
DISTRIBUTION: Approved for public release; distribution is unlimited

A Comparison of Critical Chain Project
Management (CCPM) Buffer Sizing

Techniques

Greg Kokoskie
SYST 798 Research Project
George Mason University

19 December 2001



REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
19-12-2001

2. REPORT TYPE
Thesis

3. DATES COVERED (FROM - TO)
xx-xx-2001 to xx-xx-2001

4. TITLE AND SUBTITLE
A Comparison of Critical Chain Project Management (CCPM) Buffer Sizing Techniques
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Kokoskie, Greg ;

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
George Mason University
xxxxx
xxxxx, xxxxxxx

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
,

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
14. ABSTRACT
Current project management literature exhibits a rise in popularity (at least in discussion) of Critical Chain Project Management (CCPM), a
management concept based on Eli Goldratt?s Theory of Constraints. Some of the literature notes this to be a significant departure from current
methods; others claim it is really not revolutionary at all, but is instead a coherent compilation of long-known techniques (McKay and Morton
1998). Some organizations that have implemented the technique report good progress; others report no progress. Intuitively, many of the
concepts are good rules that any project should follow, regardless of whether the organization directly embraces the CCPM concept. A fair
amount has been written about the differences between CCPM and traditional project management techniques (notably Steyn (2000), Leach
(2000), and Herroelen and Leus (2001)). There has also been a reasonable amount written about sizing the buffers when establishing the
critical chain plan (notably Goldratt (1997), Leach (1999, 2000), Herroelen and Leus (2001), Hoel and Taylor (1999)). However, while the
available literature about sizing the buffers does note some general differences between the methods, it fails to mention or recommend cases
where one technique is superior to another (nor does it state that such a recommendation would be inappropriate).
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
43

19. NAME OF RESPONSIBLE PERSON
Fenster, Lynn
lfenster@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18



DISTRIBUTION: Approved for public release; distribution is unlimited

Table of Contents

Introduction …………………………………………………………………….1

Background …………………………………………………………………….2

Methodology…………………………………………………………………….7

Assumptions and Limitations……………………………………………….…22

Results and Analysis…………………………………………………………..24

Conclusions……………………………………………………………………38

Areas for Future Research…………………………………………….………40

Appendices
Appendix A: Cited Works ………………………………………………A
Appendix B: Source of Problems……………………………………..…B
Appendix C: Data Dictionary and Standards
Appendix D: Problem Data and Critical Chain Plans……………….…..D

1.  Summary Data
2.  Consolidated Problem Information/Critical Chain Plans
3.  Calculation Sheets

Appendix E: Simulation Data……………………………………………E
1.  Tools
2.  Crystal Ball Critical Chain Plan Sheets
3.  Output Data

Appendix F: Other Calculation Data………………….…………………F



Introduction (pg 1)

DISTRIBUTION: Approved for public release; distribution is unlimited

Current project management literature exhibits a rise in popularity (at least in discussion)
of Critical Chain Project Management (CCPM), a management concept based on Eli Goldratt’s
Theory of Constraints.  Some of the literature notes this to be a significant departure from current
methods; others claim it is really not revolutionary at all, but is instead a coherent compilation of
long-known techniques (McKay and Morton 1998).  Some organizations that have implemented
the technique report good progress; others report no progress.  Intuitively, many of the concepts
are good rules that any project should follow, regardless of whether the organization directly
embraces the CCPM concept.  A fair amount has been written about the differences between
CCPM and traditional project management techniques (notably Steyn (2000), Leach (2000), and
Herroelen and Leus (2001)).  There has also been a reasonable amount written about sizing the
buffers when establishing the critical chain plan (notably Goldratt (1997), Leach (1999, 2000),
Herroelen and Leus (2001), Hoel and Taylor (1999)).  However, while the available literature
about sizing the buffers does note some general differences between the methods, it fails to
mention or recommend cases where one technique is superior to another (nor does it state that
such a recommendation would be inappropriate).

