
Potential Payoff of Fusion between HSI and other Sensors1

Su May Hsu2 and Hsiao-hua Burke
MIT Lincoln Laboratory

244 Wood St. Lexington, Mass. 02420-9108

                                                          
1 This work was sponsored by the Department of Air Force under Contract F19628-00-C-0002.  Opinions,
interpretations, conclusions and recommendations are those of the authors and not necessarily endorsed by
the United States Air Force.

2 Telephone (781) 981-2920; Fax (781) 981-7271; e-mail sumayhsu@ll.mit.edu

Abstract
In this paper, two examples of sensor fusion are demonstrated.  The first is hyperspectral imaging (HSI)
with Synthetic Aperture Radar (SAR) and the other is HSI with high-resolution panchromatic imaging
(HPI).  HSI and SAR fusion exploits different phenomenologies from distinctly different sensors.  HSI and
HPI fusion optimizes their superior respective spectral and spatial information.  Examples are illustrated
using field measurements as well as simulated data.  Fusion of SAR and HSI data is established at feature
level.  The fusion results showed reduced false detection and confirmed target detection in the SAR image
with background characterization and material identification from HSI.  Fusion of HSI and HPI is shown at
both data and feature levels. The combined high-resolution spatial-spectral analysis is illustrated for
enhanced target identification.
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1 Introduction
Hyperspectral imaging sensors collect data in a three-dimensional image cube.  It is resolved in along-track,
cross-track and spectral dimensions.  It has fine spectral resolutions (∆λ ~ 10 nm), typically in visible to
SWIR wavelength region (0.4 – 2.5 µm).  For each ground sample distance (GSD) pixel within a
hyperspectral image, a continuous spectrum is measured and used to identify materials by their reflectance.
But it provides no surface penetrations.  Additionally, to maintain required SNR, HSI spatial resolutions are
in general coarser than broadband imagery resolutions.  Thus there is great potential to enhance the overall
HSI system performance if fusion with other remotely sensed data can be accomplished.  For example, in
the application of counter camouflage, concealment and deception (CC&D), HSI can be used to identify
ground coverage and surface material.  And a FOPEN SAR (Foliage Penetration Synthetic Aperture Radar)
can determine if any threat objects are under concealment.  In the surface surveillance application, HSI can
be augmented with high-resolution broadband panchromatic images to achieve simultaneous high spectral
and spatial resolutions for enhanced target detection and identification.

There have been several examples in which both Synthetic Aperture Radar (SAR) and Hyperspectral
Imaging (HSI) systems collected data in support of military operations.  Principles of low frequency SAR
and Hyperspectral imaging are different and their detection capabilities often compliment each other.
FOPEN SAR operates at 20-700 MHz.  It penetrates foliage and detects targets under tree canopy, but has
significant clutter returns from trees.  Hyperspectral imaging, on the other hand, is capable of sub-pixel
detection and material identification.  Both SAR and HSI systems may suffer substantial false alarm and
leakage rates due to respective background clutter.  It is expected that a combined SAR and HSI system
will greatly enhance the detection and identification performance.  It is possible that a combined SAR/HSI
system could have the imaging sensors cue each other in joint observations.  Potential applications for such
fusion include counter camouflage, concealment and deception (CC&D) and surveillance of exposed sites.

Hyperspectral imaging sensors collect image data in hundreds of contiguous narrow spectral bands (~10
nm) with moderate spatial resolutions. In contrast, conventional single band or multi-spectral sensors
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typically image in wide, discrete spectral bands with fine spatial resolutions.  If hyperspectral image can be
spatially “sharpened” via the broadband high-resolution image, the detection and identification
performance is expected to improve further.  Currently, there are a number of space-based hyperspectral
measurement platforms to be launched in the foreseeable future: NASA’s EO-1, Air Force’s Warfighter-1
and Navy’s NEMO (Naval Earth Map Observer).  Onboard these systems there are high-resolution
panchromatic imaging (HPI) sensors in addition to HSI sensors, with the linear spatial resolution of 3 to 8
times better.  It is important that effective approaches of hyperspectral image fusion with the high-
resolution broad-band image be explored to enhance the utility of future HSI data.

