arithmetic coder. An option to bypass arithmetic 

coding for some of the least significant bit planes exists (referred to as Lazy Mode) [13], 

[8]. 
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Figure 3-5. Scan Pattern  Tier-1 Coding inside a Code-Block from [7]. 
 

f. Tier-2 Coding 
Tier-2 receives the embedded bitstream of each code-block from Tier-1, 

composes a collection of N quality layers Q , and truncates each layer at a suitable 

truncation point depending on the desirable bit rate.  Figure 3-6 illustrates the quality 

layers of code-blocks as rows of blocks and the truncation of some layers as shaded area.  

The layers are formed in a way such that layer Q  represents the most important data of 

each code-block while Q  represents the finest details. During decoding, the 

reconstructed image quality improves with each successive layer reception [13]. 

i

1

N

A sequence of twelve coded code-blocks of the same layer, the same 

resolution level, and specific precincts form a packet. An example of a packet is the 

coded data of the twelve code-blocks of Figure 3-4. The data inside a packet is ordered 

such that the contribution from the LH, HL and HH subbands appears in that order. Only 

those code-blocks that contain samples from the relevant subband, confined to the 

precinct, have any representation in the packet [7], [10].  
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Figure 3-6. Progressive Embedded Code-Block Bitstreams in Quality Layers, from 
[13]. The Shaded Region indicates Discarded Blocks.   

 

Figure 3-7 illustrates the above process in an image tile. The tile has been 

decomposed into three resolution levels. Each level contains four subbands (blue color 

represents LH subband, green represents the HL and red represents the HH subband) and 

each subband then contains a number of precincts (numbered blocks) whose sizes are 

equal to the approximation of the third level decomposition. Each packet will contain 

specific precincts of each subband of the particular resolution level. The first packet 

contains precinct 1, the second contains precincts 2, 3 and 4, the third contains precincts 

5, 6 and 7, and so on. 
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Figure 3-7. Tile of an Image Decomposed into Multiple Resolution Levels and 
Subbands, and Partitioned into Precincts. Numbers Indicate a Suggested Order for 

Bitstream Organization. 
 
2. Coded Bitstream Organization 
Figure 3-8 illustrates the basic organization of a JPEG2000 bitstream produced by 

the encoder. The bitstream consists of a global header corresponding to the whole image, 

followed by one or more sections depending of the number of tiles of the original image. 

Each such section consists of two parts. The first part consists of a start of tile marker, a 

tile header and the start of sequence marker. The second part includes the layered 

representation of the code-blocks belonging to that tile, which is organized into packets 

as previously described [7]. The optional resynchronization (resync) markers indicated in 

Figure 3-8 will be explained later in the following section on the error resilient 

capabilities of JPEG2000.   

 

 

Figure 3-8. Basic Organization of JPEG2000 Bitstream from [14]. 
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The structure of the bitstream received by the decoder is based on the packets and 

their organization in layers. The received image may be a single layer bitstream 

organization (Figure 3-8), a multi-layer “resolution progressive” bitstream organization, 

or a multi-layer “SNR progressive” bitstream organization [14]. Appendix A provides 

examples of resolution and SNR progressive image decoding. 

C. ERROR-RESILIENT TOOLS  
When transmitted over unreliable wired or wireless channels, packet losses may 

occur in an image bitstream. Existing transmission protocols for networks suffer from 

packet losses due to network congestion. Likewise, the wireless networks are subject to 

fading, interference or burst errors because of multipath propagation. Channel coding 

techniques can be applied to reduce the bit error rates; however, the residual bit error rate 

may have a significant impact on image quality [15].  

Many coding techniques are not robust to errors by nature. For example, 

predictive coding and variable length coding are able to provide high compression but are 

not resilient to errors, such as packet loss [15]. On the other hand, JPEG2000 

incorporates error resilience at the source coding level in order to overcome the problem 

of burst errors and packet losses.  

1. JPEG2000 and Error Resilient Tools 
JPEG2000 provides a variety of error resilient tools. These tools can be classified 

into three major types: resynchronization for packet protection, segmentation for code-

block protection, and error resilient termination for code-block protection. In principle, 

these tools detect and locate errors, support fast resynchronization and limit the loss of 

information [15], [12], [7]. 

a. Resynchronization 
Resynchronization tools attempt to establish the resynchronization 

between the decoder and the bitstream. They localize the error and prevent it from 

impacting the entire bitstream. An effective resynchronization mechanism makes error 

recovery and concealment easier [15]. 

As illustrated in Figure 3-8, resynchronization markers (resync) are 

optional and if used they have to be inserted before every packet in the bitstream. They 

consist of three bytes that define the correct order of the packets of each tile. When 
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multiple tiles are present, the resynchronization marker sequence index is reset after the 

end of each tile. There is a flag in the global header of the bitstream, which indicates the 

use of the resync marker mechanism. In order to allow error resilient mechanism to locate 

the boundaries of each packet in case of error injection throughout the bitstream, a “byte-

stuffing” is applied to the head and body bytes of each packet [14]. 

It was also mentioned earlier that the head and body of a packet have 

different sensitivity to error. For example, suppose there is a single bit error somewhere 

in the packet. If this occurs in the packet body, then only one code-block is affected. 

Since all code-blocks are coded independently and contain data that refers to a subband in 

a particular resolution level of a small part of a tile, the corruption is limited spatially and 

the result is a very small portion of the received image does not include some 

frequencies. On the other hand, the packet head contains information about the truncation 

points for every code-block, in every subband. In case that the head of the packet is 

corrupted with error injection, then all information in the current packet and all future 

packets from the same subband and resolution level are useless [14]. 

b. Segment Markers 
Another error resilience mechanism at the code-block level is the segment 

marker. The use of segment markers is also optional. It consists of four-symbols that have 

to be inserted at the end of the normalization-coding pass of the tier-1 coding level. Its 

functionality is based on the correct decoding of the fixed pattern, “1010”. In case that 

this pattern is not found, error detection is assumed, and the current coding pass as well 

as all the following coding passes will are discarded. Additionally if the segment markers 

is the only error resilient mechanism in use, then the two previous coding passes will also 

be discarded [14], [12]. 

c. Error Resilient Termination 
JPEG2000’s error resilient mechanism is based on the use of predictable 

truncation points of code-block layers.  Generally, the encoder is free to terminate the 

code-block in any manner in order to achieve the desired bit-rate. The VM8.5 algorithm 

provides the ability for the encoder to use a predictable termination policy with which the 

decoder is familiar. The use of a specific termination pattern comes with a flag in the 

global header, which helps the decoder to take advantage of this and detect the errors. 
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Although not optimal, this termination policy has been selected because of its simplicity 

[7], [14]. The result of this error resilient termination is that in case an error is injected 

into the transmitted data then the decoder is always able to decode the received code-

stream. The resulting image may have one or more tiles of lower quality, but it is always 

complete without any blank areas. 

d. Example of Error Resilience in JPEG2000 
In order to examine the performance of the error resilient tools in 

JPEG2000, a grayscale image is compressed to 2 bpp and transmitted through a simulated 

channel.  Prior to transmission, the JPEG2000 bitstream is encoded using a rate ½ 

convolutional coder with a constraint length of 7, for additional redundancy. The 

simulation is repeated for the same image, through the same channel, but now using the 

error resilient tools of JPEG2000. The average residual bit-error-rate in both cases 

is 3 1 . Figure 3-9 shows the received images in both cases. The peak-signal-to-noise-

ratio (pSNR) without error resilient tools is 28.60 dB while it is 34.70 dB with error 

resilient tools. 
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(a) Without Using Error Resilient Tools           (b) With Error Resilient Tools 
 

Figure 3-9. Transmission of JPEG2000 Compressed Images through a Noisy Channel. 
 
