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ABSTRACT 
 
 
 
The objective of this thesis is to study the performance of the MPEG-4 video 

coding standard in the presence of highly erroneous media, such as a wireless channel. 

MPEG-4 treats video sequences as a collection of objects rather than a collection of 

frames. A Matlab encoder that conforms to this approach is built for compressing raw 

video signals at various compression rates. A two-state Markov channel was used to 

simulate a wireless channel that introduces errors in the video bitstream and a decoder 

that utilizes error concealment techniques to hide these errors from the user was used to 

reconstruct the video sequence. The error resilient tools that the MPEG-4 standard 

provides to enhance the robustness in the presence of errors were simulated and proven to 

be advantageous compared to methods used in previous standards (MPEG-2, H.263, etc.). 

At the decoder, the use of error concealment techniques significantly enhanced the 

quality of the reconstructed video in high bit error rate environments. 
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EXECUTIVE SUMMARY 
 

The emergence of multimedia applications in the last decade and the network-

centric philosophy in the organization of future military operations make reliable 

transmission of video signals over wireless channels an important topic. However, video 

signals inherently demand considerable bandwidth. Compression techniques are utilized 

to reduce the required bandwidth by sacrificing the quality of the reconstructed video. In 

this case, the properties of the human vision system (HVS) are exploited to allow the 

exclusion of information with a resultant savings in the required transmission bandwidth. 

The bandwidth limitation of wireless channels along with their error prone nature makes 

the transmission of video over such media a challenging task. 

This thesis seeks to study the algorithms described in the visual part of the 

MPEG-4 video compression standard for efficient coding of video sequences and the 

error resilience tools that enhance robustness in the presence of errors. An additional 

objective of this work is to apply error concealment techniques in an effort to hide from 

the user the visual effects of the transmission errors introduced in the channel.  

In order to meet the goals of this work, a Matlab encoder was built to compress 

video signals at various compression rates. The compressed bitstream enters a forward 

error correction encoder followed by a two-state Markov channel. From the channel, the 

corrupted bitstream enters the forward error correction decoder to correct some of the 

channel errors and finally the video decoder, where the video is reconstructed. In the 

video decoder, error concealment techniques are applied in order to hide from the user 

the visual effects of remaining errors. 

 The Matlab encoder uses a motion compensation scheme and the discrete cosine 

transform to remove redundancies in the temporal and spatial domains. In order to exploit 

the content-based philosophy of the standard, shape coding is utilized. This method 

enables the encoder to consider the video sequence as a collection of video objects rather 

than frames. Nevertheless, the encoder is far from being a fully compatible MPEG-4 

encoder since it does not utilize entropy coding in the form of variable length codes to 

achieve the maximum compression, which decreased the compression efficiency. The 

 xvii



encoder achieved a compression ratio of 9:1 as opposed to a ratio of 190:1 achieved by 

the regular MPEG-4 encoder. 

 The simulation results demonstrated the advantage of using an error isolation 

technique, such as reversible variable length codes, when compared to the approaches 

used in previous standards (for example, MPEG-2 and H.261). The advantage of fixed 

packet size was also demonstrated. The simulations indicated that the utilization of this 

technique is more advantageous than the group of blocks approach used in MPEG-2 since 

fewer macroblocks are contained in the packet in high activity areas thereby making 

these areas less vulnerable to errors.  

The use of error concealment at the decoder improved the quality of the 

reconstructed sequence. Even under high error conditions (for example, BER = 7×10-2), 

the decoder managed to keep the quality measured as peak signal-to-noise ratio above 20 

dB. The hybrid method using spatial averaging in the first I-frame and simple temporal 

concealment in all other frames provided an additional boost in performance in all cases 

when compared to the pure spatial concealment method.  

During the course of this work several topics for possible future effort were 

considered. Suggestions for future work include the implementation of a robust image 

segmentation technique to make the encoder work with more complex sequences than a 

“talking head” with uniform background, the enhancement of the encoder with the ability 

to code color sequences and the use of unequal error protection for the object of interest 

(i.e., foreground) and all other objects in order to enhance performance without 

sacrificing much of the coding efficiency. 

In summary, MPEG-4 is a powerful tool for a variety of multimedia applications, 

including those applicable to wireless networks. The standard provides excellent 

compression of video signals and addresses the issues of errors and losses encountered in 

wireless channels using several error resilience and concealment tools. That MPEG-4 has 

been adopted in the 3G cellular networks is a testimonial to its wide acceptance in the 

industry.  
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I. INTRODUCTION 

A. BACKGROUND 
The emergence of multimedia applications in the last decade and the network-

centric philosophy in the organization of future military operations make reliable 

transmission of video signals over wireless channels an important topic. As the available 

time for decision-making is reduced in order to limit the window of dynamic responses to 

meet hostile threats, the need for reliable multi-node video conferencing tools that would 

provide accurate information flow between the field and the decision points is growing. 

Inherently, video signals demand considerable bandwidth. On the other hand, 

bandwidth limitations for wireless channels along with their error prone nature makes the 

transmission of video over such media a challenging task. Typically, compression 

techniques are utilized to reduce the required bandwidth by sacrificing the quality of the 

reconstructed video. In this case, the properties of the human vision system (HVS) are 

exploited to allow the exclusion of information with a resultant savings in the required 

transmission bandwidth while maintaining reasonable quality. 

Current standard compression techniques provide bit-rates from as low as a few 

kbps up to over 1 Mbps using a combination of intra-frame and inter-frame coding 

(MPEG 2, H.263, H.261, etc.), or intra-frame only (Motion-JPEG). The additional 

achievable compression with inter-frame coding, which is a form of temporal coding of 

consecutive frames, makes it a better choice for the transmission of video over low 

bandwidth media. 

In order to achieve higher compression ratios, all existing compression standards 

use entropy-coding techniques, such as variable length codes. This, however, makes the 

bit stream highly sensitive to errors.  Depending on the location of the errors, the decoder 

can lose synchronization with the encoder and the file can be declared undecodable, or in 

the best case scenario, can be decoded with significant degradation in quality. Thus, error 

resilience tools that attempt to limit the sensitivity of the bit stream in the presence of 

errors are essential for retaining quality in the reconstructed video.  
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Low delay is an important factor in real time video conferencing applications. 

This additional constraint significantly affects the quality of the reconstructed sequence 

as more robust error correction techniques, such as automatic-repeat request (ARQ) have 

limited use.  

Even though the use of error correction mechanisms and error resilience tools 

limit the appearance of errors, these errors have proven to be inevitable in such hostile 

environments as wireless channels. A robust video codec must utilize effective error 

concealment techniques in order to hide the presence of errors from the end user. The 

remaining redundancies in the spatial or temporal domain are exploited in this case to 

produce the best possible result and the effect of errors on the quality of the reconstructed 

video is minimized. 

B. THESIS OBJECTIVES 
The objective of this thesis is to investigate the performance of the transmission 

of ISO/IEC 144496 (MPEG-4) coded signals (low-bit-rate video) over wireless channels. 

Specifically, this thesis seeks to study the algorithms described in the visual part of this 

standard for efficient coding of video sequences. In order to gain insight into these 

algorithms and tools described in the standard, a Matlab codec is built. The codec 

supports object-based encoding techniques with three types of frame (I, P and B) coding.  

Since MPEG-4 targets transmission of low bit-rate video over wireless channels, 

it provides error resilient tools that are used to provide robustness in the presence of 

errors. The use of these tools will be simulated and the resultant improvement in the 

reconstructed video quality will be demonstrated. 

Finally, error concealment techniques that the decoder can effectively utilize to 

hide the effect of errors in the reconstructed frame will be investigated. Specifically, two 

error concealment techniques, operating in the spatial and temporal domain, will be 

simulated. Additionally, the performance of a technique combining the spatial and 

temporal methods of error concealment will be studied. 
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C. RELATED WORK 
In [20], Stuhmuller et al. developed an analytical model covering the complete 

transmission of video over wireless channel including rate-distortion performance, 

forward error correction and inter-frame error propagation using a two state Markov 

channel. In [28], Lu et al. modeled a correlated mobile fading channel using a finite-state 

Markov model. The authors simulated the transmission of video over this channel and 

compared simulation results concerning the performance of block codes as error 

correction mechanisms with the ones derived from the analytical model. In this thesis, a 

two state Markov model similar to the one used in [20] and [28] served as a model for the 

wireless channel over which compressed MPEG-4 video signals are transmitted. 

The advantages of the error resilience tools have been demonstrated by the 

MPEG-4 committee through a core experiment as detailed in [21]. This thesis utilized 

these tools to enhance the quality of the reconstructed video. In [16], Wang et al. 

presented a review of error control strategies and error concealment techniques that can 

be used for reliable video transmission over error-prone media. In this thesis, a 

combination of temporal and spatial error concealment techniques is used, and the 

effectiveness of this method in enhancing the quality of reconstructed video is 

demonstrated. 

D. THESIS ORGANIZATION 
This thesis is organized into five chapters and two supporting appendices. Chapter 

II provides an overview of the tools used to limit the redundancies of a video signal in 

spatial and temporal domains. Chapter III describes the tools that are utilized in the 

newest video compression standard and illustrates the use of the content-based 

philosophy of ISO/IEC 14496 (MPEG-4) . Chapter IV deals with the robust transmission 

of MPEG-4 video signals over erroneous media and compares the performance of the 

tools proposed by the standard. Simulation results of the transmission of an MPEG-4 

compressed video signal over a wireless channel, modeled by a two-stage Markov 

channel, are presented in this chapter. Additionally, this chapter demonstrates the 

advantages of using error concealment techniques in the decoder to produce visually 

desirable results. Chapter V summarizes the work done in this thesis and concludes with 

3



recommendations for further research. Finally, Appendix A includes a brief manual for 

using the MPEG-4 video reference software, publicly available from ISO, and shows 

results obtained from the use of this software by compressing two video sequences while 

Appendix B shows results obtained from encoding two video sequences with a Matlab 

encoder and their transmission over the channel.       
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II. VIDEO COMPRESSION OVERVIEW 

Video communication plays an important role in the world of telecommunication 

and multimedia systems. Since 1960 when the first videophone appeared in a primitive 

format [1], much research has been conducted and many standards have appeared with 

the goal to provide tools that would allow the transmission and storage of moving 

pictures in an efficient manner. In this chapter, the basic tools of video compression are 

presented. 

A. IMAGE FORMATS 
Images are two-dimensional signals. Each image is characterized by the number 

of lines and pixels per line. This is called the resolution of the picture and the larger the 

number of pixels in the picture, the better the quality. Each pixel is represented by three 

values: a luminance value and two chrominance values. The human eye is more sensitive 

to luminance values than chrominance values. Therefore, the first step in compression is 

subsampling of the chrominance values. Thus, if a pixel is represented by a fraction 

rather than all of the components, it is possible to achieve a first stage compression by 

omitting some information without degrading the quality.  

In most cases, the video signal is digitized directly from the camera using the 

CCIR-601 format. The resolution of the CCIR-601 differs between North America and 

Europe. In North America and the Far East, the resolution is 525 lines per frame with 30 

frames per second while in Europe there are 625 lines per frame with 25 frames per 

second [1], [2]. The active lines, not counting the blanking lines used for synchronization 

are 576 and 480, respectively. The number of pixels per line is 720 for both cases. 

Lower resolutions are used for efficient storage and coding. Source input format 

(SIF) is defined as having half the resolution of the CCIR-601 both in the spatial and 

temporal sense. Therefore, the resolution of SIF in North America and the Far East is 240 

lines per frame and 360 pixels per line with 25 frames per second while in Europe, the 

SIF resolution is 288 lines/frame and 360 pixels/line with 30 frames per second.  

In CCIR-601, the chrominance bandwidth is half that of the luminance. As the 

human visual system is less sensitive to chrominance values, CCIR-601 omits half the 
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chrominance values thereby resulting in a 2/3 reduction in data rate with no visual 

artifacts. This subsampling pattern known as 4:2:2 is shown in Figure 2-1(a). For every 

four luminance values, there are only two pairs of chrominance instead of four pairs. In 

SIF, the subsampling pattern 4:2:0 is used to reduce the data rate by ½ as shown in Figure 

2-1(b). For every four luminance values, one pair of chrominance values is used. Thus, in 

SIF, the horizontal and vertical resolutions of luminance will be half of the source 

resolution, but for the chrominance, while horizontal resolution is halved, the vertical 

resolution is reduced to ¼ of its original value [1].     

 

       

  

  

  

                      

(a)                                                        (b)  

Luminance block   Chrominance blocks  

 

 

Figure 2-1. SubSampling: (a) Sampling Pattern for 4:2:2 and (b) Sampling Pattern for 
4:2:0, From Ref. [1]. 

 

For videoconferencing applications, a common format called common 

intermediate format (CIF) was adopted.  CIF retains the high spatial resolution of the 

North American standard of 288 lines per frame and the high temporal resolution of the 

European standard of 30 frames per second. The image sampling pattern used is 4:2:0, 

similar to SIF. Since 360 is not divisible exactly by 16, which is the number of pixels in 

one line of a macroblock as defined in Section B, the number of pixels per line is 352. 

In applications, such as video conferencing and videophones, which are the main 

focus of this thesis, images with lower resolutions than the original are preferred.  

Furthermore, for certain applications such as video over mobile communications 

channels, it is possible to reduce the frame rate from 30 frames per second to 12.5 or 8.3 
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frames per second [1]. Reduced resolutions, such as Quarter-SIF (QSIF) and Quarter-CIF 

(QCIF), can be used for SIF and CIF pictures, respectively. In these formats, the spatial 

resolutions are halved in each direction. These formats are used in very low-bit-rate video 

applications and this thesis uses the QCIF format for video sequences. In applications, 

such as mobile video telephony, reduced resolutions, such as Sub-QSIF and Sub-QCIF, 

are also used. Table 2-1 summarizes the image resolutions of some of the image formats.       

 

 Sub-QCIF QCIF CIF 4CIF 16CIF 

Width (pixels) 128 176 352 704 1408 

Height (pixels) 96 144 288 576 1152 

 

Table 2-1. Image Resolution for Image Formats, From Ref. [2]. 
 