In the next section, an example of HSI/SAR fusion is demonstrated.  Since HSI and SAR are distinctly
different sensors exploiting different phenomenology, fusion of HSI and SAR data is established at feature
level.  In Section 3, fusion of HSI/HPI is explored.  Sharpening of HSI with an HPI is first investigated.
Then a combined spatial-spectral analysis is illustrated for enhanced target detection and identification

2 HSI/SAR Fusion
A common data set from Dixie-97 data collect over Vicksburg, Mississippi is used here to demonstrate the
framework of SAR/HSI fusion.  Both P-3 UWB radar (215-730 MHz) and HYDICE (Hyperspectral Digital
Image Collection Experiment, 0.4-2.5 µm in 210 bands) collected data at the site.   A sketch of the target
site is shown in Figure 1.  Targets in the forest background included fabric nets and vehicles. Several fabric
nets were populated along the tree line around an open area.  One fabric net at the tree line was covering a
vehicle. All other nets were either empty or covering non-radar reflecting decoys.  In addition, there was
one vehicle obscured at the lower right corner of the sketch and another vehicle was partially exposed near
the top left corner.  The SAR data was collected with a 32o depression angle and a ground sample distance
(GSD) of 0.23m x 0.4m.  The HSI data was collected at 1.5 km altitude with a nadir viewing geometry and
GSD of 0.76m x 1.1m.

For the Dixie data collect, a SAR/HSI fusion strategy is established based on their detection characteristics.
SAR and HSI data are first processed separately for detection and terrain classification, respectively.  Then
co-registration is performed to allow overlay of the images.  SAR false alarm from trees are reduced by
terrain mapping, detection of concealed targets under nets is verified and detection of partially exposed
targets is further confirmed with material identification by HSI.  In this section, analysis of the HSI data is
first given, followed by illustration of SAR/HSI image co-registration and the fusion results.

2.1 HSI Data Analysis
In order to extract the spectral features leading to further analysis, reduction in spectral dimensionality is
applied to the HSI data cube.  Principal component transform is used to de-correlate data and maximize the
information content in a reduced number of features 1.  Some of the principal components calculated from
the HSI data over Dixie are shown in Figure 2. Background classes of open area, trees and roads are
apparent in the first and third components.  Fabric nets appear with strong contrast to the backgrounds in
the seventh component.  A matched filter was constructed from the mean of several pixels extracted from
the nets.  Matched filtering and thresholding are then applied to the HSI data to detect all pixels of fabric
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nets.  Figure 3 shows the net detection.  Result of background mapping of the scene is also included in the
figure.  Roads, grass, trees and shadow are shown as separate terrain classes.  These are results of an
unsupervised data clustering operation using the first five principal components.

2.2 Combined SAR/HSI Analysis and Fusion
To combine SAR and HSI detection results, co-registration is first performed with reference to terrain
features such as open and tree areas using scaling, rotation and translation operations.  Fusion is then
carried out based on the co-registered images.  This is illustrated in Figure 4.  SAR data is first processed
with pixel grouping and thresholding.  Target detection on the SAR data is shown on the left.  The terrain
map derived from HSI data with net detection is depicted in the middle panel of Figure 4.  Combining the
analyses, only those SAR detections located in either open area or around fabric nets indicated in HSI are
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retained. SAR detections that coincide with HSI identifications as trees and are far from open areas or nets
are considered false alarms.  The combined detection result is shown on the right of the figure.  A SAR
detection of vehicle appears under a net at the top-right corner.  Other nets are empty with no SAR
detections.  There are several strong SAR detections at the left side of the open area.  A spectral angle-
mapping algorithm is conducted to match HSI data in the area to our spectral library of paints.  Three pixels
match well with military gray-tan paint.  This indicates the presence of a possible military vehicle and thus
confirms the SAR detection.