2. JPEG Error Resilient Tools 

JPEG uses a block based discrete cosine transform and a variable length coder 

(Huffman or arithmetic). The resynchronization markers for JPEG are placed at the 
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boundaries of every nth block, where n is chosen at encoding time. When an error occurs, 

all information being decoded is discarded until the next valid start marker is reached. As 

a result, some blocks may be lost as shown in Figure 3-10 (a). Unlike JPEG2000 where a 

global view of the image is always obtained, the JPEG decoder may stop decoding and 

generate an empty strip [15]. Figure 3-10(a) shows a received image, coded without using 

restart markers. The image cannot be decoded entirely due to the loss of synchronization 

between blocks after error injections inside the bitstream. Figure 3-10(b) shows the same 

JPEG image after transmission through the same simulated channel but now enhanced 

with resynchronization markers every block. The image has some strips that cannot be 

correctly decoded, but the overall result is superior to the previous case. 
 

 

  
(a) JPEG without Restart Markers (b) JPEG with Restart Markers 

Figure 3-10. Error Resilient Capabilities of JPEG Baseline Image Compression 
Standard. 

 
D. COMPRESSION PERFORMANCE   

1. JPEG2000 Compression Performance 
In order to examine the performance of the JPEG2000 still image compression 

standard, a variety of grayscale (8 bpp) images were used as listed in Table 3-3. All the 

images are compressed with the JPEG2000 VM8.5 source code, and the peak-signal-to-

noise-ratio (pSNR) in decibels (dB) between the compressed and the original was 

computed in MATLAB according to the following equation [16] 
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Image Woman Building Leaves Airplane Boats Tall ship 
Size 5.52 MB 1.83 MB 759 KB 707 KB 726 KB 388 KB 

 
Table 3-3. Sizes of the Original Images used for JPEG2000 Performance Evaluation. 

 

Figure 3-11 shows the results of the images compressed in the range of [0.025, 2] bpp. 

We observe that as the bit-rate of the compressed image decreases, its pSNR also 

decreases since the truncation of more layers of the code-block of the bitstream is 

necessary. It is important to note that compression at bit resolutions less than 0.15 bpp 

using JPEG is difficult and the resulted pSNRs are very low, whereas with JPEG2000, 

the quality is reasonable (by visual evaluation) even at a bit resolution of 0.025 bpp.   
 

 
 
Figure 3-11. JPEG2000 Compression Performance for Different Images. 
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Additionally the reversible wavelet transform with integer-to-integer kernels 

(W5x3) was tested and the file sizes with maximum achievable lossless compression are 

listed in Table 3-4. For the sizes of the original images, see Table 3-3.   

 
Image Woman Leaves Building Tall Ship Airplane Boats 
Size 1.7084 MB 1.1172 MB 159.29 KB 395.43 KB 430.06 KB 124.83 KB 

Compression 
ratio 

     3.23:1 1.63:1 4.76:1 1.78:1 1.69:1 3.1:1 

 
Table 3-4. File Sizes of Compressed Images Using the Lossless Mode of JPEG2000.  

 
2. Comparison between JPEG2000 and JPEG   
We now compare the compression performance of JPEG2000 with that of JPEG. 

For JPEG compression, the JPEG V6 baseline mode is used. For JPEG2000, progressive 

mode has been optimized for 0.0625, 0.125, 0.25, 0.5, 0.75, 1.0, 2.0 bpp by using 9-tap/7-

tap filters.  

Figures 3-12 and 3-13 show the performance comparison for the two standards in 

terms of pSNR measurements for different levels of compression. The results obtained 

for the images indicate that JPEG2000 provides better compression performance than 

JPEG. For bit-rates up to 0.5bpp, compression with very low pSNRs resulted for both 

standards, even though JPEG2000 compressed the images with less distortion. For 

compression ratios above this value, the JPEG standard produced poor results while 

JPEG2000 maintained the quality at a high level. With the JPEG image compression 

standard, the user is not able to define a desirable compression ratio. The only variable 

that JPEG accepts is the expected quality of the compressed image as a value between 

100 (no compression) and 0 (worst quality). Due to this inflexibility, JPEG is not able to 

compress the image down to more than 0.1 bpp. For this compression level, the image 

quality is poor because of the blocking artifacts. Figures 3-14 and 3-15 show compressed 

images at the maximum affordable compression for each standard. Appendix A provides 

additional results for some other images. 
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Figure 3-12. Rate-Distortion Performance for JPEG and JPEG2000 on Grayscale 
“Woman” Image. 

 

 
 

Figure 3-13. Rate-Distortion Performance for JPEG and JPEG2000 on Grayscale 
“Boat” Image. 
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(a) JPEG Image 

        
(b) JPEG2000 Image 

 
Figure 3-14. Compression ratios of 71  for JPEG and  for JPEG2000 for Image 

“Boats”. 
:1 320 :1

 

 
       (a) JPEG Image 

             
(b) JPEG2000 Image 

 
Figure 3-15. Compression ratios of 80  for JPEG and  for JPEG2000 for 

Image “Woman”. 
:1 320 :1
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The above performance advantage of JPEG2000 comes at the expense of 

memory, execution time and complexity (encoding and decoding) [17]. Memory usage as 

well as execution time is independent of the bit-rate for the encoder. The memory usage 

and the execution time are increased by a factor of 40 and 34, respectively, for the 

encoder of JPEG2000 relative to JPEG. The results for the decoder are better but as the 

bit-rate increases, the memory usage and the execution time increase. However, the 

increase in execution time for the decoder is no greater than a factor of 8 [1]. Table 3-5 

provides measured execution times of the JPEG2000 encoder compared to JPEG for three 

different sizes of the image “Woman” and for bit resolutions of 0.5 bpp.  

 
Image Dimensions Size JPEG Encoder 

Time 
JPEG2000 

Encoder Time 
Woman 2032×2800 5.42MB 0.2  sec    3.3    sec 
Woman 4064×5600 21.70MB 2     sec 16.5  sec 
Woman 6096×8400 48.83MB 2.5  sec 32.5  sec 

 
Table 3-5. Execution Time for JPEG2000 Versus JPEG Encoder for Different Size 

Images (Platform Pentium III, Processor 750 MHz). 
 
