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Abstract. A new computational model based on Eu’s generalized hydrodynamics, which has been recently
proposed for describing the motion of gases in non-equilibrium state and is shown to be consistent with
the second law of thermodynamics, is presented. The general understanding of Eu’s generalized hydrody-
namics, which employs the cumulant expansion for the Boltzmann collision integral instead of the BGK
approximation, is also obtained by considering three fundamental flows; compressed gas in shock waves,
expanding gas, and velocity shear flow. The study on these problems reveals that Grad’s equations are
similar to Eu’s equations in the slip flow, but become drastically different from Eu’s equations in shock
structure problem. A plausible explanation is that the relaxation time approximation may be insufficient in
modeling the extreme nonlinearity of shock structure since the Boltzmann collision integral plays a critical
role in this case. Finally, by considering the microscale channel flow, a new slip boundary condition based
on Langmuir’s theory is presented that predicts a trend of increasing pressure curve nonlinearity with in-
creasing rarefaction and a minimum in mass flow rate, which are not the case with the results predicted by
the first-order Maxwell slip condition.

INTRODUCTION

Analysis of high thermal non-equilibrium gas flows in many instances requires mathematical models be-
yond the Navier-Stokes equations. Many computational models—either fully kinetic (DSMC) or fluid dynamic
(moment equations)-have been proposed, but it turned out that some have difficulty in solving low-speed
micro-scale flow and others suffer non-trivial problems: violation of the 2nd law of thermodynamics, closure
breakdown, and trouble in boundary condition. This status is somewhat surprising since the fluid dynamic
approach is simply to solve the following collision-free hyperbolic conservation laws,

2/Udv+}§F-nalS:O, 1)

where S represents the bounding surface of the control volume V, and U represent conserved variables
(p,pu, pE). F in the surface integral represents the flux consisting of non-conserved variables (stress and
heat flux) and conserved variables. Here it should be emphasized that these laws are the exact consequence
of both kinetic theory and continuum mechanics. Only after some approximations are made to non-conserved
variables, they become approximate fluid dynamic equations, for example, the Navier-Stokes equations. It was
found, however, that the procedure to calculate non-conserved variables is not simple, and indeed it is generally
believed that there exist no high-order equations fully consistent with the macroscopic and phenomenological
thermodynamics.

DAl correspondences should be sent to this permanent address. (E-mail: myong@nongae.gsnu.ac.kr)

CP585, Rarefied Gas Dynamics: 22" International Symposium, edited by T. J. Bartel and M. A. Gallis
© 2001 American Institute of Physics 0-7354-0025-3/01/$18.00
305



REPORT DOCUMENTATION PAGE Form Ag%zv‘eﬁ 8%MB No.

[Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing mstructions, searching existing data sources, gathering and mamtaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
[Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
09-07-2000 Conference Proceedings

3. DATES COVERED (FROM - TO)
09-07-2000 to 14-07-2000

4. TITLE AND SUBTITLE
Eu's Generalized Hydrodynamics as the Basis of a New Computational Model for
Rarefied and Microscale Gasdynamics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

Unclassified
6. AUTHOR(S) 5d. PROJECT NUMBER
Myong, R. S, ; 5¢. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Division of Aerospace and Mechanical Engineering

8. PERFORMING ORGANIZATION REPORT
NUMBER

Gyeongsang National University
Chinju, South Korea660-701

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS

10. SPONSOR/MONITOR'S ACRONYM(S)

AOARD
Unit 45002

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

APO AP, xx96337-5002

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE

13. SUPPLEMENTARY NOTES

See Also ADMO001341, Rarefied Gas Dynamics (RGD) 22nd International Symposium held in Sydney, Australia, 9-14 July 2000.

14. ABSTRACT

A new computational model based on Eu's generalized hydrodynamics, which has been recently proposed for describing the motion of gases in
hon-equilibrium state and is shown to be consistent with the second law of thermodynamics, 1s presented. The general understanding of Eu's
oeneralized hydrodynamics, which employs the cumulant expansion for the Boltzmann collision integral instead of the BGK approximation, is
also obtained by considering three fundamental flows; compressed gas in shock waves, expanding gas, and velocity shear flow. The study on
these problems reveals that Grad's equations are similar to Eu's equations in the slip flow, but become drastically different from Eu's equations
in shock structure problem. A plausible explanation is that the relaxation time approximation may be insufficient in modeling the extreme
monlinearity of shock structure since the Boltzmann collision integral plays a critical role in this case. Finally, by considering the microscale
channel flow, a new slip boundary condition based on Langmuir's theory is presented that predicts a trend of increasing pressure curve
nonlinearity with increasing rarefaction and a minimum in mass flow rate, which are not the case with the results predicted by the first-order
Maxwell slip condition.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. 19. NAME OF RESPONSIBLE PERSON
OF ABSTRACT NUMBER [Fenster, Lynn
Public Release OF PAGES [fenster@dtic.mil
8
a. REPORT b. ABSTRACT |c. THIS PAGE 19b. TELEPHONE NUMBER
Unclassified Unclassified Unclassified International Area Code