Accordingly, practitioners of CCPM, especially those new to the concept, would benefit
from a comparison between the techniques.  More specifically, they would benefit from a
comparison between the techniques that recommended the best buffer sizing method for their
particular network.

The objective of this paper is to provide a recommendation for the best buffer sizing
technique to use in a given scenario.  To do that, a simple simulation will be executed on a series
of sample networks and the results will be analyzed.

This paper is arranged in several sections as follows.  The first section provides a brief
synopsis of CCPM and discusses in a little more detail the shortcomings of previous research.
The second section describes the methodology of this analysis in detail.  The third section notes
the assumptions and limitations of this study.  The fourth section provides summary results and
analysis of the simulation runs (detailed information is located in an appendix).  The fifth section
provides the conclusions drawn from the results.  And the final section briefly outlines areas for
additional research.  Note that other appendices provide additional detail on other related topics.
(See table of contents.)



Background  (pg 2)

DISTRIBUTION: Approved for public release; distribution is unlimited

In his 1984 book titled The Goal, Eli Goldratt began advocating the concept of the
Theory of Constraints (TOC) for managing manufacturing operations.  The theory acknowledges
that every system has a constraint and that, to increase system performance, performance at the
constraint must be improved.  Attempting improvements elsewhere is thought wasteful because
the constraint will remain the bottleneck.  In the last several years, the theory has been adapted
and advocated for non-manufacturing project management.  Owing to its name for the largest
resulting path in a project network (and the analogy that a chain is only as strong as its weakest
link), it is called critical chain project management.  Goldratt and others assert significant
shortening of project times via this method.  Indeed, Goldratt notes several significant examples
where the concept has greatly reduced project times below times estimated via conventional
methods.  It should be noted, however, that there are also several examples where the technique
was used without success.

According to Goldratt, the traditional method (i.e., Program Evaluation and Review
Technique – PERT – and Critical Path Method – CPM) is seriously flawed in two primary ways:
1) it inappropriately focuses on local optimization in favor of the broader and more appropriate
system optimization and 2) it provides safety time for each activity instead of for the overall
project.1

Compared to traditional scheduling and management methods, CCPM stands out via 1)
its use of median value (50:50) activity time estimates instead of those estimated via a “most
likely” or higher certainty, 2) the merging of potential activity safety time into consolidated path
and project buffers, and 3) the elimination of resource multi-tasking.  Further, the concept
advocates that the critical chain does not change once the project is started and that progress
reporting can be minimized to the form of statistical process control-like checks of the
consumption of the project’s buffers.

Perhaps the most significant difference is the technique’s use of 50:50 activity duration
estimates in developing project network schedules.  At first glance, the concept sounds quite
unrealistic.  After all, if the low-risk estimates frequently resulted in projects overrunning their
proposed end date, how could simply cutting the proposed planning figures help the activities
actually meet their schedules?

Cutting the task planning durations in half is part of the process of consolidating project
safety time.  Goldratt and others assert that such a consolidation requires less overall safety time
than is present using the current processes (where safety time is embedded in each activity
estimate).  More importantly, the consolidation puts it where it belongs, protecting the project as
a whole instead of its individual parts.  The consolidation is analogous to the concept of an
insurance company: for homeowners to protect their homes against loss due to fire, they could
either 1) individually maintain some type of fund to cover the replacement value of their home or
2) pay a lesser amount into a central fund that would cover the cost of replacing some but not all
of the homes for the group of owners.  This concept is viable because it is unlikely that all the
homeowners in the group would simultaneously suffer losses.  The total money required in all
the separate savings accounts would obviously be more than the total money required in the
consolidated account.

Like the assumption that fires would not simultaneously affect all homeowners, the
overruns of the activity times should not be expected to happen for all tasks: the times are 50:50
times and one should therefore expect that, for all the tasks, approximately half of them will
                                                
1 Safety time, also called contingency time, is the difference between the high-confidence/low-risk (i.e., safe)
estimated duration and the estimated average duration.



Background  (pg 3)

DISTRIBUTION: Approved for public release; distribution is unlimited

overrun their estimates and approximately half of them will underrun their estimates, helping to
balance each other out.