3. Region of Interest (ROI), a Unique Capability of JPEG2000 

One interesting and unique feature of JPEG2000 is its capability to define regions 

of interest and code the selected regions at a better quality than the rest of the image. The 

regions can have any shape and size. This technique is employed in the JPEG2000 coder 

by defining the coefficients of the region of interest as more important than the rest prior 

to Tier-1 coding. In order to accomplish this, it scales all the coefficients of the ROI 

upward by a power of two and leaves the rest of the coefficients the same. During the 

embedded coding process, those coefficient bits are placed in the bitstream before the 

background parts of the image. Thus, the ROI is decoded before the rest of the image. 

Regardless of scaling, a full decoding of the bitstream results in reconstruction of the 

whole picture with the highest fidelity available. If the bitstream is truncated or the 

encoding process is terminated before the whole image is fully encoded, the ROI will 

have a higher fidelity than the rest of the image [18]. Figure 3-16 shows an example of 

ROI coding with the JPEG2000 VM8.5 coder. The whole image is compressed to an 

average bit allocation equal to 0.25 bpp. The region of interest here is square and clearly 
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the quality of the image within this region is superior to the rest of the image outside of it.  

Appendix A includes more examples of ROI coding for regions of different shapes. 

 

 

Figure 3-16. Reconstructed Satellite Image of Pentagon in which a ROI of Rectangular 
Shape has been Defined in the VM8.5 Encoder. 

 
E. SUMMARY 

This chapter began with a high-level introduction to the JPEG2000 standard and 

proceeded to describe the JPEG2000 VM8.5 codec briefly. JPEG2000 is a new standard 

for still image compression suitable for such applications as the Internet, wireless 

transmission, digital library access and medical imaging. It supports both lossy and 

lossless compression and is progressive by resolution and quality. Comparative results 

exhibit that image compression of JPEG2000 is superior to that of the existing standard 

JPEG. 
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IV. STILL IMAGE TRANSMISSION OVER NOISY CHANNELS 

The need for robust transmission of images through wireless networks has arisen 

in recent years because of the tremendous growth in the area of mobile communications. 

In general, the wireless environment suffers from limited bandwidth resources (especially 

for military operations) and is characterized by high bit-error behavior. It is, therefore, 

imperative that some form of error control has to be used in order to achieve reliable 

transmission. 

  Many coding schemes have been developed during the last few years in order to 

protect the digital data from transmission errors. These coding schemes add redundant 

bits to the bitstream before the transmission, which will help enhance the receiver’s 

ability to detect and possibly correct errors. Even though error control schemes enhance 

reliability of bit transmission, several trade-offs exist. A great amount of redundancy 

leads to low effective throughput in the channel. Additionally, many error control 

schemes introduce delay, which makes these schemes unattractive for some real-time 

applications [15]. 

In order to overcome the problem of channel errors and provide robust bitstream 

syntax, JPEG2000 introduces error control schemes at the source coding level. These 

schemes are optional (as described in Chapter III) and are able to provide error detection 

and error correction for image transmission through error-prone environments.  

This chapter examines the forward error correction (FEC), automatic repeat 

request (ARQ), and hybrid automatic repeat request (HARQ) error control schemes. A 

wireless channel model based on a two-state Markov process is described. The error 

resilient mechanisms of JPEG2000 are then tested in combination with FEC.   

A. FORWARD ERROR CORRECTION 
Error control codes are used to format the transmitted information so as to 

decrease the effect of noise. This is accomplished by inserting controlled redundancy into 

the transmitted information stream that allows the receiver to detect and possibly correct 

errors. Many different types of error control codes are available. The most popular are: 
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linear block codes, cyclic codes, Golay and Reed-Muller codes, BCH and Reed-Solomon 

codes, convolutional codes and turbo codes [19]. 

An introduction to the convolutional coder follows as it is used later in this 

chapter for the simulation of image transmission through different kinds of wireless 

channels. 

1. Convolutional Codes 
A convolutional code is generated by passing the information sequence to be 

transmitted through a linear finite state shift register. If n is the number of output bits for 

a sequence of k input bits, the code rate is defined as r k . The constraint length K of 

a convolutional encoder is the maximum number of bits in the output stream that can be 

affected by one input bit and is given by [19], [20]: 

/ n=

 

                                                                                              (4.1)                                 1 max ii
K + m

 

where is the number of  shift registers of each branch. Figure 4-1 illustrates a rate ½ 

convolutional encoder with a constraint length of 4. The output sequence v has a length of 

2 while the input sequence u is a single bit.  

m

 
 

Figure 4-1. Rate ½ Convolutional Encoder with a Constraint Length of 4, from [19]. 
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Another important parameter of convolutional codes is the free distance d , 

which is defined as the minimum Hamming distance between all pairs of the 

convolutional coded words [19] : 

free
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Convolutional codes use the Viterbi algorithm as the maximum likelihood 

decoding algorithm [19], [20]. The error-correction capability of the Viterbi decoder 

increases as  increases. With the use of a convolutional encoder and Viterbi 

decoding algorithm, we can correct up to t  errors occurring within a time span 

corresponding to one constraint length, where [19] 
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a. Interleaving for Coded Systems 
When multipath propagation effects characterize the channel, the received 

signal amplitude fluctuates over short time periods compared to the message duration, 

which results in burst errors. In order to decorrelate burst errors, interleavers are used. 

An interleaver is a device that jumbles the symbols from several different 

codewords so that the symbols from each codeword are separated during transmission. A 

deinteleaver reverses the process before passing the symbols to the decoder. In this way, 

error bursts introduced by a channel are spread across a number of different codewords, 

hence the combination of interleaver/deinterleaver effectively converts a bursty channel 

into a random channel [20]. 

The interleaver can take one of two forms: a block structure or a 

convolutional structure. A block interleaver formats the encoded data in a rectangular 

array of  rows and  columns.  The bits are read out column-wise and transmitted over 

the channel. At the receiver, the deinterleaver stores the data in the same rectangular 

m n
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array format, but it is read out row-wise [20]. As a result, a burst of errors of length 

 is broken up into  bursts of length , which could be corrected depending on 

the error correction capability of the code according to Equation (4.3). 

l mb=

1mt +

m

mt

b

A -error correcting code with (  block interleaving can correct an 

error burst of length l  bits. The length of the shortest error burst that exceeds the 

error correcting capability of the code and will cause at least one decoding error is 

. 

t )m n×

≤

B. ARQ PROTOCOL 
The simplest form of error control for a full duplex channel is the automatic-

repeat-request (ARQ) protocol. The transmitted data frames are encoded for error 

detection and if an error is detected at the receiver, a retransmission of the frame is 

requested. There are three types of ARQ: the stop-and-wait, the go-back-N, and the 

selective-reject [19]. The stop-and-wait ARQ is used later in this chapter for simulations. 

A common error detecting code used for the ARQ scheme is the cyclic 

redundancy check (CRC). From an n-bit block of data, the transmitter generates an (m-n) 

–bit frame check sequence and transmits an m-bit frame. The receiver uses an error 

detection scheme to determine if the frame is error free [21]. 