IArea Code Telephone Number
703767-9007

DSN

427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18




EU’S GENERALIZED HYDRODYNAMICS

Towards solving this dilemma, an alternative and yet unknown method in which the second law of thermody-
namics is satisfied to every order of approximation, the Eu’s generalized hydrodynamics (GH) [1] is considered
in this study as the basis of a new computational model for high non-equilibrium gas flows. The essence of his
theory can be summarized as follows. Starting from the following irreversible thermodynamics

Td¥ =dE +pdV + > X®od< 3@ /p>, 2)
which is equivalent to an exponential form of the distribution function
f= f@e DX POn —ul/kaT (3)

a thermodynamically consistent hydrodynamic equations can be developed. ¥ in the equation (2) represents
a non-equilibrium entropy that recovers the equilibrium entropy S for an equilibrium system. ®(®) represent
high-order moments such as stress and heat flux, while X(®) represent tensors whose role is similar in the
coefficients of conventional expansion methods. A leading term X1 can be written as —II/(2p), where IT
represents stress tensor. h(®) is directly related to ®(®) through the relation ®(® =< Al®f >. p is the
normalization factor. The essence of the Eu’s generalized hydrodynamics can be found in an exponential form
of the distribution function (3). The use of the exponential form makes it possible to apply the cumulant
expansion and ensures that the approximated distribution functions always remain non-negative. Note that
f can never be negative and must either have finite bounds in velocity space or tend to zero as a particle
velocity tends to infinity. This point can be highlighted by realizing that the following conventional polynomial
expansions show the poor convergence, meaning that there always exists a region in which the function can be
either negative or unbounded.

f=fO 4 Knf® 4 Kn?f® 4 ..., (4)

Thus, it is the exponential form of the distribution function that distinguishes the Eu’s GH from the rest of
other hydrodynamic approaches.
One of the simple form of GH constitutive relations retaining the essence of theory can be written as [2,3]

M g(cR) = IIng + [IT- V&]®, (5)
Qq(cR) = Qus + I - Qus, (6)
where TIyg = —29[Vu]®, Qng = —AVInT, II = A, Q= 1‘;’\/% Vi = -2pt vy, R =

I:I+Q-Q, g(cR) = %C—Rl. Here Q represents heat flux vector.

A constant ¢ has a value between 1.014 (Maxwellian) and 1.223 (¥=3), where v is the exponent of the inverse
power laws of gas particles and s = 1/24+2/(v —1). In case of helium gas, ¢ becomes 1.046(v = 14). n and A are
the Chapman-Enskog viscosity and thermal conductivity . They can be expressed as n = T%, A = T**tL. For a
monatomic gas, v = 5/3 and Pr = 2/3. A composite number, which is defined as N5 = nu/(pL) ~ KnM and
appears in the term X1} measures the magnitude of the viscous stress relative to the hydrostatic pressure,
so that it indicates the level of departure from thermal equilibrium. When the new constitutive relations (5)
and (6) are compared with Grad [5] and Burnett [7] equations, several interesting results can be found. In
multi-dimensional flows, the following three cases can be considered most basic flows.

Shock Wave and Gaseous Expansion When the gas experiences compression or expansion, the gradient
of normal velocity will remain either negative or positive. In these cases (Qu/dz only), the Eu’s, Grad’s, and
Burnett’s relations for the normal stress reduce to

N . . . ~ 4Ha:z . . .
Hzﬂ:Q(c\/jHa:a:) = (]- + Ha:a;)IIa;a:Nsy Ha:a: = —NS7 Hza: = (]- + Hszs)szNs- (7)
2 4— T,

In Fig. 1 (a), Bu’s and Grad’s results for the normal stress are plotted. It can be observed that Eu’s relation
is well-defined in all non-equilibrium states. Note that the Grad’s equation has a non-removable singularity
at II = 4/7 in positive region (shock wave) and the Burnett’s equation loses one-to-one correspondence in
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negative region (expanding gas), which in turn implies the violation of positive entropy production [7]. Even
though the algebra in these relations is quite simple, it turns out that the results are very general. In the
previous work [4], it was found that even if heat flux is included, the general characteristics remain unchanged.
Furthermore, an independent calculation done by Karlin et al. [8] confirms this characteristics. They extended
the hydrodynamic description into a highly non-equilibrium domain by summing all the relevant subseries of
the original Chapmann-Enskog expansion from the Grad equations and obtained the following linear relation
for Maxwellian molecules,

N 1 N N N
I, = —= [Hmst -2+ {(H:E(ENS - 2)2 + SHins]lﬂ] . (8)
p] | P

It can be easily shown that this relation is very similar to the GH relation, even though some details are
different.

