High Performance Packaging of Power Electronics:

Role of Thermally Engineered Materials

M.C. Shaw

Rockwell Science Center, Thousand Oaks, CA

30 May, 2001
1. Report Date (DD-MM-YYYY)
30-05-2001

2. Report Type
Workshop Presentations

3. Dates Covered (From - To)
30-05-2001 to 01-06-2001

4. Title and Subtitle
High Performance Packaging of Power Electronics: Role of Thermally Engineered Materials

5. Author(s)
Shaw, M. C.;

7. Performing Organization Name and Address
Rockwell Science Center

8. Performing Organization Report Number

9. Sponsoring/Monitoring Agency Name and Address
Office of Naval Research International Field Office
Office of Naval Research
Washington, DC

10. Sponsor/Monitor's Acronym(s)

11. Sponsor/Monitor's Report Number(s)

12. Distribution/Availability Statement
Public Release

13. Supplementary Notes
See Also ADM001348, Thermal Materials Workshop 2001, held in Cambridge, UK on May 30-June 1, 2001. Additional papers can be downloaded from: http://www-mech.eng.cam.ac.uk/onr/

14. Abstract
Advantages of new approaches must be demonstrated at the system, e.g., motor drive, level. Device Power Density (A/cm2 or W/cm2) System Power Density (W/m3) Lifetime Assurance of Entire System System Cost Analysis Ultimately Required

15. Subject Terms

16. Security Classification of:
- a. Report
 Unclassified
- b. Abstract
 Unclassified
- c. This Page
 Unclassified

17. Limitation of Abstract
Public Release

18. Number of Pages
29

19. Name of Responsible Person
Fenster, Lynn
fenster@dtic.mil

19b. Telephone Number
International Area Code
Area Code Telephone Number
703767-9007
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18
Global Energy Consumption and Power Electronics

(Source: NSF Center for Power Electronic Systems: http://www.cpes.vt.edu/)

US Electrical Energy Consumption

* Output of 840 power plants

* EPRI
Defense Power Electronics Requirements Example: PEBBs

Courtesy of G. Campisi, Office of Naval Research
Power Electronic Systems

- Motor Drives
- Radar / Microwave Communications
- dc to dc Converters
- Power Supplies
- Electric Vehicle Drives
- Weapons Systems

Today’s Topic
Drive & Motor Automation System

Convenience AC power (fixed frequency, voltage) to AC Power (variable frequency, current, and voltage)

Enables exact control of speed (RPM) and torque of motors

Motors become *controlled electromechanical energy converters*.

Performance Metrics:
- Power Density
- Cost
- Reliability

Rockwell Automation - Allen Bradley 1336 Force Drive

Reliance Electric AC Motor
Basic Power Packaging Elements

- Silicon
- Ceramic Insulation
- Wirebonded Interconnections
- Soldered Interconnections
- Gel Encapsulation
- Plastic Housing
- Power Terminals
- Metal Baseplate
- Heatsink
Generic Electronic Packaging Technology Hurdles

Controlled Power Density (W/m3)
High Power Requirements from Devices
High Packaging Densities
Weight Requirements

Cost ($/Function)

Reliability (MTBF)
High-Temperature Packaging of SiC Electronics

M.C. Shaw, J.R. Waldrop, F. Zok,¹
Rockwell Science Center, Thousand Oaks, CA
¹University of California, Santa Barbara CA

30 May, 2001

Contract Number MDA97298C0002
Decrease in System Volume Through Utilization Of Silicon Carbide (SiC) Electronics

- **Silicon Power Density**: 10^6 W/m2
- **Baseplate Power Density**: 10^5 W/m2
- **Heatsink Power Density**: 10^3 W/m2
- **T$_{\text{fin}}$**: 55°C
- **Silicon T$_j$**: 125-150°C

- **SiC Power Density**: 10^6 W/m2
- **Baseplate Power Density**: 10^5 W/m2
- **Heatsink Power Density**: 10^4 W/m2
- **T$_{\text{fin}}$**: >200°C
- **SiC T$_j$**: 300-350°C

Smaller, hotter heatsink feasible with SiC ($Q=hA\Delta T$)
Thermomechatronics

M.C. Shaw and E.R. Brown,¹
Rockwell Science Center, Thousand Oaks, CA
¹University of California, Los Angeles CA

30 May, 2001

Contract Number MDA97298C0002
Thermal Management of Power Electronics: Spread Power Density from Device to Heatsink

- Silicon Power Density = 10^6 W/m2
- Baseplate Power Density ~ 10^5 W/m2
- Heatsink Power Density ~ 10^3 W/m2