Figure 4-2 shows the time sequence diagram of the stop-and-wait protocol. The 

receiver replies with an acknowledgment when no errors are detected; if errors are 

detected in the received frame or the receiver does not receive the frame after a period of 

time, it returns a negative acknowledgment and requests retransmission of that frame. In 

case the transmitter does not receive any kind of acknowledgment within a predefined 

time, the transmitter sends the same frame again.   
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Figure 4-2. Time Sequence Diagram of Stop-and-Wait ARQ Protocol. 
 

Assuming that the time to process a frame of data is negligible and that the 

acknowledgment frame is small compared to a data frame, the total time to send encoded 

data segmented into  frames is [19] pN
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where  is the propagation time from the transmitter to the receiver and t  is the 

length of a frame in seconds. If  is the probability that a single frame is in error, ACK 

and NACK frames are received error free and error detection is perfect, then the 

probability that it will take exactly  attempts to successfully transmit a frame is 

. The average number of retransmission is [21] 
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The effective throughput for a channel with ARQ error control is the number of 

encoded data frames accepted by the receiver in the time it takes the transmitter to send a 

single data frame multiplied by the overhead factor of the transmitted packets [19]. 

Assuming that the bit transmission rate is  bps, the transmitter idle time can be 

expressed in terms of the number of bits ξ  that could have been transmitted during the 

idle time [19] 

R

 
                                  ξ =       bits                                 (4.6)                                 ( prop proc propR t t t+ + )

)

 

Each transmission involves sending an m-bit frame followed by an idle period ξ . 

The stop-and-wait scheme, on average, requires the transmission of  bits in 

order to send an n-bit block of data. Accordingly, the throughput for that system is 
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where ARQ
nr
m

=  is the rate of the error detecting code used as overhead in the design of 

the ARQ.  

If the ACK frames are subjected to errors, the throughput expression changes to 

[19] 
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where  is the probability of a bit error in the transmitted frame and   is the 

probability of error in the ACK frame. 

rP ACKP

From the aforementioned discussion, it is obvious that the retransmission of a 

frame increases the end-to-end delay. The total delay is given by [21] 
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C. HYBRID-ARQ PROTOCOLS 
From the description of ARQ, as the channel quality deteriorates, there is an 

increase in the frequency of retransmission requests, which severely impacts the effective 

throughput. The hybrid ARQ protocols eliminate this effect through the use of forward 

error correction (FEC) in conjunction with error detection. The hybrid protocol can thus 

provide throughput similar to that of FEC systems while offering performance typical of 

ARQ protocols [19]. 

In hybrid-ARQ protocols, each information packet is encoded first with a 

forward-error-correction code and then with an error detection code. After the reception 

of the packet at the receiver, it is sent first to a FEC decoder and the resulting bitstream is 

sent to an error detection decoder. If errors are detected, a retransmission request is sent 

back to the transmitter; otherwise, the packet is accepted as correctly received. 

The expression for effective throughput in the case of hybrid-ARQ transmission 

scheme is the same as Equation (4.7) of the ARQ only case with the exception that the 

probability of error and the coding rate are different [19]. Thus, the equation of effective 

throughput of hybrid-ARQ, given that the ACK frames are not subjected to errors, is 

[19]:  
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where  is the probability of FEC decoder error and r  is the code rate of the FEC 

scheme. The product of  and  is the residual bit-error rate for the case of hybrid-

ARQ. Average number of retransmissions for the hybrid-ARQ scheme is given by [19] 

DEP FEC
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             Figure 4-3 shows the lower and upper bounds of the residual bit-error-rate for 

hybrid-ARQ in comparison with the bit-error-rate of pure ARQ for a binary symmetric 

channel. The FEC used for the hybrid-ARQ is a rate ½ convolutional encoder with a 

constraint length of 7. From Figure 4-3 and from Equations (4.10) and (4.11), it can be 

concluded that the hybrid-ARQ transmission scheme offers substantially better 

throughput performance than the pure ARQ. The drawback of the hybrid-ARQ is that for 

low bit-error rates, the effective throughput in the channel is lower because of the factor 

.                                  FECr

               

 
 

Figure 4-3. Upper and Lower Bounds of the residual BER for HARQ in Comparison 
with Residual BER of ARQ. 

 
D. CHANNEL MODEL 

A simple but effective approach to modeling a communication channel is by using 

a finite-state Markov model, where each state corresponds to a specific channel condition 

[22]. An error occurrence is not independent between bits or symbols as in memoryless 

channels, but is dependent on the errors introduced in the previously transmitted bits or 
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symbols (channel with memory) [23]. The simplest such model is the Gilbert model, 

where the number of states is two: the good state corresponds to the total absence of 

errors and the bad state to error occurrence with a pre-defined probability profile. The 

advantage of using a Markov process to describe a channel is the ability to capture the 

changes in the quality of the medium that occur during the transmission and to simulate 

in this way the burst-error behavior of the channel. Also, it is possible to examine the 

performance of various transmission schemes for channels with memory.  

1. Markov Models 

Let  denote a finite set of variables with dimension . Let { }  

be a sequence of random variables, whose values are in Q . A discrete process is said to 

be a homogeneous finite-state k

Q L 0 1, ,..., ,...nX X X

th-order Markov chain if it satisfies the following 

conditions [22] 
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For Markov chains with order m , the state transition probabilities are [22] 1>
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In the first order Markov process or chain, transition probabilities are defined as follows 

[24] 

 
                                                                                     (4.14)  ( 1 0|ijt P X j X i= = =

 

where i j . For this case, the transition matrix is defined as [24] {, 0,∈
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The idea behind using a number of states with a different error probability for each state 

is to represent different fading levels (quantized model) of the communication channel 

during transmission [23]. 

a. Fading Model   

The effect of narrow-band fading on a baseband signal is [22] 

 

                                                s t                                              (4.16) ( ) ( ) ( )
~ ~ ~

 ,u t f t=
 

where  are the complex envelopes of channel input, fading and channel 

output, respectively. In order to obtain the finite state model, it is necessary to sample the 

analog fading process . The sampling period T, for this chapter’s simulations, is 

chosen to be a symbol (8-bit) interval. Then, the instantaneous fading power 

 is quantized to a set of  thresholds {  depending on the 

dimension of the state space that is chosen. The first and the last values of the above 

range of thresholds is  and , respectively [22]. Figure 4-4 shows a 

simulated Rayleigh distributed signal envelope as a function of time (solid blue line). In 

order to quantize this signal into two states, we can set a threshold (such as the red dashed 

line in Figure 4-4) based on the desired channel error profile [23].  

( ) ( ) ( )
~ ~ ~
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Figure 4-4. Quantization of Simulated Rayleigh Fading Signal in Two-State 
Markovian Process. Figure is taken from [23]. The Simulated Rayleigh Fading is 

Reproduced in MATLAB by using Jakes Model.  
 