B. STRUCTURE COMPONENTS 
The building block of an image is called a pixel, which is an abbreviation for 

picture element. In order to cope with images more efficiently, other structure elements 

are defined by grouping pixels together. Thus, a block is an 8 × 8 group of pixels while a 

group of 4 blocks or a group of 16 × 16 pixels, is called a macroblock (MB). A slice is a 

row of macroblocks. A slice can start from any macroblock in the picture and end at any 

macroblock as long as the first slice starts at the first macroblock and the last ends at the 

last macroblock. Slices serve as resynchronization points at the decoder. When an error 

occurs in one slice and the synchronization at the decoder is lost, the decoder can look for 

the beginning of the next slice and resynchronize. These methods and the manner in 

which slices can be used to eliminate errors are discussed in Chapter IV of this thesis. 

Higher in the hierarchy of the structure elements of a video sequence are the 

frames, which are the actual pictures in the video sequence. Frames are divided into Intra-

frames (I-frame), Inter-frames (P-frame) and Bidirectional frames (B-frames). An I-frame 

is a frame where each block is coded without any reference to its previous or following 

frame. A P-frame has macroblocks coded using information from the previous frame and 

a B-frame uses information from both the previous and the following frame in order to 
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code its macroblocks. The manner in which macroblocks are coded in each frame will be 

described in the following sections of this chapter. 

Finally, a group of pictures (GOP) is a number of frames together. Each GOP 

starts with an I-frame and ends with either a P-frame or a B-frame if the codec supports 

bidirectional frames. This hierarchy is very important in order to identify different points 

inside a video sequence and use them as a reference. For example, the GOP number 

characterizes a scene in a DVD movie using the MPEG-2 format. Furthermore, if the user 

wishes to fast forward to a part of the video file while watching it, the decoder decodes 

only the I-frames and skips the others. The coding of one frame using another as well as 

the coding efficiency achieved following this structure will be discussed in more detail 

later in this chapter. Figure 2-2 illustrates the hierarchy of the structure elements of a 

video sequence.    

GOP1 GOP2 GOPN GOPN+1 

FRAME 

BLOCK

SLICE 

B 
P 

B 
B 

P B B I 

MACROBLOCK 

 

Figure 2-2. Hierarchy of the Structure Elements of a Video Sequence. 

 
C. TRANSFORM CODING 

A common characteristic of most images is that the neighboring pixels are 

correlated and therefore contain redundant information. The foremost task then is to find 
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a less correlated representation of the image. Two fundamental components of 

compression are redundancy and irrelevancy reduction. The goal of redundancy 

reduction is to remove duplication from the signal source (image/video). Irrelevancy 

reduction omits parts of the signal that will not be noticed by the end user. In the 

preceding section, the irrelevancy reduction methods, or subsampling methods, were 

briefly discussed. Redundancy reduction methods based on the discrete cosine transform 

(DCT) will be presented in this section.  

The goal of transform coding is to reduce the redundancy of information at the 

pixel level by transforming the values into another domain prior to data reduction. The 

strength of transform coding is that in most images, the energy is concentrated in the low 

frequency region, and thus, by retaining only a small portion of the coefficients, the 

decoder is able to reconstruct the image accurately or at least in such a manner that the 

human visual system is unable to distinguish the missing information. 

The discrete Karhunen-Loeve transform (DKLT) decorrelates data using a kernel 

based on the eigenvalue decomposition of the covariance matrix [2]. The DKLT is 

optimal in terms of coding gain (energy compaction) and decorrelation of the image. 

However, it is not efficient for real life applications for two main reasons. First, the signal 

statistics , i.e., the covariance matrix, have to be known a priori. Second, the eigenvalue 

decomposition is computationally intensive, thus making the transform inefficient for 

real-time applications. On the other hand, the Discrete Cosine Transform (DCT) is signal 

independent and computationally efficient, hence widely used in real-time 

implementations.  

The 1-D DCT for a vector with N elements is given by: 
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The inverse DCT is defined as follows: 
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A 2-D DCT transform is implemented by performing two consecutive 1-D 

transforms in the vertical and horizontal directions, respectively. The 2-D transform for 

an M×N image is defined as: 
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where C(v) is defined above and  
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A block of M×N pixels has MN coefficients with the F(0,0) coefficient defined as 

the DC coefficient and all others as the AC coefficients. Most of the energy is typically 

concentrated in the low frequency region [1]. If a portion of the coefficients is omitted, 

the decoder is capable of reconstructing the image without a significant loss in quality. 

The coefficients are reordered into a zig-zag fashion in a one-dimensional array as 

illustrated in Figure 2-3 (a) and are quantized using either a fixed or variable quantization 

step size.  Figure 2-3 (b) illustrates the distribution of energy as a function of frequencies. 
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(a) (b) 

Figure 2-3. (a) Zigzag Scan Method, (b) Frequency Distribution, After Ref. [3]. 
 

D. ENTROPY CODING 
The rearrangement of coefficients (see Figure 2-3) places the DC coefficient at 

the first location of the array and the AC coefficients are arranged from low to high 

frequency in both the horizontal and the vertical directions. The assumption is that the 

quantized DCT coefficients at higher frequencies would likely be zero, thereby separating 

the non-zero and zero parts.  

The rearranged array is coded into a sequence of run-level pairs. A run is defined 

as the distance between two non-zero coefficients in the array. A level is the non-zero 

value immediately following a sequence of zeros. The run-length encoded values are 

further coded using Huffman Coding [2]. 

Huffman is a variable length code algorithm in a sense that the codewords do not 

have a fixed length. This can cause synchronization problems at the receiver. If an error 

occurs, the receiver cannot synchronize and decode the rest of the code. This can lead to 

unacceptable quality out of the receiver and is something that the designer of a codec 

must recognize. In fact, most recent video codecs using MPEG-4 and H-263 have taken 

this problem into account and introduced points in the bitstream that the decoder looks 

for if a loss of synchronization occurs. These tools are described in Chapter IV. 

Even though Huffman is a lossless algorithm, the quantization of DCT 

coefficients leads to an overall lossy compression scheme. The coarser the quantization 
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step size for the coefficients, the more distortion the codec is going to introduce in the 

original information. This leads to a trade-off in video compression codecs: the more the 

compression required, the more distorted the result will be and vice versa. 

E. MOTION ESTIMATION AND COMPENSATION 
In the preceding paragraphs, techniques for decorrelating data in the spatial sense 

were described. Discrete cosine transform and quantization are used to remove the spatial 

redundancies within a frame of a video sequence. This type of coding is called intraframe 

coding. When dealing with video sequences, however, another type of redundancy exists 

that a codec must be able to exploit. 

Temporal redundancy refers to the redundancies that exist from one frame to the 

next. In most natural video sequences, especially those with little motion activity such as 

a speaker in front of a uniform background, consecutive frames possess a great deal of 

similarities and further reduction in the required bits can be achieved using inter-frame 

coding. A codec can compute the differences between successive frames and code only 

those differences. In general, these differences have small values and tend to be zero 

when sequences with low motion or luminance variations are being coded. Further 

compression can be achieved when instead of using the differences, the motion 

compensated differences are coded. This scheme requires motion estimation techniques 

to be adopted by the codec. Figure 2-4 illustrates an example of the use of motion 

compensation. In the figure, (a) is the anchor of the frame in question and (b) uses it to 

predict its motion vectors. The motion compensated error frame (c) and the frame 

produced from the subtraction of the two frames (d), i.e., without motion compensation, 

illustrate that the motion compensated error frame is much smoother and contains less 

high frequency coefficients after entropy coding, and thus, requires fewer bits to code it. 
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(a) Reference 
frame with motion 
vectors overlaid 

(b) Test frame 

(c) Motion 
compensated error 
frame. 

(d) Difference frame 
without motion 
compensation. 

 

 

Figure 2-4. Illustration of Motion Compensation. 
 

Motion estimation is performed at the block or at the macroblock level. Most 

modern standards use the macroblock level approach since in most natural scenes there is 

not much difference between adjacent pixel values. The most commonly used motion 

estimation technique in all standard video coders is the block matching algorithm (BMA). 

In BMA, each frame is divided into macroblocks and the motion of each macroblock in 

reference to the position of the macroblock in the previous frame is estimated. Then for 

maximum motion displacement of w pixels, the macroblock in the current frame is 

matched with the corresponding macroblock in the previous frame by applying a 

minimization criterion. The shifted position that yields the minimum metric is defined as 

the motion vector for this macroblock. Figure 2-5 shows the block matching algorithm 

technique. 
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Figure 2-5. The Previous and Current Frames in the Search Window, From Ref. [1]. 
 

The minimization criterion used is either the mean squared error, defined as 
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or the mean absolute difference, 
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where f2(m,n) is the luminance pixel value of the current frame in position (m,n), and 

f1(m+i,n+j) is the luminance pixel value of the same pixel shifted by (i,j) in the previous 

frame. Note that, based on the assumption that movement in a picture is only due to 

object motion, when there is no motion, the above metrics tend to be zero, i.e., the motion 

vectors are zero.  

Nevertheless, this exhaustive search for the best match requires (2w+1)2 

evaluations of the matching criterion. For this reason, MAD is preferred and used in 
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almost every standard codec today. Search methods aimed at reducing the number of 

calculations have been proposed in order to make systems suitable for real-time 

applications [1]. All faster methods rely on the fact that the number of search points can 

be reduced by checking specific points first and then move in the direction of the point 

that produces the minimum difference assuming that the distortion measures decrease 

monotonically as the search moves towards the best matched point. These algorithms can 

reduce the required number of computations needed to ,25 log w+  where w is the 

displacement [1]. 

F. VIDEO QUALITY MEASURE 
Since quantization introduces distortion into the reconstructed video sequence, it 

is necessary to define an objective criterion that can measure the difference between the 

original and the reconstructed sequence. Most video coders today are designed to 

minimize the mean square error between two sequences. 

If fo and fr are the original and the reconstructed video sequence, respectively, 

containing K frames and MN pixels in each frame, the mean square error or distortion is 

defined as: 

( )2

1 1 1

1 ( , , ) ( , , )
K M N

MSE o r
k m n

D f m n k f
KMN = = =

= −∑∑∑ m n k       (2.6) 

Usually, however, the peak-signal-to-noise-ratio (PSNR) in dB is used instead of 

the mean squared error as given by 


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2
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10log10            (2.7) 

where  is the maximum intensity value of the video signal, which is 255 for an 8-bit 

video. In this thesis, the PSNR measure is used for comparison between the original and 

the reconstructed video signals. For the calculation of PSNR over an entire video 

sequence, an average value of distortion over the corresponding frames is used in 

Equation (2.7) to compute the mean PSNR.  

maxf

The PSNR does not correlate very well with perceptual distortion between 

images. Thus, for a fixed , the higher the resolution and the number of pixels, 255max =f
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the smaller the distortion due to quantization (which can produce a large MSED ), thus a 

small PSNR. Additionally, this method does not take into account the relative position of 

the distortion within a frame or sequence. Conceptually, distortion in an area of the image 

that contains high frequencies, for example, text and edges, is more annoying to the 

human eye than the same distortion in a uniform background. The simplicity and the lack 

of better alternatives made the PSNR a widely accepted quality measure for images.  

G. GENERIC VIDEO CODEC 
The basic tools for video compression described in previous sections are part of a 

generic video codec shown in Figure 2-6. As input video enters the coder, a decision is 

made on the type of coding to be performed, either I-, P-, or B-frames. If the frame is 

going to be coded as an I-frame, DCT and quantization (Q) are performed at the 

macroblock level. Each macroblock contains 4 blocks on which DCT is performed. 

Inverse quantization and inverse DCT are performed in order for the coder to use the 

restored frame as a reference for the inter-coding of other frames. The coded I-frame 

coefficients are entropy coded to produce variable length codewords as described in 

section D, and the bitstream is transmitted over the medium. In the case of inter-frame 

coding, motion estimation and compensation are performed using as a reference frame 

one of the previously stored I- or P-frames. The difference between the original frame 

and the motion compensated frame is coded in a manner similar to intra-frame coding 

and the resulting codewords are transmitted. Motion estimation (ME) is performed at the 

macroblock level.  

The output bit-rate of the encoder can be made constant by using a buffer (traffic 

shaper). The bitstream before entering the channel fills the buffer, which sends out bits at 

the required channel rate. A feedback signal to the quantizer concerning the occupancy of 

the buffer and the bit-rate requirements can be included. When the buffer tends to 

overflow, the quantizer increases the step size to increase the compression by sacrificing 

quality and vice versa [1]. 
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Figure 2-6. Block Diagram of a Generic Video Encoder using Motion Estimation and 
Compensation, From Ref. [1]. 

 
H. SUMMARY 

In this chapter, basic functional blocks of video compression were discussed. 

Intra- and inter-frame coding techniques, utilized in order to remove the spatial and 

temporal redundancy between successive frames, were introduced. The hierarchical 

structure of a video sequence was described and a generic video coder was presented.  

In the following chapter, the extensions of these techniques, with the necessary 

modifications to support the new content-based approach adopted by the MPEG-4 video 

compression standard, will be discussed. 
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III. MPEG-4 VIDEO COMPRESSION STANDARD  

In Chapter II, general video compression techniques were presented. These 

techniques are widely used in standard video codecs today. MPEG-4, however, adopts a 

new approach to video coding. The content or object-based approach treats video 

sequences more like a collection of objects. New algorithms had to be developed for this 

reason. This chapter describes the structure of the video part of the standard and the 

associated new algorithms. Furthermore, a Matlab code was written aimed at building an 

entire codec (encoder/decoder) that would use these tools.  

Section A introduces the MPEG-4 standard by describing the new algorithms and 

the structure of the video sequence. Section B presents the adopted object-based approach 

and the need for new algorithms. Section C describes algorithms used in shape coding, 

especially the chain coding method. Section D deals with texture coding techniques while 

Section E describes motion estimation techniques in more detail. Finally, Section F 

discusses scalability and specifically presents the two scalability modes, spatial and 

temporal, while Section G presents results of encoded sequences using the MPEG-4 

video reference software publicly available from ISO. 