3 HSI/HPI Fusion
A number of image sharpening approaches have been attempted and applied to multi-spectral images
(MSI).  In this section, three approaches are briefly reviewed and adapted for implementation on HSI.
These are the pseudo-inverse technique 2, 3, color normalization and spatial frequency correction methods.
In order to demonstrate the sharpening approaches, a sample data is created based on field data.  The
algorithms are applied to the generated HSI and HPI data for a sharpened HSI.  Algorithm performance is
then evaluated by comparing with the original truth data.  To exploit the full utility potential of combined
HSI and HPI data, additional spatial-spectral analysis is also shown for enhanced detection and
identification.

3.1 Review and Demonstration of Sharpening Approaches

3.1.1 Pseudo-inverse technique
Given a high-resolution panchromatic image (HPI) co-registered with a set of hyperspectral images, a
system of equations can be established for the reconstruction of a high spatial resolution sharpened HSI
(SHSI).  The value at a pixel in HPI is the spectral sum at the same pixel in SHSI and the spectral value at a
pixel in HSI is the pixel-sum over the HSI GSD in the same spectral band of SHSI.  If the sharpening ratio
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is r and the number of spectral bands is n, then the number of equations over the GSD of HSI is r2 + n, and
the number of unknowns for the SHSI reconstruction is r2 x n.  As the sharpening ratio and the number of
spectral band increase, the number of unknowns increases faster than the number of additional equations.
The system of equations is generally under determined for a unique solution.  Pseudo matrix inversion
algorithms with least-mean-squared (LMS) estimations are applied to obtain a solution for the fusion
problem.  The method is described in the following equations:

SPI = At (A At)-1 h, A PI = h

Where  SPI is an  (n . r2) x 1 array containing pseudo-inverse sharpened HSI values over the GSD of HSI,
A is an (n + r2) x (n . r2)  matrix of the system equation, At (A At)-1 is the pseudo inverse of A and h is an
(n + r2) x 1 array of the HSI and HPI input values.

In this approach, it is important that the panchromatic image is in perfect registration with HSI.  The
pseudo inverse technique requires singular value decomposition.   In addition, the LMS estimations based
on the under determined system of equations may not achieve the required spectral accuracy.

3.1.2 Color Normalization
The color normalization algorithm conventionally used in MSI4 is modified for HSI sharpening.  It
multiplies each of the HSI bands by the HPI and the resulting values are each normalized by the averaged
HPI data over the number of pixels equivalent to the GSD of HSI.  It is defined by the following equation:

SCNi = (HSIi * HPI) / ave(HPI)GSD

where HSIi is the HSI band and SCNi is the sharpened color normalized band.

The approach is straightforward in merging the spatial contrast of HPI into spectral bands of HSI.  Similar
to the pseudo-inverse technique approach, it also requires precise HSI/HPI registration and the
reconstructed data may not achieve great spectral accuracy.

3.1.3 Spatial Frequency Correction
Some sharpening approaches use wavelet transformations 5.  Images are decomposed into different spatial
frequency scales.  For each of the HSI bands, the high frequency components are replaced with components
from HPI.  The sharpened image is then obtained via inverse transformation of the modified spectra.  In
practice, 2-D Fourier transformation can be applied for image spatial frequency analysis.  The sharpening
process is described as below:

  SFCi = FFT-1 {FFT (HSIi)low + FFT(HPI)hi}

where SFCi is sharpened HSIi , FFT (HSIi)low  represents low frequency components of HSIi  and FFT(HPI)hi
represents high frequency components of HPI.

In this approach, the spatial shift due to imperfect HSI/HPI registration will show up as a phase shift in the
frequency spectrum.  In addition, careful selection of the number of high frequency components for
replacement is required to avoid artifacts in the sharpened image.  Once again, some loss of spectral quality
is expected in the reconstructed data.