The general expressions of transition probabilities after the quantization of 

fading, assuming a slow fading channel (for example,  where 1Df T D
vf
λ

=  is the 

maximum Doppler shift), follow the Markovian process and are given by [22] 
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where  is the average crossing rate of the instantaneous fading power through level 

 and  is the probability of being in the state k.  

kN

kPkA
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First-order Markovian modes are more suited to approximate slow fading 

[22], [25], [23]. However, from a statistical analysis in [23], it was concluded that first-

order models could represent an oversimplification if fading is not very slow (fading rate 

). The simplest quantized model is the two-state Markov model, which can be 

used in order to approximate the block failure/success process very well, and has already 

been proven in [22] and has been used for simulations in [24], [25], [26], [23] and [27].   

210Df T −≥

b. Two-State Quantized Model  
Figure 4-5 shows a state diagram for a quantized two-state Markov model 

called the Gilbert-Eliot model. It is a first order, discrete-time, stationary Markov chain 

model. The two states, good and bad, are denoted here for simplicity by G and B, 

respectively. The transition probabilities from the good state to the bad state and from the 

bad state to the good state are denoted by b and g, respectively.   

   

 

Figure 4-5. Two-State Markov Model. 
 

The probability that the channel is in the good state or in the bad state at 

time  is denoted by  and , respectively; or in matrix form: 

. Let  be the probability for the channel at time τ  to be 

in state G given that at time 0 it was in state B. From Figure 4-5 and from Equation 

(4.15), the following transition matrix applies [23]: 

τ

P Pτ τ

( )P Gτ

( |P Gτ

( )P Bτ

( ) ( ),G P Bτ =   )




B

 

                                                                                            (4.18)                               
1

1
b b

T
g g
−

=  − 
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and  

 
                                                                                                       (4.19)                               1P Pτ + = Tτ

 

Equations (4.18) and (4.19) indicate that how fast the channel changes 

from one state to the other is dependent on the values  and . Large values of  and  

imply a fast changing channel. For slow fading, as mentioned in [23], b g  is 

necessary. The value  provides information concerning burst-error channel 

behavior. A higher value of (  signifies an increase in the probability of a 

transmitted packet remaining in the bad channel after one visit, thus leading to a longer 

burst-error for that packet. We set (1-b) = ε for simplicity. If  is denoted as the 

stationary distribution for states G and B, then from [26], the probability for the channel 

to remain in the same state after a time interval  is given by the following equation 

[26], [23] 

b g b g

1+

(1 )b−

1 )b−

P∞

T

 

                                 ( ) ( ), g bP P G P B
b g b g

∞ ∞ ∞  = =   + + 
, 

                         (4.20)                               

 

Define the error probability as  and . If the time interval of 

channel changing is equal to a symbol duration, then the average symbol error rate   

( )eP G ( )eP B
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avg e e
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In order to simulate a channel with the previously described behavior, it is 

necessary to know the probability that the channel is in a good state or bad state at time 

when the state at time τ =  is given. These probabilities at  for good and 

bad states, respectively, are [23] 

mτ = 0 0τ =

 

[ ] ( ) ( ) ( ) ( ) ( )( )1,0 1 , 1 1m mm mP T P G P B b g P B b g∞ ∞ ∞ = = + − − − − −         (4.22) 
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[ ] ( ) ( )( ) ( ) ( ) ( )0,1 1 1 , 1m mm mP T P G b g P B P G b g∞ ∞ ∞ = = − − − + − −         (4.23) 

 

This channel model simulates conditions in which a transition to the bad 

state would cause a total corruption of the symbol or packet (burst errors). The run length 

of a burst has a geometric distribution with mean burst length 1
g

 [28]. 

E. NUMERICAL RESULTS AND SIMULATIONS 
The image used for simulations is shown in Figure 4-15. It is an 8-bpp gray scale 

image with dimensions 900×1200. It consists of details, such as text and objects in the 

background, that can be affected by compression and during the transmission through a 

wireless channel. This image is compressed 8:1 to a bit resolution of 1 bpp (see Figure 4-

16) using the JPEG2000 source code. The compressed image is then used for Monte 

Carlo simulations of transmission through a two-state wireless channel. The results of 

simulations presented here are based upon averages of 10 runs. Channel error 

probabilities are in the range of 10-6 to 10-1.   

The simulations are divided in two parts. In the first part, for different 

transmission schemes, the effective throughput is measured for three different capacity 

channels: 9.6-kbps (GSM), 64-kbps, and 1.5-Mbps. All channels have the same error 

probability. The transmission schemes used for comparison are the stop-and-wait ARQ, 

the rate ½ convolutional encoder with a constraint length of 7, and the hybrid-ARQ, 

which is a combination of the two previous schemes.  

The second part of simulations examine the effectiveness of the JPEG2000 error 

resilient mechanisms. The channel behavior now is such that the above methods lead to 

very low effective throughput. The performance is evaluated by measuring the pSNR of 

the received image with and without error resilient tools. For this part, the same 

convolutional encoder as above is used to encode the bitstream. 

For both parts of the simulation, three different packet sizes are used: 400, 800, 

and 1500 bytes. Simulations are repeated for three different burst-error channel behaviors 

with the steady-state probability of the channel being in a bad state ε taking values of 0.1, 
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0.01, and 0.001. A higher value of this steady-state probability gives longer burst-errors 

[22], [25], [29]. The bit-error-rate of the bad channel is chosen to be in the range between 

0.5 and 10-2, and for the good channel it is chosen to be between 10-4 and 10-7 in order to 

follow the Gilbert-Elliot model more closely. Finally, the channel is always stable for at 

least one symbol duration. 

1. Simulation of Different Transmission Schemes 

a. Effect of FEC on Effective Throughput  
The selected image is compressed using no error resilient mechanisms.  

The compressed bitstream is saved with the extension .jp2, is read into MATLAB and is 

packetized. Each packet is sent independently through the proper encoder depending on 

the transmission scheme being simulated.  

The FEC scheme uses a convolutional encoder as described previously 

followed by a block interleaver. The receiver first de-interleaves the received sequence 

and then decodes it. It orders the packets such that the resulting sequence is readable by 

the JPEG2000 encoder and saves the result as an unsigned integer file with the extension 

.jp2. The JPEG2000 decoder then decompresses this file and extracts the received image. 

The rate ½ convolutional encoder gives an effective throughput of  for the entire 

range of the average BER independent of the packet size used.  The received image is not 

error free and the performance is measured in terms of the pSNR of the received image. 

The red cross points of Figures 4-13 through 4-15 represent the pSNR of the received 

image. Degradation of pSNR occurs when the average BER of the channel increases or 

when the steady-state probability for a packet to remain in the bad (ε ) increases.   

0.5

b. Effect of Stop-and-Wait ARQ on Effective Throughput 

No coding takes place in the stop-and-wait ARQ protocol. After 

packetizing the compressed sequence, a 60 bytes header is added to each packet by the 

MATLAB code. The receiver examines each packet for errors. Assuming perfect error 

detection and error free reception of ACKs, the receiver sends a negative ACK to the 

transmitter and requests retransmission in case an error is detected. After the error free 

reception of all the transmitted packets, the receiver removes the header of each packet, 

organizes them in the correct order and saves the resulting sequence as an unsigned (8 bit 
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precision) file with extension .jp2. The JPEG2000 decoder is then used to extract the 

image from this sequence. 