By cutting the initial estimates for the activity durations in half, the safety time embedded
in the estimates is removed.  Half of it is then discarded and the other half is consolidated into
buffers at the end of each network chain.  The ‘chain’ of CCPM is differentiated from the ‘path’
of CPM/PERT by the explicit inclusion of resource logic.  While CPM/PERT includes
technological precedence logic in the networks, the concepts essentially assume unlimited
resources.  Accommodating resource constraints is done after the fact but the logic path remains
unchanged.1 The chain concept acknowledges that a particularly scarce resource could make
tasks not on the critical path become part of the critical chain.

The elimination of multi-tasking behavior is one of the other major tenets of CCPM.  The
allegation is that multi-tasking is detrimental to organizations in two primary ways: 1) employees
waste productivity shifting between tasks getting mentally re-acquainted with the task as well as
possibly having to move to a new location or otherwise physically changing their work area, and
2) by working a little on all required tasks, the organization fails to expedite a particular one’s
completion.

The lost productivity having to shift focus is fairly self-evident.  Especially for mentally
demanding tasks, it is difficult (if not impossible) to switch from one task to another without
some review of the significant aspects of the new task.  This focusing period would otherwise be
spent productively on a given task.

Explaining how multi-tasking fails to expedite task completion is best done with an
example.  The figure below (adapted from Goldratt 1997) shows two different Gantt-style work
schedules for a resource on tasks A, B, and C.  In the first set, the resource splits the tasks in half
and works sequentially on the first half of each of the tasks and then repeats the process for the
second half of the tasks.  Note the resulting completion points for each task and compare them to
the completion points for each task in the second set, where the resource focuses on a single task
and works it to completion before beginning the next.  The overall duration to complete the
three-task combination is no different for the two groups, but, if each of these tasks were revenue
generating, it would be far better to accomplish the second group (resulting in increased revenue
earlier).

Figure 1: Multi-tasking Process Comparison

                                                
1 The claim by some CCPM advocates that CCPM is superior to CPM/PERT because only the former explicitly
treats resource contention, is unfair.  While it may be true that CPM /PERT did not formally treat resource
contention, reasonable managers are unlikely to ignore resource contention (except perhaps as part of the bid process
in multi-project environment where it would be unknown which bids would be won, and therefore, which cross-
project resources would be in contention).

A B C

Task A complete Task B complete Task C complete

A B C A B C

Task A complete

Task B complete

Task C complete



Background  (pg 4)

DISTRIBUTION: Approved for public release; distribution is unlimited

The CCPM concept admonishes against sacrificing project optimality for local efficiency.
In profit-based organizations, focusing on the bottom line may be good but it is important to
remember to focus on the correct bottom line.  For example, consider that an employee who is
idle for a few hours per week (while still being paid his salary) may appear wasteful in the
context of the particular employee, his immediate supervisor, and perhaps with the employee’s
coworkers.  By shifting the activity schedule, it may be possible to keep the employee constantly
busy.  But what is really important is the organization’s bottom line.  Such changes should be
made only after considering the effect on the overall project or organization.

The CCPM concept advocates that the critical chain does not change once the project is
started.  This is different than CPM/PERT where it is understood that if an activity on a near-
critical path overruns its planned duration, the near-critical path may supplant the original critical
path.  In CCPM, the buffers help dampen this shifting by theoretically absorbing such overruns.
Further, the concept notes that such shifts in focus are counterproductive.  Owing to the
uncertain nature of projects, some variation is expected.

On the concept of reporting, instead of detailed status or earned value reports, critical
chain reporting consists of statistical process control-like checks of expected buffer consumption.
Because of this focus on buffer consumption as the primary means of monitoring the project, the
technique is sometimes also  called critical chain/buffer management.  Estimates to complete for
each task are developed and then summed for each chain and compared to the plan to determine
whether and how much of the buffer is expected to be consumed.  The table below shows the
recommended actions for various buffer penetration amounts.  Other simple rules are also
sometimes employed to trigger action (e.g., three consecutive reports of buffer consumption
increases).