The salient feature of the GH equation is that it recovers the free-molecular limit in gaseous expansion and
shows high nonlinearity in gaseous compression. It can be induced from this nonlinearity that there must
exist at least one region of shock wave structure in which the actual stress is greater than the stress calculated
by the Navier-Stokes equations, irrespective of Mach numbers. It is exactly this nonlinearity that makes the
GH solutions for shock structure in strong agreement with experimental data [6,2]. Notice that the essential
contribution to this nonlinearity comes from terms g(cR) and [II - Vii)®), which represent energy dissipation
by particle collision and the strong coupling between the stress and velocity gradient. On the other hand, the
work by Karlin ef al. implies that summation of all the relevant terms is necessary to explain the extreme
nonlinearity of shock structure. This point may explain a consistent finding that the common relaxation time
(BGK) approximation for the Boltzmann collision integral yields poor results in high Mach shock structure
problem.

Velocity Shear Flow When there exists the gradient of shear velocity only g—;’ only), the Eu’s, Grad’s
and Burnett’s relations reduce to
_— 2H§yNS/3 5 2H§yNS/3
TT — TT — D

@ (cR) + 2112, /3’ 14202, /3’

I, = —0.733112, ., 9)

where B2 = 31:Im (fIm — 1) and with the same stress eclipse in Eu’s and Grad’s cases,
R R 3 . a
My = Slgn(HwyNs)[_i(l + sz)wa]l/z-

It can be shown in Fig. 1 (b) that the behavior of stresses becomes very different from the Navier-Stokes
description in highly non-equilibrium states. The normal stress is generated by the shear velocity gradient and
the shear stress approaches zero as the velocity gradient increases. This asymptotic behavior means that the gas
slips near the solid wall. As a result, the velocity-slip phenomenon can be explained in purely hydrodynamical
terms. Notice also that Eu’s results are very similar to Grad’s results, except for the existence of a nonlinear
term g{cR) that comes directly from the Boltzmann collision integral. This similarity, which is not the case in
shock structure problem, can be explained by the existence of the stress eclipse. It must be noticed that the
kinematic relations are solely responsible for this stress constraint, not the collision integral terms. Therefore
it is not surprising to find out that the BGK approximation yields fairly good results in the boundary layer
flow, which is dominated by the velocity shear flow.

Multidimensional Flow Even though the new equations can explain nonlinear transport of gas in non-
equilibrium state, a proper computational method must be developed in order that they may serve as a tool
for the simulation of gas flows in multidimensional geometry. In the previous work [3], an idea to overcome the
difficulty of multidimensional extension caused primarily by the existence of highly nonlinear terms has been
proposed. On the basis of such idea, a numerical solution of the equations (1), (5), and (6) was obtained for
the two-dimensional flow over a flat plate with M = 12.9 and Kn = 0.0067. The important finding was that
the GH calculation produces results very close to physical intuition, removing the singularity near the leading
edge that is ill-defined in continuum gas dynamics. The ultimate reason for this can be traced to the fact that
the shear stress measured by the GH equations, shown in Fig. 1 (b), are nonlinearly related to the gradient of
velocity, smaller than that measured by the NS equations in high non-equilibrium flow regions.
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FIGURE 1. (a) Eu’s GH relation relative to the Navier-Stokes relation in the region of compressed (positive) and
expanding (negative) gas (no heat flux for simplicity). The horizontal axis represents the velocity gradient (top). (b)
The normal and shear stresses described by Eu’s GH and Grad’s equations (bottom).