In order to evaluate the stop-and-wait ARQ performance, the effective 

throughput is calculated using Equations (4.5) through (4.7). The distance between the 

transmitter and the receiver is set to 10 km and is used in order to estimate the 

propagation time  of Equation (4.6).    propt

The range of average BER for the two-state quantized channel is chosen to 

be sufficient in order to estimate the values at which the resulting effective throughput 

becomes unacceptable. A symbol interval of 8 bits is chosen for the sampling period of 

Equation (4.22), which indicates that the channel is always stable at least for one symbol 

duration.    

Figures 4-6 through 4-8 display the affect of packet size and ε  on 

effective throughput for the stop-and-wait ARQ scheme. The steady-state probability of 

the channel being in bad state ε  is displayed in the lower left corner of each figure. For 

9.6-kbps and 64-kbps channels, the effect of the transmitted packet size on the effective 

throughput is not significant for average channel BERs below 10-5. For greater BERs, the 

smaller packet size achieves better effective throughput. For the 1.5-Mbps channel, 

because of the higher channel capacity, the use of small packets causes a significantly 

low effective throughput even for low average BERs. For this channel capacity, the use 

of a large packet size is necessary. For all channels, when ε = , the effective 

throughput drops rapidly for BERs above 10 . Thus, the average number of 

transmissions and the resulting transmission delay increase rapidly. For BERs above 10

0.1
5−

-5, 

it is best to use another transmission scheme. Results for lower values of ε are included in 

Appendix B. 
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Figure 4-6. Stop-and-Wait ARQ: Effective Throughput for a 9.6-kbps (GSM) Channel 

with ε = .  0.1
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Figure 4-7. Stop-and-Wait ARQ: Effective Throughput for a 64-kbps Channel with 
.   0.1ε =
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Figure 4-8. Stop-and-Wait ARQ: Effective Throughput for a 1.5-Mbps Channel with 
.   0.1ε =
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c. Effect of Hybrid-ARQ  on Effective Throughput 
For hybrid-ARQ, a convolutional encoder and a block interleaver are used 

prior to compression. A 60-byte header is added to each coded packet. The receiver sends 

each packet through a deinterleaver immediately after reception and then through a 

Viterbi decoder. The output of the decoder is examined for uncorrected or undetected 

errors. If any occur, the receiver then sends a negative ACK to the transmitter and 

requests retransmission of that packet. 

Figures 4-9 through 4-11 display the affect of packet size and the channel 

parameter  on effective throughput for the hybrid-ARQ scheme. Similar to the pure 

ARQ scheme, there is no significant difference in effective throughput between a 9.6-

kbps and a 64-kbps channel. The packet size is an important parameter of effective 

throughput for the 1.5-Mbps channel. The performance for ε =  is more stable when 

compared to the stop-and-wait ARQ scheme for channel conditions noisier than5 1 . 

When the channel average BER becomes greater than , the effective throughput 

drops dramatically. The results for lower values of ε are included in Appendix B. 

ε

0.1

40−

50−×

4 1×
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Figure 4-9. Hybrid-ARQ: Effective Throughput for a 9.6-kbps (GSM) Channel with 
.   0.1ε =
 

 
 

Figure 4-10. Hybrid-ARQ: Effective Throughput for a 64-kbps Channel with ε = .   0.1
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Figure 4-11. Hybrid-ARQ: Effective Throughput for a 1.5-Mbps Channel with ε = .   0.1
 
2.   JPEG2000 Error Resilient Mode   

This part of the simulations evaluates the performance of error resilient 

mechanisms of the JPEG2000 still image compression standard. The channel behavior for 

these simulations is not in the range (10 ) of the previous simulations but is 

restricted to a range (10 ) where considerable reduction of effective throughput 

was obtained while using the above schemes. The error resilient mechanisms used are 

those mentioned in Chapter ΙΙΙ. The rate ½ convolutional encoder with constraint length 

of 7 adds redundancy to the transmitted sequence of packets. The simulations are also 

repeated for JPEG2000 compressed images without error resilient tools in order to 

compare the respective results.  After the compression and before transmission, the pSNR 

of the image without error resilient tools is 37.078 dB and with error resilient tools, it is 

36.906 dB. For each case, the simulation takes into account the size of the packet and the 

steady-state probability of a packet to be in the bad channel (ε ).  

7  to 10− 2−

2−4  to 10−

Figures 4-12 through 4-14 show the performance of JPEG2000 on a compressed 

image segmented at various packet sizes with and without error resilient mechanisms and 
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transmitted through the simulated channel withε = . From these figures, it can be 

concluded that the error resilient features of JPEG2000 significantly enhance the image 

quality. This observation is reinforced under high channel noise conditions as well. The 

improvement when error resilient mechanisms are used appears to be in the range of 3 to 

10 dB.  

0.1

Additionally, a result that cannot be displayed in the figures is that, without error 

resilient mechanisms, about 15% of the received images could not be decoded due to one 

of the following reasons: 

• Input codestream does not commence with a start of sequence (SOC) 
marker 

• The upper left hand of the image has been displaced so far from the origin 
of the canvas coordinate system that the first tile of the image is 
completely empty 

• Input codestream does not appear to contain an initial start of tile (SOT) 
marker 

This number drops to 1% when error resilient tools are used. 

Figures 4-15 and 4-16 show the original and the compressed image. Figures 4-17 

and 4-18 show the received image without and with error resilient tools, respectively, for 

 and average BER10 .  Appendix B shows additional results for ε =  and 

. 

0.1ε =

0.001ε =

3− 0.01
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Figure 4-12. Performance of JPEG2000 With and Without Error Resilient Tools. The 

Packet size Used for Transmission is 1500 Bytes. 
 

 
 

Figure 4-13. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 800 Bytes. 
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Figure 4-14. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 400 Bytes. 
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Figure 4-15. Original Image. 
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Figure 4-16. Compressed Image (8:1). 
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Figure 4-17. Received Image without Error Resilient Tools (pSNR 19.20 dB). 
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Figure 4-18. Received Image with Error Resilient Tools (pSNR 26.40 dB). 
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F. SUMMARY 
The first part of this chapter described three basic data transmission schemes: 

forward error correction, stop-and-wait ARQ and hybrid-ARQ.  Wireless channels are 

modeled using the Gilbert-Eliot model, which is based on a two-state Markov process. In 

all cases, the discussion is supported by simple analysis. 

Experiments performed in this chapter include investigating the affects of these 

transmission schemes, the size of the compressed image packets and the channel behavior 

on the effective throughput of the channel. The error resilient tools of JPEG2000 code 

were used to enhance the image quality for specified channel conditions 
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V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK  

  The objective of this thesis was to investigate the performance of the JPEG2000 

still image compression standard and examine its error resilient mechanisms under 

various constraints of a bandlimited, noisy channel. JPEG2000 source code and JPEG 

source code were used to compare their performance. A wireless channel based on a two-

state Markov chain is modeled and simulated in conjunction with compressed image 

transmission.  