Buffer Consumed Recommended Action
< 1/3 None; within statistical control

1/3 to 2/3 Develop action plan
> 2/3 Implement action plan

Table 1: Buffer Penetration Thresholds and Recommended Actions

As noted earlier, CCPM grew out of Goldratt’s Theory of Constraints.  Goldratt
publicized the concept primarily through his 1997 book, Critical Chain.  While the book is an
enjoyable easy read, it presents the general concepts but does not provide detailed
implementation guidance.  Other sources (Leach (1999, 2000), Newbold (1998), Steyn (2000)
provide much greater detail, providing the practitioner with better understanding of how to
execute CCPM.

Because the technique is relatively new, access to empirical evidence is limited.
Accordingly, comparisons that include CCPM are generally done via simulation.  Most of these
comparisons have focused on comparison of management methods (e.g., traditional management
versus CCPM).  Herroelen and Leus (2001) conducted a detailed experiment, effecting such a
comparison.  While they do describe the several popular buffer sizing techniques, they include
only two (the “half” and root square error methods) in their experiment.  They note that the
“half” method generally results in larger project buffer sizes but do not attempt to correlate one
buffer sizing technique to a network with a given set of characteristics.  Cook (1994), while
predating the CCPM movement, used simulation to compare traditional, just-in-time, and theory



Background  (pg 5)

DISTRIBUTION: Approved for public release; distribution is unlimited

of constraints techniques, but he limited his discussion to a manufacturing environment and did
not discuss buffer types or make any recommendations for the best technique for a given
situation.  Hoel and Taylor (1999) used simulation in their investigation of buffer sizing but also
did not correlate a buffer sizing technique to a network with a given set of characteristics.

All these works have one central shortcoming from a practitioner’s perspective.  While
they certainly shed light on various aspects of traditional versus CCPM management, they do not
provide the practitioner a recommended technique.  They similarly do not state or attempt to
prove that any one technique is best for a given scenario.  While it would be ideal to provide
practitioners with a recommendation, it would also be valuable to note (if appropriate) that there
is no significant performance benefit of one sizing method over another or if there is no
correlation between readily determinable network characteristics and a preferred sizing method.

The primary buffer sizing methods are summarized in the table below.  Goldratt (1997)
advocated a very simple method, sizing the buffers at half the amount that was trimmed out in
reducing the activity duration estimates from their high confidence value to the 50:50 mark.
Leach and others acknowledge Goldratt’s method as reasonable and offer an alternative that uses
the root square error (square root of the sum of squares of the amount of time trimmed from each
activity).  Hoel and Taylor advocate simply converting the tasks on the feeding chains to early
start tasks (thereby sizing the feeding buffers at the amount of slack on the non-critical chains)
and sizing the project buffer via Monte Carlo simulation.  The method that Newbold (1998)
attributes to Rizzo is refuted by Herroelen and Leus (2001) as containing a mathematical error.
Herroelen and Leus (2001) offer a correction to the method but it presumes a lognormal activity
distribution.  The other methods do not levy such a requirement.



Background  (pg 6)

DISTRIBUTION: Approved for public release; distribution is unlimited

Description
Method

Primary
source Feeding buffer Project buffer Comments

Half Goldratt ½ of time trimmed out of path when
reducing from high confidence estimate
to 50:50 estimate

Same as for feed buffer but applies
only to critical chain

Root Square
Error

Leach [(S-A)12 + (S-A)2
2 + … + (S-A)n2]1/2 for

all n tasks on the path, where
   S = high confidence (safe) estimate
   A = 50:50 (average) estimate

Same as for feed buffer but applies
only to critical chain

Also noted in
Herroelen and
Leus

Monte
Carlo and
Slack

Hoel and
Taylor

None; use early start schedule for non-
critical chain tasks; resultant slack
becomes the feeding buffer

Perform Monte Carlo analysis on
project network; project buffer =
difference between 90th percentile
and 50th percentile values