3.1.4 Demonstration Example
In the three sharpening approaches reviewed, it is indicated that good co-registration between HSI and HPI
is required.  Since HSI and HPI commonly co-exist on the same platform, co-registration to within a small
fraction of an HPI pixel is expected.  However, exploration of the registration issue remains an important
subject in the ongoing effort for sensor fusion.  For performance comparisons, perfect co-registration is
assumed here.  A set of HSI and HPI is put together and applied with the sharpening methods.  A HYDICE
(Hyperspectral Digital Image Collection Experiment) major frame is used as the “truth” in both spatial
(0.8m/pixel) and spectral (∆λ ~ 10 nm) domains.  This input “truth” data is then processed to generate the



contemporaneous test data of HSI (4m/pixel, ∆λ ~ 10 nm) and HPI (0.8m/pixel, broad band).  The first
major frame of HYDICE data from Forest Radiance I Run 05 is used.  The frame is a portion of a forest
scene.  It has 320x320 pixels, 0.8 m per pixel.  25 bands from 0.63 µm to 0.9 µm are used.  The HPI data is
generated with a 25-band integration.  The result is a 320x320 single band image, 0.8 m per pixel.   The
HSI data is obtained by under-sampling the spatially blurred input data.  The FWHM (full width half
maximum) of the blurring point spread function (PSF) is 5-pixel wide and the spatial under-sampling is 5 to
1.  The resulting HSI has 25 bands; each band is 64x64 pixels in size and 4m per pixel.
 Two measures, spectral angle and spectral distance (Euclidean distance), are used to evaluate the
sharpening algorithms.  These are calculated as:

Spectral angle (A, B) = COS-1(A . B / |A| |B|)

Spectral distance (A, B) = |A – B|

Where, A and B are two multi-band spectra.

A zero angle or zero distance represents a perfect match of the two spectra.  The sharpened images are
compared to the “truth” data in terms of spectral angle and spectral distance.  The spectral distance
normalized by the pixel amplitude in the truth image is calculated for the fraction of spectral difference.
The frame-averaged differences are listed in Table 1.  For comparison, the difference measurements from
the unsharpened HSI are also included in the table.  It shows that the sharpened images improve
significantly from the unsharpened HSI in spectral distance, but show no obvious improvement in spectral
angle.  Among the sharpened images, color normalization (SCN) is closer to the truth in spectral angle than
results of pseudo-inverse (SPI) and frequency correction (SFC).  On the other hand, the image of frequency
correction (SFC) is the closest to the truth in spectral distance.  Notice that the comparisons are based on
averages over the image.   The sharpened images generally appear spatially sharper.  However, the impact
of such results on target detection and identification is small.  Since the combined HSI and HPI data is
severely under-determined, spectral features of objects smaller than the original HSI resolution cannot be
fully resolved in the reconstruction of the sharpened HSI.  For enhanced target detection and identification,
additional spatial and spectral analysis at feature level is necessary.  In this paper, sharpened HSI image by
color normalization will be used for further analysis.

Table 1 Sharpening Algorithm Performance

Average spectral angle and distance over 1st major frame of HYDICE Forest Radiance I Run 05
Sharpened

Performance
Metrics

Unsharpened
HSI Pseudo Inverse Frequency Correc. Color Normal.

Spectral Angle 4.9o 8.3o 5.8o 3.8o

Spectral Distance 21.6% 13.8% 8.2% 10.0%

3.2 Spatial-spectral Analysis
Various spatial and spectral analysis approaches have been attempted 6,7,8.   Here, a combined spatial-
spectral analysis is carried out to demonstrate HSI and HPI fusion for enhanced background
characterization and target detection/identification.  An analysis approach is depicted in Figure 5.  The HSI
data is first applied with background classification and anomaly detection.  The background class statistics
calculated from HSI are employed when the sharpened HSI is also processed with background
classification and target detection.  At the same time, spatial edge detection for target and background
boundaries is applied to the HPI.   These edges are combined with results from the sharpened HSI.  Targets
and backgrounds are spatially defined by the edges.  Subsequently, their materials can be identified with
spectral characteristics.