A. CONCLUSIONS   
The JPEG still image compression scheme has provided poor compression for 

grayscale images at bit resolutions lower than 0.5 bpp. At low bit resolutions, distortion is 

high and the subjective image quality is poor due to blockiness and ringing artifacts. In 

comparison, the JPEG2000 still image compression standard has provided higher 

compression rates (better than 80:1), with lower distortion and better image quality. 

JPEG2000 provides features, such as region of interest coding and lossless compression, 

that are not available in the baseline JPEG. The superior performance of JPEG2000 over 

JPEG however is at the expense of the complexity of the algorithm. Consequently, 

JPEG2000 is recommended for applications that require high compression rates while 

JPEG is appropriate for low complexity applications. 

Both compression schemes have been investigated for image transmission over 

bandwidth-limited, noisy channels. The bitstream of each compression scheme was 

encoded using three different error control schemes: FEC, ARQ and hybrid-ARQ. The 

baseline JPEG bitstream was found to be unreliable for image transmission over noisy 

channels due to frequent loss of synchronization between the bitstream and the decoder. 

In comparison, JPEG2000 provides various error resilient mechanisms that enable the 

decoder not only to achieve synchronization with the bitstream, but also to detect and 

correct errors that were injected into the bitstream during transmission. The received 

image quality with error resilient tools is superior to that of JPEG or JPEG2000 without 

error resilient tools; the improvement is in the range of 3 to 10 dB.      
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Image compression with a specified region of interest using JPEG2000 has also 

been examined. This feature of JPEG2000 enables the user to define regions of interest of 

any shape and size and code the selected regions at a better quality than the rest of the 

image. The effectiveness of the region of interest feature is demonstrated using several 

images and for different shapes. 

B.  RECOMMENDATIONS FOR FUTURE WORK  
 The Gilbert-Eliot channel based on a two-state Markov chain was used in this 

thesis. An extension of this work may consider more accurate channel models. For 

example, a model based on a four-state Markov chain, which can simulate two-state 

communication channels with two-state service rates (queuing system) for ARQ 

protocols such as go-back-N is of interest [25].  

For image transmission over simulated wireless channels, the forward error 

correction technique used in this thesis was the convolutional code. A future effort may 

investigate the use of other forward error correction schemes, such as turbo codes or 

Reed-Solomon codes, which may improve the image quality. 

In this work, the compressed image transmission was limited to point-to-point 

wireless channels. Investigation of image data transmission over multi-node networks is 

recommended along with an evaluation of error resilient mechanisms of JPEG2000 under 

network congestion conditions. 
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APPENDIX A.   

A. PROGRESSIVE BY RESOLUTION AND BY SNR TRANSMISSION 
The structure of the bitstream based on the packets and their organization in 

layers is responsible for the image reception by the decoder. The received image may be a 

single layer bitstream organization, a multi-layer “resolution progressive” bitstream 

organization, or a multi-layer “SNR progressive” bitstream organization. Figure A-1 (a)-

(d) and Figure A-2 (a)-(c) illustrates this process. As bitstreams corresponding to higher 

layers are received and added to bitstreams from previous layers, the quality of the image 

improves and the size increases. 

 

                

 
 
 
 
 

 

  (a). Level one of progressive by resolution transmission 

 

 
 
 
 
 

 

  (b). Level two of progressive by resolution transmission 
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  (c). Level three of progressive by resolution transmission 
 
 
 

 
 
 

 

  (d). Level four of progressive by resolution transmission 
 

Figure A-1. Levels of Progressive by Resolution Transmission. 
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  (a). Level one of progressive by SNR transmission 

 

  (b). Level two of progressive by SNR transmission 

 

  (c). Level three of progressive by SNR transmission 
 

Figure A-2. Levels of Progressive by SNR Transmission. 
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B. PERFORMANCE COMPARISON BETWEEN JPEG2000 AND JPEG 
In order to demonstrate the superior performance of JPEG2000 over JPEG for 

image compression, the image “Building” was used. JPEG is not able to compress the 

image for bit resolutions less than 0.15 bpp and the compressed image quality is 

unacceptable (by visual evaluation) due to the blocking artifacts. JPEG2000 can 

compress the images with acceptable quality for bit resolutions less than 0.065 bpp. 

Figures A-3 through A-5 provide results of comparison.  

 

 
 

Figure A-3. Compression Performance of JPEG2000 for the Image “Building” in 
Comparison with the JPEG.  
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Figure A-4. JPEG2000 Compressed Image with Bit resolution 0.0625 bpp. 
 

 

Figure A-5. JPEG Compressed Image with Bit resolution 0.15 bpp. 
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C. EXAMPLES OF REGION OF INTEREST CODING IN JPEG2000 
Figure A-6 illustrates an example of circular ROI. The image “Building” 

compressed at an average bit resolution of 0.25 bpp in a way that the selected region of 

interest has a higher fidelity than the rest of the image. 

 

 
 

Figure A-6. Example of Circular ROI and Bit resolution 0.25 bpp for the Image 
“Building”. 

 

During the embedded coding process, the coefficient bits of the ROI are placed in 

the bitstream before the background parts of the image. Thus, the ROI is decoded before 

the rest of the image. Regardless of the scaling, a full decoding of the bitstream results in 

a reconstruction of the whole picture with the highest fidelity available. In order to 

simulate the progressive decoding of an image transmitted with a region of interest, the 

image “Woman” (see Figure A-7) is compressed at different bit resolutions with the same 

circular ROI. Figure A-8 (a)-(d) present these results.  
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Figure A-7. Original Image “Woman”. 
 
 
 

 

 

0.0125 bpp 
  (a). Decoding Process: Level One of Image With Region Of Interest 
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       0.25 bpp 
 

  (b). Decoding Process: Level Two of Image With Region of Interest 
 

 

0.50 bpp 
  (c). Decoding Process: Level Three of Image With Region of Interest 
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2bpp 
  (d). Decoding Process: Level Four of Image With Region of Interest 

 
Figure A-8. Levels of Decoding Process of Image With Region of Interest. 
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APPENDIX B.  

Bursty channel behavior is simulated in order to determine the effectiveness of the 

error resilient tools of JPEG2000.   

Figures B-1 and B-2 show the effective throughput results for 9.6-kbps (GSM) 

channel with  and , respectively, by using the ARQ transmission 

scheme. Effective throughput is reduced for any packet size for channel BERs above 

7×10

0.01ε = 0.001ε =

-5.  

Figures B-3 and B-4 show the effective throughput for the hybrid-ARQ scheme 

for the same values of  as above. The effective throughput for hybrid ARQ is very low 

for channels with average bit-error-rates lower than 5×10

ε
-4. Error resilient tools are 

required for channel BERs above 5×10-4.  