Two
Standard
Deviation

Newbold 2 x {[(S-A)1/2]2 + [(S-A)2/2]2 + … + [(S-
A)n/2]2}1/2 for all n tasks on the path,
where
   S = high confidence (safe) estimate
   A = 50:50 (average) estimate

Same as for feed buffer but applies
only to critical chain

Requires
lognormal activity
duration estimates

Modified
Two
Standard
Deviation

Herroelen
and Leus

2*StdDev of chain
(calculate StdDev via min, med and max
estimates for each task; apply correction
factor if small number of tasks)

Same as for feed buffer but applies
only to critical chain

Requires
lognormal activity
duration estimates

An interesting underlying philosophy of CCPM includes an attitude of “good enough.”
The method recognizes the high level of uncertainty in projects and specifically advises against
attempting to provide too much detail in schedules.  A highly detailed schedule requires not only
a large amount of effort to establish it in the first place but also to maintain it.  Even the smallest
changes can have far-reaching effects, potentially forcing managers to spend time correcting the
schedule instead of managing it.  Also, the method recognizes that there is no perfect algorithm
for resource leveling.  Accordingly, detailed attempts to identify an optimal schedule are
misplaced; one should not agonize too much when establishing the plan.  Similarly, identifying
and attempting to control every resource for every activity is also unnecessarily difficult.  Leach
(2000) advocates focusing only on the primary resource for each task.  (If this is not possible or
desirable, he adds, it may be necessary to decompose the task into its subordinate elements.)



Methodology  (pg 7)

DISTRIBUTION: Approved for public release; distribution is unlimited

Introduction
This paper attempts to identify and characterize the differences between the performance

of the different buffer sizing methods.  Accordingly, the root question is: are there differences?
Presuming that differences do indeed exist, the next logical question is: what is the nature of the
differences?  Specifically, is one method better than the other in all cases or only in certain
situations?  If the “best” process is different for different situations, which situations correspond
to which “best” process?  And perhaps most importantly, is there a simple measure to
characterize the proposed network, allowing the manager a practical way of identifying the
recommended buffer sizing method for his current situation?

In general, the experiment was conducted in several steps.  First, the different sizing
methods were used to develop critical chain plans across a set of well-known problems.  The
plans were then entered into a simple simulation and their performance was compared.  The
comparison considered likely groupings of performance by network complexity and level of
resource constraints.

This section is subdivided into parts as follows: Problem selection, Network
characteristics, Input distribution, Performance measurement, Input distribution, Establishing the
critical chain plan, Running the simulation, Analyzing the results.  Each part describes the
particular aspect of the methodology in greater detail.

Problem selection
The resource constrained project scheduling problem is a common topic in operations

research and management science literature.  Various heuristics and solution methods have been
developed in an attempt to efficiently identify a project’s optimal schedule.

Problems in the literature have a wide range of complexity.  On one end of the range, the
problems are fairly simple, having only a few activities and a relatively small number of
precedence relations and a requirement for only a single resource for each activity.  On the other
end of the range, the problems are quite complex, having a large number of activities that are
highly inter-connected and that have multiple resources required for each activity.  In addition,
the activities in these complex problems may have multiple modes such that the specific resource
requirements for the activity differ depending upon the mode in which the activity is executed.
Complex problems may also contain contingency paths such that the timing or results of an
activity drives the duration, resource requirements, or precedence relations of other activities.

The selection of problems is important to ensure an adequately diverse group in order to
test various solution methods.  One of the relatively common datasets stems from Patterson
(1984), a work frequently cited in the literature.  In the work, Patterson tested three enumerative
network solution approaches across a fairly exhaustive set of 110 problems that were relatively
known at the time.  Since then, tools have been developed to generate network problems, with
the intent that they could be used systematically to develop an adequately diverse group.  The
most notable of the tools and the one that appears to be the standard is called ProGen (short for
Project Generator).

A library of ProGen-developed networks was developed and compiled by Kolisch and
Sprecher and described in their (1996) article.  The entire problem library currently consists of a
vast number of problems and is available via the internet.  The library contains primarily multi-
mode resource problems but does contain some single-mode resource problems.  Of interest, the
library also contains the Patterson problems and those generated by several others.