5 hp Motor Drive Example
Large Area Solder Joint Reliability in Power Assemblies

Examples of Buried Continuous Solder Layers

Internal view of a 1200A, 3300V IGBT module (courtesy: Eupec GmbH+ Co.)
Elastic Fracture Mechanics Energy Balance in Layered Systems

\[G_{lc} = \frac{Z \sigma^2 h (1 - \nu^2)}{E} \]

\(\sigma = \) Stress in coating
\(h = \) Coating thickness
\(E, \nu = \) Elastic properties
\(Z \approx 0.3 \)

Driving Force for Crack Growth or Material or Interfacial Crack Growth Resistance

Cracking depends on which is larger:
Thermal Cycling of Sn - Pb (Elastic/Plastic) vs Au-Sn (Elastic) Joints

80Au20Sn on Copper

As Soldered 1 cycle 10 cycles 100 cycles 1000 cycles

0.6"

63Sn37Pb on Copper

Δα = 14.1 ppm; Elastic Solder

Δα = 14.1 ppm, Elastic / Plastic Solder

Ultrasonic Reflection Microscopy
Model of progressive crack growth in DBC/baseplate solder joint

As Soldered 1 cycle 10 cycles 100 cycles 1000 cycles

= IGBT
Thermal Equivalent Circuit

<table>
<thead>
<tr>
<th>Thermal Resistance</th>
<th>Analytic Form</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{JC}</td>
<td>$\sim \rho t/A_s$</td>
<td>1.4°C/W</td>
</tr>
<tr>
<td></td>
<td>ρ -> thermal resistivity, t -> thickness</td>
<td></td>
</tr>
<tr>
<td>θ_{CS}</td>
<td>$\sim \rho t/A_s$</td>
<td>$\sim 0.1-1$ °C/W</td>
</tr>
<tr>
<td>θ_{SA}</td>
<td>$\sim 1/hA_s$</td>
<td>10-33°C/W (natural convection); 1-10°C/W (forced air)</td>
</tr>
<tr>
<td></td>
<td>h -> heat transfer coefficient</td>
<td></td>
</tr>
</tbody>
</table>
Solder Joint Fatigue Raises Package Thermal Resistance

Pristine condition - lowest thermal resistance

Thermally cycled condition - higher thermal resistance
Bipolar Transistor Performance Degradation with Repeated Power Cycling (Ref: Evans and Evans)

Experimental Results Showing Large Increase in Forward Voltage Drop, ΔV_{be}, with Repeated Power Cycling, N
Coupled Electro-Thermal Simulation

- Nonlinear thermal circuit models
- Connect electrical to thermal circuits through unique “thermal node” (after A. Hefner of NIST)
- SPICE-like environment
Heatsource; Radius = a
Power = P

Substrate; Radius = b_o

Baseplate
Calculated Thermal Resistance, R_{th}, vs. Inverse Normalized Fatigue Crack Length, b/a.

Note the rapid increase in R_{th} with penetration of the fatigue crack into the region below the device ($b/a \sim 1$).
Dependence of Junction Temperature Increase, ΔT_j, on Inverse Normalized Fatigue Crack Length, b/a

Two different power levels and substrate thicknesses.
Strain Energy Release Rate, G_{lc}, Depends on ΔT_j

\[
\frac{Z \sigma^2 h (1 - \nu^2)}{E} = G_{lc}
\]

Strain energy release rate is the driving force for fatigue crack growth

![Graph showing the relationship between G and b/a for different values of a/w and P.]
Experimental crack growth rate data, $\frac{da}{dN}$, vs. cyclic strain energy release rate range ΔG for the Al-Al$_2$O$_3$ and Al-Al systems.
Relationship between the number of power cycles, N, and the crack length, l for two different power levels and substrate thicknesses.

Note the highly nonlinear relationship between the crack lengths and number of power cycles.
Predicted Junction Temperature Increase, ΔT_j, vs. Power Cycles, N

![Graph showing predicted junction temperature increase vs. number of cycles for different cases with a/w ratios of 1.25 and 5, and powers of 100 and 500.](image-url)
Thermomechatronic Analysis of coupled flow of electrical, thermal and mechanical energy
Conclusions

• Advantages of new approaches must be demonstrated at the system, e.g., motor drive, level.

 Device Power Density (A/cm² or W/cm²)
 System Power Density (W/m³)

Lifetime Assurance of Entire System
System Cost Analysis Ultimately Required

• Research Needs:

 1) Materials
 - Controllable and High Thermal Conductivity
 - Functional Integration of Electrical, Thermal, Mechanical Features
 - High Temperature Capability
 - Lightweight
 - Compatible with Solid-State Devices
 - Easily Processed

 2) Efficient, System-Based Design Methodologies
 - Mechanical, Thermal, Coupling
 - Lifetime Prediction / Reliability
 - Design Optimization / Tradeoff Capability