A. ARCHITECTURE 
The Moving Picture Experts Group (MPEG) developed audiovisual information 

standards MPEG-1 and MPEG-2 for the efficient storage of digital video in CD-ROMs 

and the coding of DVD and HDTV, respectively. The growing need for multimedia 

applications, which can be seen as a platform for the exchange of information coming 

from different sources, such as synthetic and natural, necessitated a new universal 

standard that would provide tools to compress video, audio and images in a flexible and 

interactive manner while covering areas that were neglected in the previous standards. 

Thus, this standard would support a very broad spectrum of applications [3].  

In 1993, the MPEG group started working on MPEG-4 and after six years, the 

standard was adopted by the ISO as “Generic Coding of Audio-Visual Objects: Part 2 - 

Visual,” ISO/IEC JTC1/SC29/WG11 N1902, FDIS of ISO/IEC 14496-2. The new 

standard adopts a video coding technique called the object based approach and suggests 
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tools to implement such an approach while at the same time giving the designer the 

freedom to apply different kinds of tools to solve a variety of problems.  

1. Features and Functions 
In a broad sense, multimedia is assumed to be a general framework of interaction 

with information originating from different sources, including video. A multimedia 

standard is expected to provide support for a large number of applications [5]. The 

MPEG-4 visual standard consists of a set of tools that enable applications by supporting 

several classes of functions, such as security, low delay and synchronization. Apart from 

the above, the MPEG-4 committee was seeking solutions to support eight key functions 

that were not supported by existing standards. These new functions have been divided 

into three major classes based on the requirements they support.  

a. Content-Based Interactivity 
Four functions are included in this class providing interactivity between 

the user and the data: content-based multimedia data access tools, content based 

manipulation and bitstream editing, hybrid natural and synthetic data coding, and 

improved temporal random access. Data retrieval from on-line libraries, interactive home 

shopping, and movie production and editing are applications that could use these 

functions.  

b. Compression 
This class contains two functions: improved coding efficiency and coding 

of multiple concurrent data streams. They aim at applications requiring an efficient 

storage or transmission of audiovisual information and their efficient synchronization. 

Information browsing over the Internet and virtual reality applications can make use of 

the above functions.  

c. Universal Access 
Robustness in error-prone environments and content-based scalability fall 

into the last class. These functions allow MPEG-4 encoded data to be accessible over a 

wide range of media, and with various qualities in terms of temporal and spatial 

resolutions for specific objects, which could be decoded by a range of decoders with 

different complexities. Applications benefiting from these functions are wireless 
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communications, database browsing and access at different content levels, scales, 

resolutions, and qualities [3]. 

2. Targets-Scope-Application Areas 
In order to support the above mentioned features, the representation and coding 

methods of arbitrary shaped objects need to be investigated. The object based approach of 

MPEG-4 is the most important aspect in video coding. Algorithms for segmenting frames 

into objects of interest and the method to represent and code objects with arbitrary shape 

are introduced. This approach improves interactivity since the position of an object in a 

frame can be altered.  

Compression efficiency and robustness to errors are important factors in the 

standard since video transmission over wireless channels is expected to be the next major 

application area. Since wireless video communication operates in error-prone 

environments, tools for providing robustness and fast resynchronization are required. 

The MPEG-4 visual standard has been explicitly optimized for three bit-rate 

ranges: below 64 kbps, 64-384 kbps and 384 kbps-4 Mbps. For high quality applications, 

higher bit-rates are also supported while using the same set of tools and the same bit 

stream syntax for those available in the lower bit-rates [5]. 

3. Structure Syntax 

In order to provide the maximum user interactivity as needed in multimedia 

applications, a special structure had to be adopted. An MPEG-4 video sequence consists 

of one or many video sessions (VS) of the same or different subjects. Each video session 

consists of one or many video objects (VO), which are the 2-D representation of an object 

inside a scene and the shape can be rectangular or arbitrary.  

A video object can be encoded in scalable (multi-layer) or non-scalable (single 

layer) form, depending on the application, represented by the video object layer (VOL). 

The VOL provides support for scalable coding. Spatial or temporal scalability can be 

used going from coarse to fine resolution. Depending on parameters, such as available 

bandwidth, computational power and user preferences, the desired resolution can be 

made available to the decoder [5]. Video object planes (VOP) are the elementary 

structure components of an MPEG-4 video sequence and they are the instantaneous 
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representations of a video object. The generation of VOP and VOL are discussed later in 

this chapter in Sections B and F, respectively. 

Finally, in order to provide random access to the sequence, optionally video 

object planes can be grouped together to form a group of video object planes (GOV). 

Figure 3-1 shows the hierarchy of structure components in an MPEG-4 sequence. 

Each video object plane is coded differently much like the frames are coded in all 

the preceding standards. Additionally, shape-coding tools are introduced in order to 

provide the ability to represent arbitrary shaped objects. Depending on the coding mode 

of each VOP (I-, P- or B-VOP), the information needed to represent each VOP includes 

shape, quantized DCT coefficients for intra-frame coded VOP’s, quantized DCT 

coefficients of the motion compensated error VOPs, and motion vectors for the inter-

frame coded VOPs.  
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Figure 3-1. MPEG-4 Video Bitstream Logical Structure, From Ref. [5]. 
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Figure 3-2 shows the block diagram of an MPEG-4 codec. The input frame is 

decomposed into multiple VOs. The multiplexer combines the coding information for 

each video object along with scene descriptions on where and when each object is going 

to be displayed in the sequence. The decoder decodes the information for each VO and 

uses the composition information to regenerate the sequence. 
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Figure 3-2. Block Diagram of MPEG-4 Video Codec, After Ref. [5]. 

 
4. Profiles in MPEG-4 
MPEG-4 provides a large and rich set of tools for the coding of audio-visual 

objects. For effective implementation, subsets of the MPEG-4 systems have been 

identified for specific applications. These subsets, called ‘profiles’, limit the tool sets that 

a decoder needs to implement [9]. For each of these profiles, one or more levels have 

been defined to restrict the computational complexity. A profile-level combination allows 

a codec builder to implement only a subset of the standard while maintaining 

interworking with other MPEG-4 devices built to the same combination and to check 

whether MPEG-4 devices comply with the standard. 

Profiles exist for various types of media content, such as audio, visual and 

graphics, and for scene descriptions. MPEG does not prescribe or advise combinations of 

these profiles but care has been taken to ensure that good matches exist between the 

different areas [9]. The basic profiles are termed simple, simple scalable, core and main. 
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The simple visual profile provides efficient, error resilient coding of rectangular 

video objects suitable for applications on wireless networks. Three levels are defined 

with bit-rates in the range 64-384 kbps. I-VOPs, P-VOPs, unrestricted motion vectors, 

slice resynchronization, data partitioning and reversible VLC are supported. A decoder 

using this profile can decode H.263 video streams [2].  

The simple scalable visual profile adds support for B-VOPs, spatial and temporal 

scalability to the simple visual profile. It is useful for applications that provide services at 

more than one level of quality due to bit-rate or decoder resource limitations, such as 

Internet use [9]. 

The core visual profile adds support for coding of arbitrary-shaped and temporally 

scalable objects to the Simple Visual Profile. It is useful for applications that provide 

relatively simple content-interactivity, such as Internet multimedia applications [2], [9]. 

The main visual profile adds support for the coding of semi-transparent and sprite 

objects to the core visual profile. Progressive and interlaced material along with gray 

scale shape coding is also supported in this profile. It is useful for interactive and 

entertainment-quality broadcast and DVD applications [2], [9]. 

Additional profiles were added during the development of the standard to support 

more specific applications and to give more flexibility to the designer by combining 

different tools. Version 2 of the standard added the advanced real-time simple (ARTS) 

profile, the core scalable profile and the advanced coding efficiency (ACE) profile 

suitable for real-time coding applications, such as the videophone, tele-conferencing and 

remote observations where additional coding efficiency is required combined with 

supplementary robustness to errors. Finally, version 3 added the advanced simple profile, 

fine granular scalability profile, simple studio profile and core studio profile [8], [9]. 

A level within a profile defines the constraints on the parameters in the bitstream 

that relate to the tools of that profile [9]. For core, simple, and main profiles, a subset of 

level constraints is given in Table 3-1. 
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Profile and Level 

 

Typical 
scene size  

Bit-rate 
(bit/sec)  

Maximum 
number of 
objects  

L1 QCIF 64 k 4 
L2 CIF 128 k 4 Simple 

Profile L3 CIF 384 k 4 
L1 QCIF 384 k 4 Core Profile L2 CIF 2 M 16 
L2 CIF 2 M 16 
L3 ITU-R 601 15 M 32 Main Profile 
L4 1920x1088  38.4 M 32 

 
Table 3-1. Subset of MPEG-4 Video Profile and Level Definitions, From Ref. [9]. 

 
B. OBJECT BASED APPROACH 

As mentioned previously, MPEG-4 treats video sequences as a composition of 

video objects with individual properties of shape, motion and texture. See Figure 3-1 for 

the hierarchical structure of the standard. For coding applications, the background that is 

considered as one video object can be coded only once if it is stationary over time while 

the foreground objects are coded through time. Since the foreground objects usually are 

only a fraction of the picture, this can lead to great compression efficiency [1].  

1. Video Object Plane Generation 
A video object at any given time is identified with a video object plane (VOP). 

Video object planes are the result of image segmentation algorithms applied on a frame. 

Each frame is segmented into two-dimensional semantic objects. There can be more than 

one VOP in each frame.  

There are a number of techniques used for image segmentation [1]. In this work 

only sequences of a “talking head” with a uniform background are considered. Matlab 

provides a number of edge detection methods. These methods look for places in the 

image where the intensity changes rapidly by determining the first derivative of the 

intensity. In places where the first derivative is larger than a threshold, edges are highly 

probable. From these methods, the “Canny” method was used to obtain the edges in a 

frame. The Canny method applies a 2-D Gaussian filter at the beginning to smooth the 

image and alleviate any noise and then uses two different thresholds to detect strong and 

weak edges [24], [25]. Weak edges are included in the output only if they are connected 
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to strong edges. Thus this method is more robust to noisy images as it is less likely to 

include outliers. Using the “Canny” operator and determining different threshold values 

in each sequence, the edge detection results for the video objects are shown in Figure 3-3. 

For more complicated frames, such as these with non-uniform background and multiple 

objects, the segmentation becomes a challenging task. Further investigation of 

segmentation was beyond the scope of this thesis. Since MPEG-4 does not specify a 

segmentation technique, a simple approach was adopted and only simple video sequences 

were chosen in this work. 

Claire 

Suzie 

Mother and 
Daughter  

Figure 3-3. Edge Detection Results for Three Sequences (Claire, Suzie, Mother and 
Daughter). The Left Column Shows the Original Frames and the Right Column Shows 

the Edge Detection Results.  
 

After segmentation and the generation of contours of the foreground object, the 

results of a binary alpha-map were obtained. Construction of binary and gray-alpha maps 

will be discussed in Section C of this chapter. This map has the dimensions of the frame 

or a bounding box of a VOP; pixels with coordinates that correspond to the foreground 
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object in the actual frame have value of 255 while pixels that correspond to the 

background have a value of 0. 

Figure 3-4 shows the results from the segmentation of frame 10 in sequence 

“Claire” and the formation of the two VOPs (background and speaker). Since the 

background was not recorded separately from the foreground, when the information of 

the foreground object is subtracted from the frame, pixels in the missing territory had to 

be interpolated in order to create a uniform background that would be ready for further 

coding. This procedure was required in order to smooth the sharp edges generated from 

the missing pixel area in the background image.   

(a) Original frame (b) Edge detection

(c) B inary alpha-map (d) Contour

(e) Foreground object (f) Background

 

Figure 3-4. Generating a VOP for One Frame of “Claire” Sequence. 
 
 
 
2. Bounding Box Generation 
After segmentation of the frames and the extraction of the VOPs, the arbitrary 

shaped object must be encapsulated in a boundary rectangle such that the object contains 

the minimum number of macroblocks [1]. The tightest rectangle that surrounds the object 
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is generated as shown in Figure 3-5. A control macroblock is the macroblock whose 

southeast point is the northwest point of the tightest rectangle. 
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Figure 3-5. Generation of Bounding Box Algorithm , From Ref. [1]. 
 

Each point of the control macroblock is tested as the northwest point of a new 

rectangle that completely contains the object and consists of integer number of 

macroblocks. This is the extended bounding box in Figure 3-5. The point of the control 

macroblock that leads to a rectangle that contains the minimum number of macroblocks 

is chosen to be the control point of the bounding box. Lastly, the top left co-ordinate of 

the tightest rectangle is extended to the control point co-ordinate in order to form the 

intelligently generated VOP in the above figure.  

C. SHAPE CODING 
The need to represent arbitrary shaped objects led to the introduction of 

algorithms capable of coding the shape information of objects. Before describing these 

methods some terms used in MPEG-4  must be defined. An alpha-map is a template that 

contains the VOP. The shape of an object S in a M×N image is defined as: 

{ ( , ) | 0 ,0 }S s m n m M n N= ≤ ≤ ≤ ≤         (3.1) 

where s(m,n) is defined as the alpha-map and the pixel values are in the range of 0 to 255. 

For each pixel when , the pixel is inside the object while when , ( , ) 0s m n > ( , ) 0s m n =
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the pixel is part of the background. When { }( , ) 0, 255s m n ∈ , a binary alpha-map is 

created. When , we have a gray alpha-map, which also contains 

information about the transparency of the object. Given that a background image is 

represented by 

( , ) [0, 255]s m n ∈

bf  and a foreground object ff  along with an alpha-map , the overlaying 

of the object on the background is represented by 

s

)n ( , )( , )
255b

s m n( , ) )ff m n f m n + 
 
 

( ,1 ( ,
255

s m f m n= −       (3.2) 

When a gray alpha-map is constructed, it is possible to see how the information of 

the transparency of the object with respect to the background is used. The gray alpha-map 

provides an efficient tool to code objects with a different transparency in special effect 

scenes. In this work, however, only binary alpha-maps are used.  