Figures B-5 through B-10 show the performance of JPEG2000 error resilient 

tools. The compressed bitstream is coded additionally with rate ½ convolutional encoder 

with a constraint length of 7. For average channel BERs above 10 , error control 

schemes like ARQ and hybrid-ARQ lead to low effective throughput. The steady state 

probability takes the values of 0.01 and 0.001.  The improvement in performance with 

error resilient mechanisms is in the range of 2 to 10 dB compared to without error 

resilience.  

5−

ε
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Figure B-1. Stop-and-Wait ARQ: Effective Throughput for a 9.6-kbps (GSM) Channel 
with .   0.01ε =

 

 
  
Figure B-2. Stop-and-Wait ARQ: Effective Throughput for a 9.6-kbps (GSM) Channel 

with . 0.001ε =
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Figure B-3. Hybrid-ARQ: Effective Throughput for a 9.6-kbps (GSM) Channel with 
.    0.01ε =

 

 
 

Figure B-4. Hybrid-ARQ: Effective Throughput for a 9.6-kbps (GSM) Channel with 
. 0.001ε =
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Figure B-5. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 1500 Bytes. 

 

 
 

Figure B-6. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 800 Bytes. 
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Figure B-7. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 400 Bytes. 

 

 
 

Figure B-8. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 1500 Bytes. 
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Figure B-9. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 800 Bytes. 

 

 
 

Figure B-10. Performance of JPEG2000 With and Without Error Resilient Tools. The 
Packet size Used for Transmission is 400 Bytes. 
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APPENDIX C 

A. USAGE OF JPEG2000 VM8.5 SOURCE CODE 
1. Compression 
The following commands are used in a DOS command window in order to 

compress a grayscale image to a bit resolution of 2 bpp:  

       >VM8_co~1   -i WOMAN.pgm   -o WOMAN.jp2   -rate 2        (for Windows 98) or 

       >VM8_compress   -i WOMAN.pgm   -o WOMAN.jp2  -rate 2  (for Windows 2000) 

where –i identifies the image file and –o is the name for the compressed bitstream. The 

extension .jp2 is the standard for JPEG2000. The –rate 2 defines the bpp of the 

compressed bitstream; the original grayscale “WOMAN” image was 8 bpp. After 

execution of the above line we may observe   that the bitstream is not exactly 2 bpp; it 

may be less. That happens because when we ask for a compression rate (i.e. 2 bpp), the 

code recognizes that as the target and tries to choose a quantization step and truncation 

points of EBCOT in a way that one iteration to be enough to succeed. But as we can see, 

it is close but not exactly the one that we asked. The VM8.5 gives the choice to choose 

the low tolerance in bpp (default = 0.005), higher tolerance in bpp (default = 0), the 

normalized base step (default = 0.0078125) and the number of iterations (default = 0). 

Accordingly, we can write the following line command: 

>VM8_co~1   -i WOMAN.pgm   -o WOMAN.jp2   -rate 2   -low_rate_tol  0.0025   -iter 10   -

Cno_trunc 

A list of more options is shown in Table C-1. Additional commands and further 

explanation can be found in the source code functions in the form of comments.  
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Command Explanation 

-i Input image file with extension .pgm 
-o Name of the compressed bitstream 

-rate Compression ratio 
-Bresync  [Y|N] Insert resynchronization markers on packet boundaries for error resilience.   

-Ftiles  Breaks the image into tiles during compression. It is followed by two 
arguments in order to define the dimensions of the high-resolution grid.   

-Frev  Apply reversible decomposition of image components.   
-Flev   Define the number of decomposition levels (Default = 5 level 

decomposition). 
-Fdecomp    

mallat|spacl|packet 
  Specifies the kind of wavelet decomposition that the code will use. A 
parameter follows and may be "mallat" (or “1”), "spacl" (or “21”) or 
"packet" (or “321”).     

-Fgen_decomp  <decomp 
string> 

  Specifies the general wavelet decomposition. It accepts one or more 
integers in the range of 0 to 3. Each string is a combination of sub-strings, 
which are referring to individual levels.       

 
Table C-1. Commands of JPEG2000 VM8.5 Encoder    

 
2. Extraction 
After compressing an image we can store the bit stream in a library or send it 

through a channel. The command to extract the image is:  

       >VM8_ex~1   -i WOMAN.jp2   -o WOMAN_new.pgm 

where –i identifies the bit stream with the extension .jp2 . Table C-2 provides more 

options of VM8.5 decoder and their explanation. More detailed explanations can be 

found in the source code.  

 
Command Explanation 

-o   Identifies the name of the image file after extraction. 
-Cer    This command has to be used only when the compressed bitstream 

contains error resilience mechanism in use. Usual value for unreliable 
channels is 4.  

 
Table C-2. Commands of JPEG2000 VM8.5 Decoder. 

 
3. Example of Image Compression 

Figure C-1 shows a fingerprint image. The command to compress the fingerprint 

image (“finger”) is: 

 
                  >VM8_co~1   -i finger.pgm    -o finger.jp2    -Flev 5   -Fdecomp 2321   -

Fgen_decomp 111011111111111011111 
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Figure C-1. Original Image 8bpp. 
 

  

The resulting bit stream represents a compressed image at a bit resolution of 3.2152  bpp. 

The decompressed image is shown in Figure C-2.  

 

 
 

Figure C-2. Decompressed Image. 
 

In order to extract the image, we may use the following command: 

      >VM8_ex~1   -i finger.jp2   -o cmp_finger.pgm 

The quality of the decompressed fingerprint image of Figure C-2 can be stated 

excellent not only by human observation but also by a computer matching system since 
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the fine details are preserved much better than with image compression using JPEG. The 

pSNR of the above image is 50.754646. 

4. Example of Image Compression with Region of Interest 
Another option not included in Table C-1 is the region of interest generation of an 

image. The command “ -Rrgn xx R (or C) xx1 xx2 xx3 xx4” has to be written in order to 

define circular or rectangular ROI. This command specifies the shape (C for circular and 

R for rectangular) of the ROI as well as the coordinates of the ROI on Cartesian 

coordinate system with origin on the upper left corner of the image and maximum value 

for each axis equal to one. In case of circular region we have to specify only the center of 

the circle and the radius again in the same coordinate system (see Figure C-3).  Figure C-

4 shows compression of the image “Lena” with rectangular (see Figure C-4 (a)) and 

circular (see Figure C-4 (b)) regions of interest. All the coefficients of the region of 

interest are shifted by a value of 20 above the background coefficients. The command 

that has to be used for compression at bit-rate 0.25 bpp and rectangular ROI for this 

image is   

 
    >vm8_co~1  -i lena.pgm  -o lena_r5.jp2  -rate 0.25  -Rrgn 20 R 0.4 0.2 0.4 0.4 

 
 

    

     (0,0) 

     (1,1) 

For circular ROI 
xx1 xx2 xx3= 
0.5 0.5 

For rectangular ROI 
xx1xx2 xx3 xx4= 
0.4 0.2 0.4 
0.4 

(0.4,0.2) (0.6,0.4) 

 
Figure C-3. Defining Rectangular or Circular ROI of an Image.  
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(a) Rectangular ROI (b) Circular ROI 
 
 

Figure C-4. ROI Generation in a Given Image. 
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