MEASURE OF THERMAL NON-EQUILIBRIUM

According to the conventional non-equilibrium theory based on the mean free path, gas flows encountered in
low-density environments and microscale geometries at standard atmospheric conditions can be treated with
no difference and requires the mathematical models beyond the continuum description. Therefore, it is natural
to argue that DSMC or high-order moments equations should be used to simulate microscale gas flows with
high Knudsen numbers. There exists, however, an ambiguity in using the mean free path as the parameter
to classify non-equilibrium gas flow regimes. For example, there are many calculations in which the problem
with a smaller Knudsen number shows high non-equilibrium effects than the problem with a higher Knudsen
number. In fact, the classification based on the Knudsen number is largely empirical and depends highly on
the problem considered. This is not surprising at all if we recall the physical reasoning that the gas flows
associated with microscale geometry at normal pressure, which is typical in most of MEMS devices, is perfectly
near equilibrium unless the gas-surface interaction has long-range effects on the overall flow structure. It is
well known, however, that the scale length associated with the gas-surface interaction (due to physical force)
is order of molecular size (nanoscale).

This reasoning may give a hint of a possibility of developing a better measure of thermal non-equilibrium
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in gas flows. Indeed, if the GH equations (5) and (6) are carefully examined, it becomes immediately evident
that a composite number Ns, which is defined as

NrUr 'YMZ 2y
Ny = —— = =K M\/—,
d prL Re . m

indicates the level of departure from thermal equilibrium. When N; is small, the GH constitute relations
recover the Navier-Stokes relations. This can also be confirmed from the graphical representation of the GH
relations (Fig. 1).

Even though this finding appears trivial, it has huge implications. The most obvious one is that the classi-
fication of bulk flow regimes should be based on the Knudsen number times the Mach number, not Knudsen
number alone. In order to explain this, let us consider a typical rarefied flow, for example, a hypersonic flow
over a vehicle flying at an altitude of 93 km. For realistic values of flight conditions (length = 1m, velocity=
8km/s), dimensionless parameters can be approximated as

Kn = 0.037, N5 = 1.0.

On the other hand, for helium gas flow in a typical microchannel (length = 1.2um, exit velocity = 50cm/s),
they are

Kn = 0.145, N5 = 7.67 x 1075,

According to the new picture, there is no need of using the high-order equations in microscale gas flows since
Nj is extremely small. Notice that Ns will remain relatively small for low-speed flow even when the channel
height is measured on a nanoscale. The Navier-Stokes relations will be just enough to calculate these flows if
the slip effect on the solid surface due to high Knudsen number is properly taken into account. However, this
line of thinking has not been validated, primarily due to the lack of proper slip boundary conditions.

MICROSCALE GAS FLOWS

The lack of proper slip boundary condition can be manifested when a benchmark problem is considered,
namely, internal gas flows in microchannels. For the sake of simplicity, let us consider a long microchannel
with the ratio of the channel height (H) to its length (L) ¢ in isothermal condition (273K). Using the method
described by Arkilic et al. [11], the Navier-Stokes equations, at the zeroth order, may be written as

O(pu)  O(pv) _
s * oy =0 (10)
e dp 0%

The streamwise coordinate z and the wall-normal coordinate y are nondimensionalized by L and H, respectively.
The reference state is chosen as the outlet conditions. The reference velocity is the area-average streamwise
velocity at the channel exit. The solutions to these equations can be obtained by either numerical methods or
analytical methods if boundary conditions on the solid wall are specified.

Maxwell Slip Boundary Conditions The Maxwell slip boundary condition has been popular in the
past owing to its simplicity. It is largely based on the notion of accommodation coefficients which measure the
fraction of molecules undergoing diffusive reflection. It turned out in the present problem that the first-order
Maxwell slip condition,

Kn du
ndary — 0—— 5 ) 12
UYboundary 7 p 0y boundary ( )
yields simple analytic solutions of velocity profile and mass flow rate,
d K 1
u(z,y) = —%ﬁ [1 —4y? + 40?“], i = 5 (pin ~ 1)(Pin + 1 + 120Kn). (13)
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Here 6 = 24Ns/e, pz=0 = Pin, Pz=1 = 1, and o represents the streamwise momentum accommodation and
is often taken as ¢ = 1. It was found from these solutions that the prediction by the first-order Maxwell
condition is in strong agreement with experimental observations, in particular, the streamwise velocity profile
and the nonlinear pressure distribution along the channel. However, it was also found that this condition cannot
predict the existence of a minimum in mass flow rate in the transition region, which highlights the essential
nonlinearity of slip phenomenon. In addition, a careful examination revealed qualitatively different results
with experimental findings and physical intuitions. For example, it predicted a pressure distribution with
smaller nonlinearity in more rarefied flows, suggesting that rarefaction negates compressibility, in contradiction
to experimental results and physical intuition. It also predicted a drift of mass toward the wall as the flow
progresses down the channel, in contrast with the physical picture which can be induced from approximating
the channel flow by Blasius profiles along two flat plates.