Macroblocks in the alpha-plane are called alpha-blocks or binary alpha blocks 

(BAB). BABs that lie completely outside the object have all elements zero and are called 

transparent BABs while BABs residing completely inside the object are called Opaque 

BABs. When a BAB contains pixels belonging both to the object and the background, it 

is called a boundary BAB. These are illustrated in Figure 3-6. 

Opaque 
block 

Transparent 
block 

Boundary 
block 

Bounding 
Box Video 

Object 
Plane 

 

 

 

 

 

 

 

Figure 3-6. Definition of Blocks in Texture Coding, After Ref. [3]. 

 

The main effort of the shape coding algorithms is to efficiently code boundary 

blocks as opaque; the transparent blocks are not coded at all since the information needed 
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is completely contained within the boundary block information. These blocks are only 

flagged as opaque or transparent in the coding process and the decoder decodes them 

accordingly. 

The shape coding algorithms are categorized into bitmap coding and contour 

coding [2]. In the former, in its simplest form, the coder scans the alpha-map and 

transmits a zero or one depending on whether or not the pixel is part of the object. This is 

somewhat inefficient since the correlation between neighboring pixels is not exploited. 

However, algorithms, such as Modified Reed and Context Arithmetic Encoding (CAE) 

[2], that provide tools to increase the efficiency of these coders have been proposed. In 

the latter, the contour of the object is followed and the corresponding position of a pixel, 

which is part of the contour, is coded. In this thesis the contour-coding algorithm was 

chosen for shape-coding in the encoder. 

1. Chain Coding Algorithm 
Chain coding is a lossless coding technique used to code the contour of the 

foreground object. The contour of a foreground object can be derived after image 

segmentation and the construction of the binary alpha-map as shown in Figure 3-4 (c) and 

(d).  The code contains the coordinates of the starting point and then the direction of the 

next pixel in the contour according to a predetermined pattern shown in Figure 3-7. 

 

 

 

 

 

2 3 
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0 
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Start of code  

Figure 3-7. Chain Code for Pixels with Eight Neighbors, After Ref. [1] and Ref. [2]. 
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In the example in the figure, the code transmitted is 1 0 2 2 3 2 6 5 4 3 4 6 0 7 7. 

To improve coding efficiency, a differential representation of the code is used. Exploiting 



the cyclic property of a chain code in eight directions, a differential chain code is 

constructed as follows [1]: 

                 (3.3) 
1 1

1 1

1

8, if 3
8, if 4

, otherwise

n n n n

n n n n

n n

c c c c
d c c c c

c c

− −

− −

−

− + − < −
= − − − >
 −

where d is the difference, cn the current chain code, and cn-1 the previous chain code. 

Next, the differential chain code is a variable length code according to Table 3-2 [1]. 

Consequently, the differential chain code for the example shown in Figure 3-6 is 1 –1 2 0 

1 –1 4 –1 –1 –1 1 2 2 1 0. 

At the decoder, after decoding the variable length code, the decoding of the 

differential chain code is performed using 

1(n nc c d−= + + 8)  mod 8        (3.4) 

 

Differential Code Huffman Code 
0 1 
1 00 
-1 011 
2 0100 
-2 01011 
3 010100 
-3 0101011 
4 0101010 

 
Table 3-2. Huffman Table for Differential Chain Code, From Ref. [1]. 
 

D. TEXTURE CODING 
Texture information is the pixel values of the intra-VOPs or the pixel values of 

the error residual of the motion compensated VOPs [3]. Block based techniques, such as 

DCT, are applied and the coefficients are transmitted over a channel. The DCT operation 

is applied at the block level (8×8 pixels), but the information transmitted is grouped into 

macroblocks (16×16 pixels).  
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As shown in Figure 3-8, three kinds of macroblocks are encountered in a VOP’s 

bounding box: macroblocks that lie completely inside the VOP’s shape, macroblocks that 



lie inside the bounding box but outside the VOP, and macroblocks that partially lie inside 

the VOP. For the first case, a simple 2D-DCT operation is performed for each block 

inside the macroblock. In the second case, the macroblocks are not coded at all. In the 

last case, the blocks that reside outside the VOP are coded as zero blocks while for the 

blocks that are partially inside the VOP, two methods (texture extrapolation and Shape 

Adaptive DCT) can be used. 

 

 
 
 
 
 
 
 
 
 

MB entirely  
outside of VOP 
(not coded ) 

Mb entirely 
inside the VOP 
(coded by  
conventional 
DCT) 

Bounding 
Box 

Mb partially  
outside of  
VOP  

 
Figure 3-8. Macroblock Based Texture Coding for Arbitrarily Shaped VOP, From 

Ref. [3]. 
 

Edges in images represent high frequency components. In this manner, 

performing DCT in a block containing edges is going to produce a large amount of 

significant coefficients. This is eventually going to affect the bit-rate. On the other hand, 

pixels that are not part of the VOP, are not visible at the decoder, so their values can be 

manipulated in such a way that an unnecessary increase in bit-rate will not be introduced. 

A method called texture extrapolation stretches the values of the region of VOP to the 

boundaries of the block so that high frequencies do not exist [2]. This method of 

extrapolating the values of the boundaries of the object to the boundaries of the block is 

an essential pre-processing step for motion estimation in arbitrary shaped objects and will 

be presented in Section E. On the other hand, the decoder can correctly decode since 

shape information is available. This method produces as many coefficients as the pixels 

inside a block.  
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A more suitable method called shape adaptive DCT (SA-DCT), which increases 

the efficiency of texture coding, has been implemented for processing the boundary 

blocks in this thesis. 



1. Shape-Adaptive Discrete Cosine Transform (SA-DCT)     
The SA-DCT is used for coding boundary blocks as it produces as many 

coefficients as the pixels inside a VOP. This improves coding efficiency when compared 

to a regular DCT in these kinds of blocks. No more computations other than the original 

DCT are required and the coefficients are in comparable positions as in the standard 

DCT. 

The SA-DCT algorithm is based on representing M×M blocks in terms of 

predefined orthogonal sets of basis functions. Basic 1D-DCT operations used in Figure 3-

9 illustrate the procedure. In Figure 3-9(a), the original 8×8 block is shown. First, the 

pixels are shifted vertically and aligned to the block boundary. The length of each column 

is computed and 1D-DCT transform is applied. For an N-point sequence the DCT is 

computed as stated in Equation 2.1 

1

0

(2 1)( ) ( ) ( ) cos , 0,..., 1
2

N

n

nF v C v f n v N
N

π π−

=

+ ⋅ ⋅ = =  
∑ −      (3.5) 

where 1( )
N

=C v for v  and0= 2( )C v
N

= for  . The resulting coefficients are then 

shifted horizontally and aligned with the left block boundary and the same transformation 

is now applied on the rows. The result is depicted in Figure 3-9(f), where the number of 

coefficients is equal to the number of pixels residing in the VOP area. 

0v ≠

At the decoder, the procedure is applied in reverse order. First, the horizontal 1D-

IDCT is performed and then the coefficients are shifted. The information on the shape is 

crucial in the decoding position in order for the decoder to correctly compute the amount 

of shifting of each row-column. Compared to texture extrapolation, this technique gains, 

on average, 1-3 dB PSNR measured over an image segment for the same bit-rate [2]. 
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(c) Position of 
coefficients after 
vertical SA-DCT 

(b) Ordering of 
pixels and  
vertical SA-DCT 

(a) Original 
Segment 

 

 

 

 

 

 

 

 

 

 (e) Final location 
of coefficients   

(d) Ordering of 
pixels and horizontal 
SA-DCT   

 

Figure 3-9. SA-DCT Transform on an 8×8 Foreground Object, After Ref. [2].  
 
2. Quantization and Run Length Encoding 
The human visual system is less sensitive to high frequencies than low 

frequencies. This property is exploited in order to decrease the required bandwidth. Thus, 

high frequency coefficients are quantized using a coarser step size than low frequency 

coefficients. This is done in practice by dividing the 8×8 block of DCT coefficients by an 

8×8 matrix of step sizes and rounding the result to the nearest integer. The quantization 

tables used in MPEG4 are different for intra and inter macroblocks and are shown below 

in Table 3-3. 

A quantization parameter (QP) is used in order to scale prior to quantization of the 

weighting matrix. The range of the quantization parameter is between 1 and 31. Fixed QP 

for all macroblocks results in a variable bit-rate output while for constant bit-rate needs, a 

rate control algorithm must be applied to constantly monitor the target bit-rate and 
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change the QP by sacrificing quality in favor of compression or visa versa. A QP of 1 

results in the higher bit-rate while a QP of 31 achieves the best compression but yields the 

worst quality.  

It is obvious that the step sizes are increased when moving from lower to higher 

coefficients, thus eliminating perceptually unimportant information. The quantization is 

performed according to: 

               ( , )( , ) roundq
uv P

F u vF u v
Q Q

 
=  

 
                   (3.6) 

where F(u,v) and Fq(u,v) are the DCT coefficients before and after quantization at 

position (u,v), Q is the quantization matrix, and Qp is the quantization parameter. 

 

Table 3-3. Quantization Tables. 
 

Figure 3-10 shows the results obtained from coding a video sequence (“Claire”) 

using flat quantization tables and Table 3-3. Even though the performance as measured 

by PSNR is superior when using flat tables (fixed step size for all coefficients), the 

perceptual quality of MPEG-4 compressed frames, using Table 3-3 for quantization, is 

very similar.  
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Figure 3-10. Comparison between Using Flat and Variable Step Sizes Quantization 
Tables. 

After quantization, run length encoding of the quantized coefficients is performed. 

Coefficients are zigzag scanned (see Figure 2-3(a) in the previous chapter) which 

produces a trailing of zeros for each block. After run-length encoding, the values are  

Huffman coded to further reduce the bit-rate, and the coded stream is appended to the bit 

stream. 

Figure 3-11 shows the original and the reconstructed frame of the sequence using 

flat and variable step size tables. Figure 3-11(a) shows the original frame while Figure 3-

11(b) shows the reconstructed frame using a flat quantization table with step size one. 

Figure 3-11(c) shows the reconstructed frame using an MPEG-4 table. The figure shows 

the first frame in the sequence coded in intra mode using a quantization parameter of    

QP = 24. 

36



 
Figure 3-11. Reconstructed Frame Using Flat and MPEG-4 Quantization Table. 

 
E. MOTION ESTIMATION  

Motion estimation and compensation in MPEG-4 is performed at the macroblock 

level. This means that each macroblock is associated with one motion vector. The 

techniques used are similar to the techniques described for motion estimation in Chapter 

II with the exception that some modifications are needed to code arbitrary shaped objects 

and especially for boundary macroblocks. Additionally, fractional accuracy motion 

estimation is performed, thereby boosting the performance of motion estimation results.  

As shown in Figure 3-12, macroblocks that reside completely inside the VOP are 

coded using standard techniques. Macroblocks residing completely outside the VOP but 

inside the bounding box are excluded from the motion estimation algorithm while for 

macroblocks containing the boundary of the VOP, a technique called polygon based 

matching is used.  In this technique, the matching error is computed as the sum of the 

absolute value differences between those pixels of the current macroblock that are inside 

of the VOP shape and of the corresponding pixels in the reference VOP [3]. As some of 

the reference pixels used in the matching may be outside of the reference VOP, a block 
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based repetitive padding is performed in order to extrapolate the values of these pixels 

from those inside of the reference VOP.  

 
Figure 3-12. Motion Estimation for Arbitrary Shaped VOPs, After Ref. [3]. 
 

In horizontal padding, each pixel at the boundary of a VOP is extrapolated to the 

outside in order to fill the transparent region of the boundary macroblock [1]. Vertical 

padding is performed similarly. The procedure is shown in Figure 3-13.  

 

 

 

 

Figure 3-13. Padding of Boundary Macroblocks, From Ref. [7].  
 

The macroblocks adjacent to the boundary macroblocks are called exterior 

macroblocks and are also padded with the values at the borders of the boundary 

macroblock. When an exterior macroblock has two or more neighboring boundary MBs it 
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uses the values of the neighboring boundary macroblock with the highest priority number 

according to Figure 3-14(b). The remaining exterior macroblocks, which are not located 

next to any boundary macroblocks are filled with 2r-1,where r is the number of bits used 

to represent a sample. For an 8-bit luminance component and associated chrominance, 

this implies filling with a value of 128. Figure 3-14 (a) shows the boundary and external 

macroblocks for an arbitrary shape VOP (star). In the figure, gray denotes external 

macroblocks, shade denotes boundary macroblocks and white are macroblocks padded 

with 128. 
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Figure 3-14. (a) Extended and Normal Padding for VOP (star), From Ref.  [6]; (b) 

Priority of Boundary Macroblocks Surrounding an Exterior Macroblock, From Ref. [8]. 
 
1. Fractional Pixel Accuracy 
In Chapter II, the block-matching algorithm (BMA) was presented using an 

integer value as step size. However, it is possible that a fractional number can be used for 

more accurate motion representation. In order to realize a step size of 1/K, the reference 

frame has to be interpolated using bilinear interpolation by a factor of K. For K = 2, a 

half-pixel accuracy is defined. MPEG-4 uses half-pixel accuracy motion estimation since 

it can provide a significant improvement in estimation over integer accuracy, especially 

in low-resolution video [2]. 

The motion estimation is performed in two steps. First, integer estimation is 

performed using the conventional BMA technique. This is represented as point A in 
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Figure 3-15. Next, using the result from the first step, eight neighboring points, marked as 

X, Y and Z in Figure 3-15, are tested for better match. The fractional points are 

interpolated as follows  

2
A Xh +=      (3.7) 

2
A Yv +=      (3.8) 

4
A X Y Zc + + +=     (3.9) 

Clearly, a fractional step size algorithm increases the computational complexity of 

the BMA by four. The overall complexity of the encoder is increased due to interpolation 

of the frames [2]. Because of the computational complexity, the half pixel accuracy 

algorithm was not implemented in Matlab in this work. 
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Figure 3-15. Sub-Pixel Search Positions, around Pixel Coordinate A, From Ref. [1]. 
 