In order to evaluate the analysis performance, an expanded data set is used here.  Three major frames of
HYDICE data from Forest Radiance I Run 05 are used in the demonstration example.  The original image



of 300x960 pixels in size, 0.8 m per pixel and 210 bands (the “truth” image) is used as the input.  The
simulated low-resolution HSI is 60x192 pixels in size, 4 m per pixel and 210 bands.  The HPI is obtained
with band integration from 0.4 to 0.8 µm, 300x960 pixels with 0.8 m per pixel.  A sharpened HSI data cube
is constructed from the HSI and HPI with the color normalization method.

Figure 6 shows a reference image (RGB) of HSI, as well as background classification and anomaly
detection map derived from the unsharpened HSI.  The classification is performed with an unsupervised
feature extraction using principal component analysis (PCA) 9.  The Eigen space is first determined for the
scene from the covariance matrix of the data cube.  It then divides the scene into classes of maximal
separations in the Eigen space.  In the 5-class classification shown here, road, vegetation (bright and dark),
shade and ground are delineated in the scene.  The background map and spectral statistics of these classes
from HSI are employed in all subsequent processing.  Anomalies distinct from backgrounds are also
detected.  These detections are used to cue for target detection and identification in the combined analysis.
Edges are detected from HPI with a SOBEL10 operator.  Overlay of the edges with background
classification from sharpened HSI shows better defined background boundaries than in the unsharpened
HSI.  Spectral matched filtering is applied to sharpened HSI data at regions of anomalies from the earlier
HSI data analysis.  Spectra of two types of fabric and two types of vehicle paint are employed in the
filtering.  The results of fabric and vehicle identification are shown in Figure 7.  Red and green portions
each represent the detection of different vehicle paint.   The detections are in general bounded by the edges
shown in blue.   An enlarged view of the vehicle detections is also shown in the figure.  The vehicle size
and orientation can be determined from the bounding edges.  It is classified as large (4x8 m2) in size if it is
4 to 6 pixels wide and 8 to 11 pixels long or as small (3x6 m2) in size if it is 2 to 5 pixels wide and 6 to 9
pixels long.  The colored bar next to each vehicle in the enlarged image depicts its type of paint, size and
orientation.
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Figure 7 Fabric and additional object identification
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4 Summary
HSI offers superior spectral resolution, and allows background characterization and material identification.
It can be employed in conjunction with other remote sensing data to further enhance the overall system
performance.  In this paper, the potential of fusion of HSI with other sensors was illustrated.  SAR
compensated a disadvantage of HSI, such as lack of surface penetration due to passive sensing.  Their
sensing of different phenomenologies also helped in reduction of false alarm rates.  Another shortcoming of
HSI, due to tradeoff with rich spectral information, is sub-optimal spatial resolution.  This can also be
compensated by fusion with a broadband panchromatic imager, typically with much better spatial
resolution.

Framework of HSI fusion with SAR and HPI was demonstrated.  A common data set of P-3 SAR and
HYDICE HSI from Dixie-97 data collection over Vicksburg, Mississippi was used for SAR/HSI fusion.
Targets in the forest background included fabric nets and vehicles.  Principal component analysis on HSI
data was shown to allow effective spectral dimension reduction and feature extraction for terrain
characterization and fabric net detection.  SAR/HSI fusion was accomplished with a co-registration of the
images using references to terrain features.  The fusion results showed detection of a vehicle under a fabric
net and a significant reduction of SAR false alarms due to trees.  In addition, a case of SAR detection was
confirmed by HSI with material identification of military vehicle paint.

For HSI/HPI data fusion, sharpening approaches were investigated and implemented on a combined HSI
and HPI data set. The sharpened HSI retained the spectral signatures of extended area in HSI and in general
appeared spatially sharper.  However, spectral features of objects smaller than the original HSI resolution
were not fully resolved through sharpening due to the under-determined nature of the combined data set.
Further spatial and spectral analysis was then demonstrated to combine high-resolution information from
HSI and HPI for enhanced background characterization and target detection and identification.  Anomalies
distinct from backgrounds were also detected from HSI and used to cue for target detection and
identification in the combined analysis. Spatial image processing was applied to HPI for edge analysis.  As
a result of combined analysis, specific target material, size and shape were determined.
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