In order to overcome these limitations, the high-order Maxwell conditions have been proposed by Beskok et
al. [13]. It was shown that the high-order conditions predict the existence of a minimum in mass flow rate. It
is not clear, however, that they can predict the free-molecular limit of mass flow rate and solve the problems
described in previous paragraph.

Langmuir Slip Boundary Condition Even though the description of slip phenomenon by Maxwell is
simple, there exist non-trivial issues. For example, it lacks the predictability since this condition requires some
adjustable parameters in the form of accommodation coefficients, which is highly dependent of type of gases and
wall materials and geometry. It can also be noticed that the slip velocity by this condition is unbounded, which
may cause unphysical high slip velocity and affect the type of vorticity near the wall. Finally, it is susceptible
to the numerical errors by under-resolved calculation of the derivatives of tangential velocity near the wall.
Here a simple slip boundary condition based on the theory of adsorption phenomena developed by Langmuir
[9,10] will be considered. This condition has been implemented in the simulation of rarefied hypersonic flow
over a flat plate [3] and microscale gas flows [4].

This condition is based on the theory of adsorption phenomena pioneered by Langmuir. In his historic work
of molecular films of gases on solid surfaces, he developed a conception of adsorption phenomena. According to
his description, gas molecules do not in general rebound elastically, but condense on the surface, being held by
the field of force of the surface atoms. These molecules may subsequently evaporate from the surface, resulting
in some time lag. Adsorption and slip is the direct result of this time lag. From this physical reasoning,
he derived the following equation of the fraction of surface covered at equilibrium, which is of far-reaching
significance in surface chemistry,

Bp
= . 14
“TI1+ Bp (14)
Here an expression of 3,
Al, e (
= PBTw —
b= 1

can be introduced. A is the mean area of a site, D, is the potential parameter and they can be inferred from
either theoretical prediction or experimental data. [ is the mean free path, and kg is the Boltzmann constant.
£ is a mean collision distance between the wall surface and the gas molecules at all angles. With a calculated,
the boundary values of dimensionless velocity can be determined by

in the present case, (15)

1
1+ 6p

u= (1 - a) Or Uboundary =

where 3 = 1.28/Kn for He-Al
It can be easily shown that this new condition yields the following results [4],

2 dp 1 1

L Ry S SN TT5-3
wey) =5 T T s e TTE BT

where a quantity s defined as [—23—;’ ] satisfies a nonlinear equation

S I
o1 BT

1 ﬁ(ﬁpin + 1)3 +1 _
B8 = B (= ) +28(pm — 1) = 201+ )= ety T =
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Surprisingly, it can be shown that these solutions explain all the contradictory problems. The new theory
predicts that the nonlinearity in pressure distribution increases as the Knudsen number increases. In addition,
the new theory shows that there always exists a drift of mass from the wall and its magnitude is much smaller
than one predicted by the Maxwell slip condition. Lastly, it can be easily shown in the relation (16) that there
always exists a minimum in mass flow rate in transition regime. This critical property can be seen in Fig,.
2 where the flow rate exhibits a correct continuum limit and an algebraic singularity at very high Knudsen
number,

. pizn -1 . DPin
Meontinuum — 5 Mfree—molecular — m (17)

In fact, the mass flow rate can be expressed as three parts; continuum and slip (slip + self-diffusion).

™M = Meontinyum + 'rhslip + Mgels —diffusion) (18)

where

1

2rp3, -1 dp } Ftaettdifusion =
2 sell —dimusion — .
=1 1-1-,6

Mstip = _5[ 2 dz

Note that Mgeir—qifusion 15 independent of the pressure difference and remains finite in non-continuum regime
even for constant pressure. This conclusion agrees well with the explanation advanced by Liu [12].

SUMMARY

A new computational model fully consistent with the second law of thermodynamics is presented. Through
a critical review of the previous models on basic flows, the characteristics of the new model are identified.
The important finding is that the level of thermal non-equilibrium can be measured by the composite number
N; and consequently the Navier-Stokes equations with proper slip boundary conditions can describe most of
microscale gas flows. This point is demonstrated by developing the new slip boundary condition based on the
Langmuir theory of the adsorption of gases on metals as monatomic films. It is shown that all the critical
features including the existence of the minimum in mass flow rate can be explained by this simple condition.

It is also worthwhile mentioning that the approach taken in the present study holds for diatomic gases and
dense gases and therefore the essence of the present work can go over to these gases. The results to these
problems will be reported in due course.
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