2. Coding of Motion Vectors 
Each motion vector is represented as coordinates of motion in the x and y 

direction. The individual components are differentially coded with predictions based on 

motion vectors from three surrounding macroblocks as shown in Figure 3-16(a); VM is 

the current motion vector. For the special case of the surrounding macroblocks that are 

outside of the frame, the values of the surrounding motion vectors are taken as shown in 

Figure 3-16(b), (c) and (d). Figure 3-16(a) is applicable when the macroblock is 
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surrounded by all the macroblocks needed for prediction. When the macroblock lies on 

the border of a frame (dotted line), Figure 3-16(b), (c) and (d) are applicable. 

 

 

 

 

 

 

 

 

(b) 

(c) (d) 

(a) 

VM (0,0) 

VM3VM2

VM VM1

(0,0) VM2

VM VM1 

VM1 VM1

VM VM1 

VM3 VM2 

Figure 3-16. Motion Vector Prediction, From Ref. [1]. 
 

For each component, the predictor is calculated as the median between the three 

surrounding motion vectors: 

                   (3.10) 1 2 3Median( , , )M M MP V V= V

)This is done both in x and y directions and two predictors ( ,ˆ ˆ
Mx MyV V  for each direction 

are computed.  The difference between the components of the motion vector ( , )Mx MyV V  

and the predictor are variable length coded:  

                         ˆ
xMV MxD V V= − Mx     (3.11) 

                      ˆ
yMV MyD V V= − My     (3.12) 

 
F. SCALABILITY 

Scalability refers to the capability of recovering physically meaningful video 

information by decoding only partial compressed bit streams [2]. Scalable or layered 
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video coding was proposed during the design of the H.261 in the late 1980s [1]. The idea 

was to create two bit streams from the same video input. One bitstream, called the base 

layer, contains vital information for the decoding of the sequence and is transmitted over 

relatively reliable channels or with added protection and the other, called the 

enhancement layer, contains information that when decoded would increase the quality of 

the decoded sequence but is not vital for decoding. Figure 3-17 shows a spatial/temporal 

encoder with two layers, the base layer and an enhancement layer.   
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Figure 3-17. Block Diagram of a Two-Layer Spatial/Temporal Encoder, From Ref. [1]. 
 

Scalable or layered video can also offer adaptivity to channel error characteristics. 

For wireless applications, scalability allows the use of unequal error protection in 

response to channel characteristics. For Internet applications, layered coding provides a 

platform to deal with network congestion effectively; data in the enhancement layer can 

be discarded without resulting in undecodable files. Users with slow modems may 

decode only the base layer and receive reduced resolution video while users with fast 

modems may decode both base and enhancement layers.  

1. Spatial Scalability 
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Spatial scalability is the representation of the same video at different spatial 

resolutions [2]. The base layer is coded by itself and the enhancement layer employs a 



spatially interpolated base layer and together they provide the full spatial resolution of the 

input video source [1].  

An input frame is first spatially downsampled and coded using a conventional 

non-scalable coder. The result is the base layer contains coded information of the video 

sequence at a lower resolution. Before entering the channel, the encoder decodes the 

compressed bit stream and upsamples the output. This is then subtracted from the original 

frame and the resulting error frame is fed into another non-scalable coder to produce the 

enhancement layer.  

The procedure is shown in Figure 3-18 for a given frame from video sequence 

“Suzie”. Figure 3-18(a) is the input frame at the original resolution (144×176). Figure 3-

18(b) is the downsampled frame by a factor of 2 to a resolution of 72×88. This frame is 

coded and forms the base layer. The decoder receives the base layer and upsamples if the 

original resolution is requested from the end user. The result is depicted in Figure 3-

18(c). Figure 3-18(d) is the difference between 3-18(a) and 3-18(b); this difference is 

coded to realize the enhancement layer. Upon receiving and decoding the enhancement 

layer, the decoder adds the enhancement layer and the upsampled version of the base 

layer and displays the result at the original resolution as shown in Figure 3-18(e). 

In MPEG-4, the spatial scalability definition VOPs in the base layer are encoded 

as I-VOPs or P-VOPs while the VOPs of the enhancement layer are encoded as P-VOPs 

or B-VOPs. If a VOP in the enhancement layer is temporally coincident with an I-VOP in 

the base layer, it could be treated as a P-VOP. VOPs in the enhancement layer that are 

coincident with P-VOPs in the base layer could be coded as B-VOPs.  Since the base 

layer serves as the reference for the enhancement layer, VOPs in the base layer must be 

encoded before their corresponding VOPs in the enhancement layer. Figure 3-19 shows 

how a video sequence would be encoded using the above convention. 
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(a )  

(e )  

(d )  (c )  

(b )  

 

Figure 3-18. Effect of UpSampling and DownSampling of One Frame of “Suzie”. 
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Figure 3-19. Formation of VOPs in Base and Enhancement Layers, From Ref. [5]. 

 
2. Temporal Resolution 
Temporal scalability is defined as the representation of the same video sequence 

in varying temporal resolutions or frame rates. The spatial resolution of the layers is 

assumed to be the same as the input video. In temporally scalable coders, the upsampling 

and downsampling are done in the time domain. The simplest way to perform temporal 
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scalability is by frame skipping. A temporal downsampling by 2:1 is done by skipping 

every other frame and vice versa. 

For motion compensation, a frame in a base layer can only use frames in the base 

layer as a reference frame while a frame in the enhancement layer can use reference 

frames from both the base and the enhancement layers [1]. 

The simplest way to achieve temporal scalability is by coding I- and P-frames of a 

sequence as the base layer and B frames as the enhancement layer. Note that B-frames 

are not used for prediction so a loss in the enhancement layer would not degrade the 

visual quality of the decoded video but affect only the smoothness in the temporal 

domain.  

ISO/IEC 14496 refers to two types of temporal scalability modes. In Type I, only 

the object is enhanced temporally. In Type II, the whole frame is enhanced [2], [8]. 

Figure 3-20 shows the two enhancement types in temporal concealment that MPEG-4 

supports. In this figure, the gray area denotes the portion of the frame that is enhanced. 

 

 

  Base Layer   Enhancement Layer 
 

VOL1 Entire frame VOL0 Entire frame 

VOL0 Entire frame VOL1 Foreground Object 
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Figure 3-20. Types of Temporal Scalability in MPEG-4, After Ref. [8]. 
 
 

G. ISO/IEC 14496(MPEG4) VIDEO REFERENCE SOFTWARE 
In the previous sections of this chapter, algorithms that are part of the standard 

were described. In this work, a Matlab codec was constructed in order to be able to 

encode a sequence of frames using most of these algorithms. However, due to the 

complexity of the standard, not all of the above algorithms were employed. For example, 

the Matlab codec, even though it supports I-, P-, B-frames and object based encoding, 

does not use Huffman coding to variable length code the result and produce a bit stream, 

but stays at the symbol level. 

Additionally, the codec does not contain any form of rate control and produces 

variable bit-rate results. The compression is done according to a specified quantization 

parameter, which is fixed for the entire sequence. Furthermore, only gray scale sequences 

were used in order to keep the programming complexity and execution load within 

reasonable levels.  

All of the above significantly affected the performance of the Matlab codec since 

it differed somewhat from the real MPEG-4 encoder. In order to provide a feel for the 

results that a real MPEG-4 encoder would produce, the reference software for the MPEG-

4 verification model was used. The software is written in C++ and was built originally at  

Microsoft during the experimental phase of the standard to support the verification 

model. It runs under Windows and the commands are executed from the DOS command 

prompt. The user has to manually specify the encoding parameters in a parameter text 

file. In this section, some results from the coding of various sequences with this encoder 

are presented. In Appendix A, a manual for the software appears. 

Specifically, three sequences were used in order to test the software. The first was 

the “Foreman” sequence showing a speaker in front of a non-uniform but stationary 

background. The second was the “Car Phone” sequence of a speaker inside a car (moving 

background) and the third sequence was “News” showing two speakers with a ballet 

moving in the background. From these three, only the results from sequence “News” are 

shown in this section while results from the other sequences are displayed in Appendix B.  
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The “News” sequence contains 50 QCIF frames (144×176 resolution) recorded at 

30 frames per second. Figure 3-21 shows the results of coding the sequence at bit-rates of 

10, 50, 100 and 300 kbps, and Figure 3-22 shows the measured performance as mean 

PSNR. Figures 3-23 and 3-24 show the compression efficiency achieved for this 

sequence. 

   

10 kbps   50 kbps  

100 kbps   300 kbps    

Figure 3-21. Frame 5 from the Video Sequence “News” at Various Bit-Rates. 
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Figure 3-22. Rate-Distortion Curve for “News”. 

 

Figure 3-23. Compression Ratio versus Bit-Rate for “News”. 
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Figure 3-24. PSNR versus Compression for “News”. 
 

H. SUMMARY 
In this chapter, the visual part of the ISO/IEC 14496 (MPEG-4) video coding 

standard was presented. Functions and the hierarchy along with several algorithms that 

are part of the visual portion of the standard were described. These tools were 

implemented in a codec in Matlab that is able to encode video sequences at a variety of 

compression rates. Results of coding some test video sequences using the reference 

software were also presented.  

The next chapter will present tools of the standard that are designed to improve 

robustness in error prone environments. The effect of these tools and the performance in 

the presence of errors will be studied. Furthermore, error concealment techniques and 

their performance will be discussed. 
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IV. ROBUST TRANSMISSION OF MPEG-4 VIDEO 

The importance of networked video applications within the context of future 

naval information systems along with the growing commercial demand for mobile 

communications makes the issue of transmitting reliable video over error-prone 

environments, such as a wireless channels, a topic of considerable interest. 

The impact of residual errors varies from application to application. In voice 

applications, residual errors result in speech quality degradation, which can be designed 

to be within the range of tolerance [11]. In contrast, applications such as image transfers 

need error protection since errors lead to lost blocks. Furthermore, due to the predictive 

nature of a video encoding algorithm, residual errors in the compressed video files may 

corrupt an entire frame or a sequence of frames leading to unacceptable quality. In Figure 

4-1, a video transmission scheme is depicted. Raw video enters the video encoder and the 

resulting compressed bit stream is transmitted over the medium. The decoder receives the 

bit stream containing errors and decodes it to produce the reconstructed video. Quality 

degradation of the reconstructed video is due to the lossy compression in the encoder and 

the errors introduced by the channel. 

 
 
 Input 

Video 
Reconstructed 
Video  

Video 
Decoder 

Wireless 
Channel 

Video 
Encoder 

 
 
 
 
 

Figure 4-1. Video Transmission Scheme. 
 

In this chapter, the effect of errors in video produced in an error-prone 

environment, such as a wireless channel, is studied. Section A describes the model used 

to simulate the wireless channel. Such channels can cause severe degradation because 

effects such as shadowing, multipath loss, large and small scale fading effects can 

introduce consecutive bit errors or burst errors. Error resilience and error concealment 

techniques help mitigate this effect of noisy channels. Error resilience tools described in 
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the MPEG-4 standard are discussed in Section B and error concealment techniques used 

in the decoder are presented in Section C.  

A. WIRELESS CHANNEL MODEL 
The mobile radio channels are hostile media for video transmission. Beside 

absorption, the propagation of electromagnetic waves is influenced by the three basic 

mechanisms of reflection, diffraction and scattering. In conjunction with the mobility of 

the transmitter and the receiver, obstacles such as hills and buildings along with weather 

conditions can cause consecutive errors (bursts) leading to unacceptable quality of 

decoded video files. The bursty nature of these channels is captured by a two-stage 

Markov channel first introduced by Gilbert and generalized later by Elliot [18], [19].   

1. Gilbert Channel Model    
The physical channel is modeled as a two-state Markov chain as shown in Figure 

4-2. In the “bad” state, errors occur with probability PB while in the “good” state, errors 

occur with probability PG. The channel is completely described by the channel transition 

matrix  

         BB BG

GB GG

P P
P

P P
 

=  
 

              (4.1) 

where PGG and PBB are the probability that the channel remains in the same state as before 

while PGB and PBG are the transition probabilities that the channel changes from a given 

state to the other state. The steady state probability that the channel is in the bad state is 

defined as: 

             GB

BG GB

P
P P

ε =
+

            (4.2) 

which essentially characterizes the bursty nature of the channel. The average bit error rate 

is given by the following formula: 

                    (4.3) (1 )e BP P Pε ε= + − G
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Figure 4-2. A Two State Markov Model Representing the Basis for Gilbert-Elliot 
Channel. 

 

The average burst length, defined as the number of time units the channel stays in 

the bad state, is a geometric random variable with a mean of 1 while the times the 

channel is in the good state is a geometric random variable with a mean of 

GBP

1 BGP . The 

values of ε used in the simulations used reported here are 10-1, 10-2 and 10-3 . 

2. Error Correction Codes 
In erroneous media such as a fading channel, error correction techniques are used 

to improve signal quality by reducing the residual errors. Error correcting schemes use 

forward error correction codes (FEC) or automatic repeat-request (ARQ) techniques or a 

combination of both. The former is not as robust as the latter since the decoding 

capability of a FEC is constrained by the nature of the code while the latter two guarantee 

error free delivery. The drawback is that an ARQ scheme can introduce delays that may 

be unacceptable for real-time applications. Thus, only the FEC was considered in this 

thesis. Specifically, a convolutional error correction code was considered. 

Convolutional error correction codes work by adding redundant bits in the bit 

stream. A convolutional encoder converts a k-bit data stream into an n-bit codeword, thus 

adds n-k redundant bits. The rate of the encoder is defined as r = k/n. Figure 4-3 shows a 

rate ½ convolutional encoder using a linear shift register mechanism [22]. 
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Figure 4-3. Rate ½ Convolutional Encoder with Constraint Length 4, After Ref. [22]. 
 

The constraint length is defined as the maximum number of shifts over which a 

single information bit can affect the output. If the encoder has more than one branch of 

shift registers, then the constraint length is the number of shift registers in the longer 

branch plus one. In Figure 4-3, the encoder has one branch with three shift registers, thus 

the constraint length is 4.  

Free distance is another important figure of merit for convolutional codes. Free 

distance is the minimum Hamming distance between any two code sequences. During 

decoding using the Viterbi algorithm with hard decision decoding [12], the error 

correction capability of a convolutional code is directly related to free distance as: 

              
1

2
freed

t
− 

=  
 

           (4.4) 

where dfree is the free distance and a convolutional code can correct up to t errors 

occurring within a time span corresponding to one constraint length. In the above 

equation indicates rounding down. •  

B. ERROR RESILIENCE TOOLS IN MPEG-4 
The previous section described the bursty nature of wireless channels along with 

one of the many different error correction techniques that can be used for minimizing the 

residual errors. FEC, however, may not be able to correct all errors in the bit stream 
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especially when these occur in bursts. The design of the code with a minimum free 

distance limits the capability of the code to correct consecutive errors as Equation (4.4) 

states [22]. In this section, coding tools that can produce a bit stream that is robust to 

transmission errors, such that an error will not adversely affect the decoder operation and 

lead to unacceptable distortion in the reconstructed video quality, are presented. 

1. Resynchronization Markers 
One of the main reasons for the sensitivity of a compressed video stream to 

transmission errors is that the video coder uses VLC codes to represent various symbols. 

The nature of the VLC codes makes the code susceptible to severe errors even in the 

presence of single bit errors. Single bit errors can cause the decoder to lose 

synchronization with the encoder, thereby making it unable to decode the rest of the bit 

stream or causing a loss of the ability to correctly identify the precise location in the 

frame where the data belongs [12]. 

In the typical DCT block based coder with motion compensation, errors can result 

in syntax or semantic violations [10]: 

• Not valid codewords (syntax violation) 

• Motion vectors are out of range (semantic violation) 

• DCT coefficients are out of range (semantic violation) 

• The number of coefficients inside a block exceeds 64 (semantic violation). 

The decoder checks for the above conditions and when one of them occurs it then 

flags an error. One approach that deals with this problem is the insertion in the bit stream 

of uniquely identifiable markers (resynchronization markers) at various locations. This 

marker is a codeword that cannot be produced from any combination of the video 

algorithm’s table of VLC codewords. Upon detecting an error, the decoder hunts for the 

next resynchronization marker to gain synchronization with the encoder, thus localizing 

an error between two resynchronization markers. 

In spite of this, erroneous codewords are occasionally processed by the video 

decoder before a syntactic or semantic violation occurs. Thus, the distance between error 

location and error detection can vary significantly as shown in Figure 4-4. Therefore, the 

data between these two markers must be discarded since it is assumed to be incorrect.  
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Figure 4-4. Actual and Detectable Error Location in a VLC Bitstream, After Ref. [12]. 
 

Previous approaches, such as those used in H.261, H.263 and MPEG-2, logically 

partition each of the images to be encoded into rows of macroblocks (MBs) called group 

of blocks (GOB). These GOBs correspond to a horizontal row of MBs for QCIF images, 

or in the case of CIF frames, two GOBs exist in one macroblock row. Resynchronization 

markers are inserted at the start of each MB row. Thus, a detected error in one row of 

pixels in the image would cause the effect of a missing MB row in the reconstructed 

frame. MPEG-4 adopts a different approach. Instead of inserting resynchronization 

markers at the start of each row, the encoder has the capability to divide the stream into 

video packets where each is made up of an integer number of consecutive MBs. These 

MBs can span several numbers of macroblock rows within an image and can even 

include partial rows. The idea is to insert markers after a certain number of bits. This 

method, called the slice structure mode, was first adopted for H.263 [23]. 

Figure 4-5 shows the position of the resynchronization markers in a MPEG-4 bit 

stream and in a stream generated by a MPEG-2 or baseline H.263 encoder. When 

significant activity is present, the packets will contain information corresponding to fewer 

macroblocks while when activity is low, the corresponding number of macroblocks in the 

slice can be very large. For example, in the case of an I-frame, where each macroblock is 

intra coded there can be more slices in a frame than for a P-frame. Thus, an error will 

only affect a small portion of the frame. This is desirable because I-frames are the anchor 

frames used for motion compensation for other frames.  
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Slice Structure Mode used in MPEG-4  

Figure 4-5. Slice Structure Mode Adopted in MPEG-4 versus GOB in Baseline H.263, 
After Ref. [2]. 

 

In the same manner, errors in P- and B-frames will have a considerable effect on 

the quality of the reconstructed video but error concealment techniques, described in the 

next section of this chapter, could be used to mitigate this loss. Considering the case of an 

I-frame, a macroblock lying in the background needs fewer symbols for coding than a 

macroblock in the foreground, where more of the high frequencies occur. Thus, the effect 

of an error will be smaller in the foreground object since the packets contain a small 

number of macroblocks. 

Figure 4-6 shows the effect of errors in a reconstructed frame of sequence 

“Claire” when using the GOB and the slice structure in the insertion of the markers. The 

effect of the same errors is much smaller in the latter case. Packets of 50 and 100 symbols 

were used in the encoding of these sequences. An additional advantage of MPEG-4 

content-based encoding approach is shown in this figure. Since the encoder constructs 

essentially two bit steams, one for the foreground and one for the background, missing 

blocks that are produced due to errors in one VOP do not propagate into the other. This is 

due to the construction method of the frame using Equation (3.2). This will not be the 

case if frame-based encoding was used. 
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(b) Slice Approach 
(100 symbols per 
packet) 

(c) Slice Approach (50 
symbols per packet) 

(a)GOB 
Approach 

Figure 4-6. Effect of Discarding Data between Two Resynchronization Markers when 
Errors Occur in the Bit Stream. 

 

A resynchronization marker is placed at the start of the header of each video 

packet. The header contains information necessary to restart the decoding process, 

including the address of the first MB contained in the packet and the QP for the first MB. 

These are followed by a single bit called the header extension code (HEC). If this is set to 

1, the information specified in the VOP header, such as timing information, temporal 

reference and VOP prediction type, is duplicated in this packet header. HEC enables the 

decoder to correctly utilize the data contained in the current packet even if the packet 

containing the VOP header is lost or corrupted. 

 

2. Reversible Variable Length Codes 
From the above discussion, the length of the video packet plays a critical role in 

the quality of the reconstructed video as all the data inside a packet must be discarded. 

Ideally, small packet size would limit the amount of wasted data in the event of an error 
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causing loss of synchronization. This, however, would decrease coding efficiency since a 

large number of resynchronization markers would have to be added. An error localization 

mechanism that would efficiently localize the error would minimize the amount of 

discarded data when an error occurs. In this connection, the regular VLC codes do not 

have any features that would help in error localization as discussed in the previous 

section.  

In the MPEG-4 standard, the use of reversible variable length codes (RVLC), 

which have the property of being uniquely identifiable in both forward and backward 

directions, is proposed. In [13], a set of RVLCs called Exp-Golomb Rice codes is 

described along with the algorithm used to generate them. An example is shown in Table 

4-1. These codes match well the characteristics of a run-length code used to code DCT 

data and provide an efficient method to code and maintain good coding efficiency. [13] 
 Non-Reversible Variable Length 

Exp-Golomb Code 
k = 1 

Reversible Variable Length 
Exp-Golomb Code 

k = 1 
 Prefix Suffix Prefix Suffix 

0 0 0 0 0 

1 0 1 0 1 

2 100 0 101 0 

3 100 1 101 1 

4 101 0 111 0 

5 101 1 111 1 

6 11000 0 10001 0 

7 11000 1 10001 1 

8 11001 0 10011 0 

9 11001 1 10011 1 

10 11010 0 11001 0 

11 11010 1 11001 1 

etc.     

 
Table 4-1. Non Reversible and Reversible Exp-Golomb Codes, After Ref. [13]. 
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In Exp-Golomb Rice codes, the number of codewords of a given length grows 

exponentially with length. One way to construct reversible codes from non-reversible 

Exp-Golomb Rice codes is by substituting the prefix portion of the code with a prefix 

starting and ending with one. All odd-indexed bits in the prefix with the exception of the 



first and the last one are required to be zero. For example the codeword that represents 

number 6, in Table 4-1, has a prefix of 11000 and a suffix 0 when a non-reversible Exp 

Golomb Rice code is used. In order to construct a codeword that is part of a reversible 

code the prefix is replaced by 10001 while the suffix remains the same. In order to 

distinguish between codewords with the same length the even-indexed bits of the prefixes 

can vary arbitrarily allowing ( 1) 22 l−  possible prefixes of length , where l is odd. The 

prefix is concatenated by possible suffixes of length k [13]. When k = 1, as Table 4-1 

shows, the resulting number of possible codewords of length L is . Basically, 

codewords with the same codeword length are grouped by having equivalent odd-indexed 

bits while the even-indexed bits distinguish each individual codeword within the same 

group [26].  

l

2k

/ 22L

Single bit errors on these codewords can be classified as propagating or non-

propagating bit errors, depending on whether bit errors occur in odd-indexed or even–

indexed bits, respectively. An error that occurs in an odd-index (i.e. 1st, 3rd, 5th, etc.) bit of 

a codeword will result in a non-valid codeword while errors that occur in even-indexed 

(i.e. 2nd, 4th, etc.) bits of the codeword will cause an error codeword, although a valid one. 

Even-index bit errors will not result in a loss of synchronization whereas odd-index bits 

errors will. Error propagation in these codes could be minimized by bi-directional 

decoding. Since the codes are uniquely identifiable both in forward and backward 

direction, the decoder can start decoding in the backward direction to retrieve as much 

information as possible. 

Figure 4-7 illustrates an example of the ability of bi-directional decoding to 

minimize the propagation of errors and the difference when errors occur in odd and even 

indexed bits.  In this example, codewords from Table 4-1 were used. X denotes decoded 

codewords not defined in the VLC table or illegal codewords, and therefore, further 

decoding cannot occur.  
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Loss of  
Synchronization 
Error 
Propagation  

X X X 7 1 

Backward 
decoding in the 
case of odd-
index error 

Error 
propagation 
reduced 

2 4 X 7 1 
Bi-directional 
decoding in the 
case of odd-
index error 

Loss of  
Synchronization 
Error 
Propagation  

2 4 X X X Forward decoding 
in the case of odd-
index error 

No loss of 

synchronization

Forward decoding 
in the case of even-
index error (The 
third symbol was 6 
but it decodes as 7)

2 4 7 7 1 

Bit error in
even index
bit (Bits are
inversed) 

Bit error in
odd index
bit (Bits are
inversed) 

Sample sequence 2 4 6 7 1 
Bit stream: 1010 1110 100010 100010 01

Figure 4-7. Illustration of Error Propagation Reduction and Difference between Odd 
and Even-Indexed Bit Errors in Reversible Exp-Golomb Codes of Table 4-1, After Ref. 

[26]. 
 

The Matlab encoder developed in this thesis does not implement the reversible 

variable length codes since it operates at the symbol level as previously mentioned. In 

order to simulate the effect of error localization and the minimization of error 

propagation that RVLCs introduce, symbol errors that occur in the vector containing the 

run-length coded DCT coefficients are separated into errors that will cause loss of 

synchronization and errors that will not. When a symbol error occurs in the run part of 

the sequence, the error causes loss of synchronization and the corresponding macroblock 
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is declared missing, thus limiting the error propagation to within the macroblock 

boundaries.   

3. Data Partitioning 
Another tool enhancing the robustness of the video file inside an erroneous media 

is the data-partitioning mode. In this mode, motion and texture information are separated 

inside the bit stream using another kind of marker called motion boundary markers 

(MBM). The MBM is computed from the motion VLC tables using a search program 

such that this marker word is Hamming distance 1 from any possible valid combination 

of the VLC tables [13]. Thus, this word is uniquely decodable from the motion VLC 

tables.  

From the VLC tables in MPEG-4, the MBM is a 17-bit word whose value is 1 

1111 0000 0000 0001 [8], [13]. When an error is detected in the motion part and no error 

is detected in the texture part, the decoder can use the texture information to decode the 

corresponding macroblocks using, for example, zero motion vectors. Similarly, when an 

error is detected in the texture information and the motion information is available, the 

decoder can use the texture information of the corresponding macroblock in the previous 

frame and the decoded motion vectors of the macroblock in the current frame to 

reproduce an estimation of the macroblock without losing the information of the entire 

region. Some of these techniques are called error concealment techniques and are 

discussed in the following section. In order to simulate the data partitioning mode, 

motion and texture information of the macroblocks in the compressed stream are 

separated prior to sending over the channel, i.e., an error that can cause error propagation 

in the texture part of one MB does not necessarily affect the motion part at the same time. 

It is obvious that data partitioning when combined with RVLCs can minimize the 

effect of errors in the bit stream. Additionally, the use of fixed bit video packets as 

described earlier in this section leads to an error resilient bit stream. 

4. Bit Stream Syntax 
Based on the above, the syntax for a video packet is shown in Figure 4-8 with 

data partitioning enabled. The numeric subscripts indicate a MB number. In Figure 4-8, 

CMB is a one-bit field indicating whether the MB is coded or not. MBTYPE is a variable 

length code indicating the type of the MB (i.e., intra or inter). DQ is an optional 2-bit 
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fixed length field to indicate the incremental modification of the quantization value with 

respect to the previous MB. BMB is a VLC indicating which of the blocks of the MB is 

processed.  

 One Video Packet 

 

 

 

 

 
DCT data2DCT data1 … DQ 2 BMB 2 DQ 1 BMB 1 

…CMB 2  MV1 MBTYPE 1 CMB 1 

……Resync 
Marker TextureMBM MV HEC QP MB Resync 

Marker 

 

Figure 4-8. Bit Stream Organization inside an MPEG-4 Video Packet, After Ref. [13]. 
 

C. ERROR CONCEALMENT 
As discussed in Section A, even the use of error control mechanisms, when 

transmitting video data in extremely erroneous media such as a wireless channel, does not 

guarantee reliable transmission. Utilizing error resilience tools, described in Section B, 

enhances but does not guarantee the quality of the reconstructed video, which can be poor 

since whole packets may be missing, or in the best scenario, whole macroblocks may not 

be decoded leading to annoying artifacts. 

The goal of error concealment is to estimate and fill the missing macroblocks. The 

underlying idea is that there are still enough redundancies in the sequence to be exploited. 

In particular, in I-frames, it is possible to have a lost macroblock surrounded by intact 

macroblocks that are used to interpolate the missing data. In I-frames, the video packet 

contains fewer numbers of MBs.  In P- and B-frames, it is possible to have entire rows of 

macroblocks missing. In this case, spatial interpolation, to be described later in this 

section, will not yield acceptable reconstructions. However, the motion vectors of the 

surrounding regions can be used to estimate the lost vectors, and the damaged region can 
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be reconstructed via temporal interpolation. These techniques are called spatial and 

temporal concealment, respectively, and they fall into the category of post-processing 

techniques described in [15] and [16]. They are part of the decoder and interaction with 

the encoder is not necessary. 

1. Spatial Error Concealment 

Let f be an M×N frame of a decoded MPEG sequence as received in the output 

of the channel, possibly containing missing MBs. Each frame consists of Q macroblocks 

that have 16×16 pixels. Let jMB  be the lexicographic ordering of the jth MB in f . 

Supposing that the pth MB is missing, the goal is to estimate the pMB  from the 

surrounding macroblocks. 

Let ,m̂ nf  denote the reconstructed value of the sample at the mth row and nth 

column of pMB  and let  denote the set of indices of the pixels belonging to : pJ pMB

      { },( , ) |p m nJ m n f MB= ∈ p

f

        (4.5) 

In the spatial concealment method, every pixel in is reconstructed by 

spatially averaging the values of its four closest neighbors as shown in Figure 4-9 and 

given by: 

pMB

            , 1 , 1 1 ,16 2 1, 2 16,
ˆ (1 ) (1 ) (1 )m n m m n nf f f fλ µ µ λ µ µ− −  = + − + − − +          (4.6) 

where , 1mf −  is the closest element in the macroblock to the left of pf , ,16mf  is the closest 

element of the macroblock to the right of pf , 1,nf  is the closest element in the macroblock 

above of pf and 16,nf  is the closest element in the macroblock below pf , 1µ is the distance 

in pixels between the lost pixel and the closest pixel lying to the macroblock to the left of 

pf , 2µ  is the distance in pixels between the lost pixel and the closest pixel lying in the 

macroblock above to pf , and λ is a coefficient weighing the contribution of macroblocks 

on either side, above or below. 
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Figure 4-9. Spatial Averaging Method for Error Concealment. Gray Area is the 
Reference Area of the Neighboring Macroblocks, After Ref. [17]. 

 

Missing macroblocks are processed in a raster scan order. Equation (4.6) takes 

into account all the macroblocks that are neighbors to the macroblock in question. In a 

high bit error rate environment, however, adjacent macroblocks or even whole rows may 

be missing. In this case, only the uncorrupted neighboring macroblocks should be taken 

into account for reconstruction.  

The method does not attempt to accurately estimate the missing macroblock: 

rather to hide it from the user.  The reconstructed macroblock appears to be blurred due 

to the averaging nature of the algorithm, which is especially visible when areas with 

critical details are missing. Even though the gain measured in PSNR is significant, the 

reconstructed frame is not lacking artifacts as shown in Figure 4-10. Figure 4-10 shows 

the result of the spatial error concealment technique using all neighboring macroblocks 

(Method 1) and only uncorrupted neighboring macroblocks (Method 2) for a frame of 

sequence “Suzie” where 20 % of the MBs are missing. Note that when there are adjacent 

MBs missing, Method 1 does not perform as well as Method 2. Additionally, when the 

missing MB contains an area with critical details, e.g., nose or eye, both of these methods 

produce annoying artifacts. Nevertheless, the visual quality is much improved when error 

concealment is used. 
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(d) Method 2 (using only
uncorrupted MBs) 
PSNR=31.9940 dB 

(c) Method 1 (using all 
MBs) 
PSNR=25.7512 dB 

(b) Corrupted frame.
PSNR=15.6777 dB 

(a) Original frame

 

 

 

 

 

 

 

 

 

 

Figure 4-10. Spatial Error Concealment Results in a Frame from Sequence “Suzie” 
where 20% of the MBs are Corrupted. 

 

To measure the performance of this technique, a frame from sequence “Suzie” 

was used. MBs were declared missing randomly in the range of 1-30 % of the total 

number of MBs in the frame (a total of 99 MBs for this QCIF frame).  Method 1 and 

Method 2 were simulated separately. When the percentage of missing macroblocks is 

high, the probability to have adjacent missing macroblocks is also high. So the additional 

gain in PSNR that the second method adds is proportional to the number of missing MBs. 

Figure 4-11 illustrates the advantage of using only the uncorrupted neighboring MBs for 

the reconstruction of the missing MB especially in cases where many macroblocks are 

missing. Each point in the graph is obtained by averaging 20 runs. 
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Figure 4-11. Spatial Error Concealment in a Frame from Sequence “Suzie”. 
 

From Figure 4-11, the difference in PSNR of the two methods is proportional to 

the number of missing MBs in the frame. On average, with respect to the case of no 

concealment, Method 1 yielded a PSNR gain of approximately 13.8434 dB while Method 

2 enhanced the PSNR gain by approximately 17.0277 dB. When 30% of the MBs were 

missing, compared to Method 1, Method 2 produced a PSNR gain of 6.5748 dB.   

2. Temporal Error Concealment 
Temporal error concealment technique exploits the temporal redundancy in the 

video sequences to conceal the missing MBs.  The estimation of motion vectors can be 

performed by several operations [2]. 

When data partitioning mode is enabled during the encoding process, it is possible 

that the texture data of an MB is missing and motion vectors are available or vice versa. 

When only texture is missing, the decoder can perform motion compensation using the 

texture of the corresponding macroblock in the previous frame. When motion vectors are 
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missing, they have to be estimated. By simply assuming zero motion vectors, a copy of 

the corresponding MBs from the previous frame is obtained. This can work well in 

sequences with low motion activity. However, this approach will not perform well with 

sequences with frequent scene changes or high motion activity. 

Different methods to estimate missing motion vectors have been proposed [2]. 

The median or the average of motion vectors from spatially adjacent MBs can be used for 

this purpose.  Using the motion vectors of the corresponding MBs in the previous frame 

can be beneficial also. Since, in this thesis, only low motion sequences were used, the 

first method of assuming zero motion vectors was utilized in the decoder. 

Figure 4-12 shows the results of performing temporal concealment on a frame 

from sequence “Suzie”. In Figure 4-12 (a), the reference frame with the motion vectors 

overlaid is shown while Figure 4-12 (b) shows the current frame. When 20% of the MBs 

are declared missing the PSNR is 13.7505 dB; when temporal error concealment is used, 

the PSNR improves to 32.8882 dB. Note that this method does not leave extensive visual 

artifacts like those of the spatial concealment method shown in Figure 4-10. 

 

 

 

 

 

 

 

 

 

 

 

(a) Reference frame  

(d) Concealed current 
     frame  

(c) Current frame 20% of 
MBs are missing. 

(b) Current frame  

Figure 4-12. Temporal Concealment in One Frame of Sequence “Suzie”. 
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D. SIMULATION RESULTS 

Three different gray scale video sequences were used for the simulations. In all 

cases, the activity is low and the background is uniform to cope with the restrictions of 

the edge detection technique discussed in Chapter III. From these sequences, only the 

first 13 frames were used to minimize the size of the input file. For the same reason, a 

quantization parameter of 24 was chosen. The frames used for the video sequences 

consisted of three P-frames every I-frame and two B-frames every P-frame, resulting in a 

total of  two I-frames, three P-frames and eight B-frames:  

 

I  B  B  P  B  B  P  B  B   P   B   B    I 

1  2  3   4  5   6  7   8   9  10  11  12  13 

Frame Type 

Frame No 
 

 

In this section, only the results for sequence “Claire” are included. In Appendix B, the 

same graphs are provided for sequences “Suzie” and “Miss America”. 

Error concealment was implemented in the decoder. Both Methods 1 and 2 of 

spatial error concealment technique discussed in Section C were used. Additionally a 

hybrid scheme of spatial and temporal techniques was implemented in order to take 

advantage of the better performance of the temporal error concealment scheme illustrated 

in Figure 4-12. In this mechanism, the first frame of the sequence was concealed using 

Method 2 (only uncorrupted neighboring MBs were used in the reconstruction of the 

missing MB) of spatial error concealment while for the rest, temporal error concealment 

was used.  

In order to simulate the use of RVLCs, the assumption of limited error 

propagation within the same MB where a detected error occurred was made. Thus, when 

an error was introduced in the odd indexed symbol of the run-length sequence of the code 

of the texture information, the corresponding macroblock was declared erroneous and 

was replaced with zero values. Errors in the motion vectors were assumed to be without 

69



error propagation. Note that the encoder used in this simulation study does not reach the 

bit level as a VLC code was not utilized.  

Three channels with different steady state probability that the channel is in the 

bad state ε were used (0.1, 0.01, 0.001) and served as the erroneous media. The 

compressed file produced from the Matlab encoder was passed through the channel and 

the received file decoded. The results plotted are based on averaging results from five 

runs. A rate ½ convolutional encoder with constraint length 7 and free distance 10 was 

used as the error correction mechanism. This encoder corrects up to 4 errors occurring 

within a time span corresponding to one constraint length as given in Equation (4.4); the 

BER is significantly lower after error correction decoding. This improvement in BER 

when using a channel with ε = 0.01 is depicted in Figure 4-13. In the figure, the x axis 

denotes the channel BER before error correction decoding and the y-axis the residual 

BER. 

 
Figure 4-13. Gain in BER for Channel with ε = 0.01 due to FEC. 
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Figure 4-14 shows the results of the hybrid error concealment scheme in frame 1 

and 2 of the “Claire” sequence (I-, B-frames) when the file was transmitted over a 

communication channel with BER 9.3×10-4. Spatial error concealment was used to 

conceal the missing macroblocks in the first frame while temporal concealment was used 

for all the other frames. Missing MBs in the first frame are replaced by blurred MBs due 

to the nature of the spatial concealment algorithm. The second frame is an inter-frame 

using the first frame as a reference frame so the missing MBs of the first frame are 

propagated to the second. Additionally, the second frame has missing MBs due to errors 

that occurred in that frame (see the missing MB around the left eye of Claire). The 

temporal concealment method used for the second frame replaced the missing MBs with 

the corresponding MBs of the first frame after spatial concealment was performed. 

However, the macroblock covering the left eye of Claire was not missing in the first 

frame, so this method left no visual artifact for this MB since the motion is very low for 

this sequence. If spatial concealment was performed in all frames, this would not be the 

case since all missing MBs would have left visual artifacts after concealment. 
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(a) I-frame 
with errors 

(b) I frame 
with error 
concealment 

(c) B frame 
with errors 

(d) B frame 
with error 
concealment 

 

Figure 4-14. Illustration of Hybrid Error Concealment Scheme on Frames 1 and 2 (I-, 
B- frames) of Sequence “Claire” when Transmitted in a Channel with 01.0=ε with 

Resulting Channel BER = 9.3 . 410−×

In Section B, the use of resynchronization markers was discussed and the slice 

structure mode adopted in the H.263+ and MPEG-4 video coding standards along with 

variable bit size packets used in previous standards was discussed. In order to show the 

improved performance that the slice structure mode gives in the presence of errors, three 

different approaches when dealing with the construction of the video packets were used. 

In the first approach, video packets were constructed containing one row of macroblocks 

(GOB) regardless of the symbol number used to code them (MPEG-2 and H.263 Baseline 

approach). In the second, the slice structure mode was simulated constructing packages 

containing 50 symbols and in the third approach packages with 100 symbols were 

simulated. When a detected error occurred, the whole packet was declared missing and 

replaced with zero values. The results depicted in Figures 4-15, 4-16 and 4-17 for the 

three channels clearly show that the when RVLC is used the same errors result in higher 
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PSNR. It is also obvious that the smaller the packet the better the performance since less 

information is discarded in the presence of errors that cause loss of synchronization.  

Figures 4-18, 4-19, and 4-20 clearly show that the hybrid error concealment 

scheme that combines both spatial and temporal techniques performed better in all cases. 

In these tests, the effect of using RVLC was simulated.  

In the simulations, different BER values were used for the bad and good states of 

the channel. The steady state probability that the channel is in the bad state affects the 

resulting BER of the channel given by Equation (4.3). For a BER of 5×10-1 for the bad 

channel and 5×10–4 for the good channel, the results are summarized in Table 4-2. It is 

clear that smaller ε resulted in lower overall bit error rates, which were further reduced 

with the use of the error correction mechanism. 

 
Channel Condition ε BER before FEC BER after FEC Mean PSNR 

No Concealment 
0.1 3.14×10-3 1.39×10-4 17.846 
0.01 3.47×10-4 1.235×10-5 25.419 

0.001 6.75×10-5 1.89×10-6 34.181 
 

Table 4-2. BER With and Without FEC Achieved for the Same Pb and Pg for Three 
Channel Conditions. 

 

Lower bit error rates result in higher PSNR, so the steady state probability that the 

channel is in the bad state is directly related to the quality of the reconstructed video. 

Table 4-3 summarizes the probabilities of error for the bad (Pb) and good channel (Pg) 

that were used in order to achieve a PSNR of ~25 dB without concealment. The channel 

with a lower ε achieved the same performance with higher BER for the bad and good 

channels as a channel with a higher ε and lower BERs. 
 

Channel Condition ε Pg Pb 
0.1 5×10-3 5×10-2 

0.01 5×10-4 5×10-1 

0.001 10-2 10-1 

 
Table 4-3. Probabilities of Errors for the Bad (Pb) and the Good Channel (Pg) Used in 

Order to Achieve a PSNR of 25 dB Under Three Channel Conditions. 
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Figure 4-15. Different Packet Construction Approaches for a Gilbert Channel with ε = 
0.1. No Error Concealment. 

 

Figure 4-16. Different Packet Construction Approaches for a Gilbert Channel with ε = 
0.01. No Error Concealment. 
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Figure 4-17. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.001. No Error Concealment. 
 

 
 

Figure 4-18. Different Error Concealment Schemes for a Video Sequence using RVLC 
through a Gilbert Channel with ε = 0.1 

75



 
Figure 4-19. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.01. 
 

 
Figure 4-20. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.001. 
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E. SUMMARY 
In this chapter, the issue of compressed video transmission over erroneous media 

was investigated. The MPEG-4 error resilience tools were described and the results of a 

series of simulations demonstrating the advantages of these tools were presented. These 

tools enhance the transmission performance of compressed video files over erroneous 

media. Two error concealment techniques that can be effectively utilized in the decoder 

in order to improve the visual quality of the reconstructed video in the presence of errors 

were discussed.  

The simulations showed that the use of RVLC helped minimize the error 

propagation within the same frame. The size of the video packets plays an important role 

in the quality of the reconstructed video. When slice structure mode is enabled, 

resynchronization markers are placed in fixed bit intervals inside the bitstream. The 

combination of the two error concealment techniques performed better in all cases when 

compared to the spatial error concealment technique alone since the averaging nature of 

the algorithm leaves visible artifacts, especially when trying to conceal missing MBs that 

cover areas with critical details.   
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V. CONCLUSIONS 

The objective of this thesis was to investigate the performance of MPEG-4 video 

transmission over erroneous media. In order to achieve this objective, a Matlab encoder 

was built to compress files at various compression rates. A compressed bitstream enters a 

forward error correction encoder followed by a two-state Markov channel. From the 

channel, the corrupted bitstream enters the forward error correction decoder to correct 

some of the channel errors and finally the video decoder, where the video is 

reconstructed. In the video decoder, error concealment techniques are applied in order to 

hide the effect of remaining errors from the user. 

The initial intention was to use the MPEG-4 video reference software as an 

encoding tool of raw video signals that were to be transmitted over the channel.  

However, this software, even though it supports all the error resilience tools described in 

Chapter IV, does not have the ability to decode files with actual errors. For this reason, 

files compressed with the encoder built in Matlab were used for the simulations.   

The Matlab encoder uses motion compensation and DCT to remove redundancies 

in the temporal and spatial domains. Additionally, in order to exploit the content-based 

philosophy of the standard, shape coding is utilized. Three types of frames are supported: 

I-, P- and B-frames. This encoder, however, is far from being an MPEG-4 encoder since 

it does not utilize entropy coding in the form of VLC codes to achieve the maximum 

compression. Simple rate control was used in order to produce constant quality at the 

lowest possible variable bit-rate by assigning a constant quantization parameter 

throughout the video sequence. 

A two-state Markov channel with three different channel conditions was 

considered for the simulation of the wireless channel. Error resilience tools, such as the 

RVLC, slice structure mode and data partitioning, were simulated. The use of RVLC was 

simulated assuming that errors in the bitstream are not propagated outside the macroblock 

in which they occur. At the decoder, three error concealment techniques, spatial, temporal 

and a combination of spatial and temporal, were used and compared with each other. 

 
79



A. SIGNIFICANT RESULTS 
The absence of entropy coding in the encoder decreased the compression 

efficiency. The Matlab encoder could only achieve a compression ratio of 9:1 as shown 

in Figure 3-10 when QP = 31 was used while the C++ MPEG-4 encoder achieved a 

compression ratio of 190:1 as shown in Figure 3-23. Even though the sequences used in 

the two cases were not the same, the difference in compression ratios is significant and 

illustrates the performance limitations of the Matlab encoder. 

The simulation results in Figures 4-15, 4-16 and 4-17 demonstrate the advantage 

of using an error isolation technique, such as reversible variable length codes, when 

compared to the approaches used in previous standards (for example, MPEG-2 and 

H.261). The advantage of fixed packet size was also demonstrated (see Figure 4-6). The 

simulations indicated that the utilization of this technique is more advantageous than the 

GOB approach used in MPEG-2 since fewer macroblocks are contained in the packet in 

high activity areas thereby making these areas less vulnerable to errors.  

The use of error concealment at the decoder improved the quality of the 

reconstructed sequence. Even under high error conditions (for example, BER = 7×10-2 

with ε = 0.1), the decoder managed to keep the quality measured as PSNR above 20 dB 

as shown in Figure 4-18. The hybrid method using spatial averaging in the first I-frame 

and simple temporal concealment in all other frames provided an additional boost in 

performance in all cases when compared to the pure spatial concealment method (see 

Figures 4-18, 4-19 and 4-20). 

B.  FUTURE WORK 
The main limitation of the encoder is the lack of an algorithm that would 

effectively segment images into background and foreground objects. In this thesis a 

simple edge detection method was used that worked well for sequences containing a 

“talking head” with uniform background. More efficient image segmentation methods 

could be applied to improve the encoder performance for more complex sequences.  

The absence of entropy coding in the form of variable length codes limited the 

coding performance of the encoder in this work. The use of RVLC was simulated by 

assuming that errors do not propagate outside the macroblock boundaries. The 
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implementation of an exponential Golomb-Rice reversible code may enhance the coding 

efficiency and may lead to more accurate error isolation.   

In this thesis, the same forward error correction scheme was used to limit the 

presence of errors for both the foreground and background objects. However, missing 

macroblocks in the foreground are more annoying than missing macroblocks in the 

background since the error concealment techniques used in this work performed better in 

areas containing low details (background). By using more powerful error protection 

schemes to protect the objects of interest (e.g. foreground) compared to a simple scheme 

for all other objects the performance would be enhanced without sacrificing coding 

efficiency.  

In this thesis, only the video aspects of natural sequences of the standard were 

exploited. MPEG-4 also includes algorithms for compressing still images with the use of 

wavelet decomposition comparable to JPEG-2000. A study to compare the two standards 

for the compression of still images will be of interest. 
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APPENDIX A.  MPEG-4 VIDEO REFERENCE SOFTWARE 

In this appendix, a summary of the MPEG-4 video reference manual, originally 

developed by the Microsoft Corporation during the experimental phase of the MPEG-4 

standardization process, is provided. The original manual was provided by Simon A. J. 

Winder of Microsoft Corporation [27]. The software is freely available form ISO/IEC 

site. 

The software runs under a Windows console and compiles into three executables: 

encoder.exe used for encoding and reconstructing raw YUV files, decoder.exe used to 

decode compressed bit streams, and convertpar.exe used to convert old version parameter 

files needed for the encoding process. 

This software can only deal with 4:2:0 YUV. In this file format, the Y, U, and V 

planes are written one after the other in that order. If there are K frames of video, then the 

components are written consecutively: Y0, U0, V0, Y1, … ,YK, UK, VK. The planes are 

simply raw pixel bytes written row-by-row, top left to bottom right. If the image size is 

M×Ν, then the size of the Y plane is ΜΝ bytes and the U/V planes are each 4
MN  bytes. 

The total number of bytes in the file is3
2

KMN . No header information is present in the 

file. 

A video sequence can be encoded both in frame based encoding mode and object 

based encoding mode. In the latter case a segmentation mask file has to be provided. 

Files with segmentation information must have extension *.seg. These files typically 

contain binary segmentation maps for shape-based coding or for grayscale alpha plane 

coding. Each pixel is represented by a byte and these bytes are organized as one plane per 

frame and each plane is written row-by-row, top left to bottom right. There is no header 

information. If the image size is M×N, then the size of the alpha plane is MN bytes and 

for an K frame sequence, the total number of bytes in the file is KMN. In the case of a 

binary alpha mask, the pixel value is either 0 or 255, indicating transparent or opaque 

pixels, respectively. In the case of a segmentation mask, the pixel value indicates to 

which one of multiple binary masks the pixel belongs. For example, three regions of the 
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image can be assigned values 0, 1, and 2. In this way, different parts of the image can be 

coded; depending on which mask number is chosen during the encoding process. In this 

case, regions of the image that are not equal to the chosen mask number would be 

considered to be transparent by the encoder. Finally, pixel values can be used to indicate 

transparency in the range 0 (transparent) to 255 (opaque). In the case of a grey-scale 

alpha-map, a file with extension *.aux has to be present.   

A. ENCODING A VIDEO SEQUENCE 
The operation has to be performed from the DOS command prompt. For example, 

encoding sequence news.yuv, a QCIF sequence (176x144), the following command has to 

be executed 

Encoder news.par 

news.par is essentially a text file containing all the parameters for the specific encoding 

operation. The result from this encoding operation is a compressed file with extension 

*.cmp and a reconstructed file with extension *.yuv stored under the specified directory in 

the parameter file. Extensive information of the parameters in a parameter file can be 

found in the documentation that comes with the software. 

B. DECODING A COMPRESSED FILE 
The basic format for decoding a compressed file is the following: 

Decoder [compressed filename] [reconstructed filename][frame width][frame height]  

In the compressed filename, the extension *.cmp has to be provided while this is not 

necessary in the reconstructed filename. For example, the decoding command for the 

previous coded sequence news would be:  

decoder news.cmp news 176 144 

If the encoding was frame based, the decoder will provide the file news.yuv in the 

same directory where file decoder.exe exists. In case that object based encoding was 

chosen the decoder will provide the segmentation file news.seg in the same directory 

where the binary mask was chosen or provide the file news.aux if gray scale alpha-map 

with transparency information was provided during encoding process. 

 

 
84



C. RATE CONTROL 
There are two types of rate control: MPEG-4 rate control and TM5 rate control. In 

MPEG rate control, the quantizer is only changed on a frame basis whereas the TM5 rate 

control is macroblock-based. For both rate control types, RateControl.BitsPerSecond 

must be set to indicate the number of bits per second. 

MPEG rate control is available but only works correctly under limited situations. 

The main limitation is that it does not support B-frames. When used with I- and P-frames, 

the first frame must be intra-frame coded for the rate control to function correctly. It is 

also necessary to adjust the values of the quantization parameter for I-VOPs and P-VOPs 

for the initital intra- and inter-frame coded VOPs. For the remaining VOPs the rate 

control takes over and adjusts the quantization parameter accordingly. When the 

encoding operation is over, it reports a mean quantization parameter. The user must run 

the encoder again defining as quantization parameter for P-VOPs the reported mean 

quantization parameter. MPEG-4 rate control will skip frames if the required bit-rate is 

too low. 

TM5 rate control is the recommended form of rate control (it is free from bugs) 

and works correctly for I-VOPs, P-VOPs, and B-VOPs without user intervention. If the 

bit-rate is set too low, TM5 rate control will eventually set the quantizer to 31 and it will 

not skip frames. TM5 rate control cannot be used with non-rectangular VOPs. 

D. ERROR RESILIENCE 
The encoder and decoder support the MPEG-4 error resilient syntax. The encoder 

will create an error resilient bitstream when the correct elements are enabled. However, 

the decoder will not be able to decode a stream containing actual errors because error 

recovery is not implemented. This is the reason why compressed files with this software 

were not used for the channel simulations in this thesis. 

E. SUPPORTED TOOLS 
Table A-1 lists the tools of the MPEG-4 standard that this software supports. 
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Tool Version Comments 
Basic(I-VOP, P-VOP, AC/DC Prediction, 

4MV, Unrestricted MV) 
1 Supported 

B-VOP 1 Supported. No MPEG rate 
control. 

P-VOP with OBMC 1 Supported 
Method 1, Method 2 Quantisation 1 Supported 

Error Resilience 1 Syntax only. No recovery from 
error supported. 

Short Header (H.263 emulation) 1 Decode only. 
Binary Shape (progressive) 1 Supported. No automatic VOP 

generation. 
Grayscale Shape 1 Supported 

Interlace 1 Supported 
N-Bit 1 Supported 
Sprite 1 Supported. No warping 

parameter estimation. 
Still Texture 1 Supported 
NEWPRED 2 Upstream signaling is simulated 

not implemented. 
Global Motion Compensation 2 Supported 

Quarter-pel Motion Compensation 2 Supported 
SA-DCT 2 Supported 

Error Resilience for Still Texture Coding 2 Supported 
Wavelet Tiling 2 Supported 

Object Based Spatial Scalability (Base) 2 Supported 
Object Based Spatial Scalability 

(Enhancement) 
2 Supported 

Multiple Auxiliary Components 2 Supported 
Complexity Estimation Support 2 Bitstream syntax supported 

only. 
 

Table A-1. Supported Tools in MPEG-4 Video Reference Software. 
 

F. RESULTS 
In this section, results obtained from compressing two video sequences 

(“Foreman” and “Carphone”). For the simulations, the first 50 frames of each sequence 

were used.  
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Figure A-1. Rate-Distortion Curve for “Carphone” and “Foreman” Sequences. 

 

 
Figure A-2. Compression versus Bit-Rate for “Carphone” and “Foreman” Sequences. 
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Figure A-3. Mean PSNR versus Compression Ratio for “Carphone” and “Foreman” 

Sequences. 
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10 kbps 50 kbps 

 

 100 kbps 300 kbps 
 

 500 kbps 1 Mbps 
 

Figure A-4. “Carphone” Sequence at Various Bit-Rates. 
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10 kbps 50 kbps 

 

 100 kbps 300 kbps 
 

 500 kbps 1 Mbps 
 

Figure A-5. “Foreman” Sequence at Various Bit-Rates. 

 

 

 

 

90



APPENDIX B.  SIMULATION RESULTS FOR SEQUENCES 
“SUZIE” AND “MISS AMERICA” 

 
Figure B-1. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.1 for Video Sequence “Miss America”. 
 

 
Figure B-2. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.1. No Error Concealment. Video Sequence “Miss America”. 
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Figure B-3. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.01 for Video Sequence “Miss America”. 
 

 
Figure B-4. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.01. No Error Concealment. Video Sequence “Miss America”. 
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Figure B-5. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.001 for Video Sequence “Miss America”. 

 
Figure B-6. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.001. No Error Concealment. Video Sequence “Miss America”. 
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Figure B-7. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.1 for Video Sequence “Suzie”. 

 
Figure B-8. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.1. No Error Concealment. Video Sequence “Suzie”. 
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Figure B-9. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.01 for Video Sequence “Suzie”. 

 
Figure B-10. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.01. No Error Concealment. Video Sequence “Suzie”. 
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Figure B-11. Different Error Concealment Schemes for a Video Sequence using RVLC 

Through a Gilbert Channel with ε = 0.001 for Video Sequence “Suzie”. 
 

 
Figure B-12. Different Packet Construction Approaches for a Gilbert Channel with ε = 

0.001. No Error Concealment. Video Sequence “Suzie”. 
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