Methodology  (pg 8)

DISTRIBUTION: Approved for public release; distribution is unlimited

In selecting the problems for this work, I intended to use a set that was commonly
acknowledged by researchers as being representative.  Initial literature searches implied that the
Patterson set met such requirements as it was used in other works (e.g., Herroelen and Leus
(2001)).  However, Kolisch, Sprecher and Drexl (1995) cite weaknesses with this and several
other datasets.  Specifically, they state that 1) the problems were not generated via a controlled
design of parameters (thereby calling into question whether the sets are adequately exhaustive)
2) only the single-mode case and makespan minimization is considered (thereby failing to
accommodate for other complexities of the real world) and 3) that the set is more easily solvable
than other sets with today’s computers and should therefore not be considered as a benchmark (a
comparison of solution methods is usually conducted via a comparison of computer solution
times).

These weaknesses would be important to counteract when developing a potential solution
method for the resource constrained project scheduling problem.  It would be important to know
whether the solution holds for all problem types or whether it is instead viable only for a specific
grouping.  However, the weaknesses are less important in simply observing the behavior of a
process upon a sample of problems than when one is attempting to identify a solution method
that is intended to apply across all problem types.

Lack of an exhaustive set is not a significant obstacle because this paper simply intends
to make generalizations about the relationship between the various buffer sizing methods and
subsequent performance of the network.  Such generalizations would apply provided the problem
set was reasonably widely representative even though it may not be exhaustive.  The single mode
and makespan minimization limitations are similarly not obstacles for the same reason.  This
model is an attempt to simplify the real world and draw potential conclusions, not perfectly
replicate it.  One need only recognize these limitations and not attempt to develop conclusions
far outside the range of problems considered.  The third shortcoming is not relevant to this
experiment because there is no need to base measurements on computer solution time.

The Patterson dataset was selected because it is a reasonably broad, classical set that has
been used by a number of other works.  Despite the limitations stated by Kolisch, Sprecher and
Drexl (1995), the set remains viable as a benchmark to use in making comparisons.  While it
may not be an exhaustive set of all project types, it is nonetheless reasonable, especially as a
“first look”.  Subsequent efforts could broaden this investigation to other problems.

It should also be noted that the entire Patterson dataset was not used.  Instead, the
problems were ordered randomly and the implementation was then initiated following this
random order.  In this way, since time was recognized as a potential factor in completing the
analysis, I could end the analysis once a sufficiently large set of problems were investigated and
still be reasonably confident that the results would not change if the entire dataset was used.  In
the end, a total of eight problems for each buffer sizing method were evaluated.

Randomization is critical for assigning problems to the experimental units.  The typical
method would be to establish the pool of available problems that meet the requirements for each
category then select the desired quantity at random from the pool.  However, because there was
inadequate time to develop summary statistics for the entire Patterson dataset, an alternative
approach was used.  Problems were placed in random order and then inspected in this order to
identify the first one to meet the requirements of the given experimental unit.



Methodology  (pg 9)

DISTRIBUTION: Approved for public release; distribution is unlimited

Network Characteristics.
Initially, it seemed valuable to assess whether a given buffering process would work

better for various types of projects (e.g., research and development, product development,
construction, software development, etc.).  While such a categorical assessment would
undoubtedly be valuable, it could likely turn out to be impossible because it would be difficult to
identify the perfect paradigmatic problem for each category.  Each of the categories varies from
the relatively simple to the complex, the small to the large, the loosely constrained to the tightly
constrained, etc.

Accordingly, it was decided that it would be better to simply characterize a sampling of
networks.  That way, results could be applied by anyone in any of these genres: one could simply
calculate the appropriate characteristic values for a given network (regardless of whether one is
working in aerospace, software development, etc.) and then apply the buffer sizing technique that
is best for the characteristics.

It was somewhat challenging to determine a reasonable set of characteristic measures.
While some immediately came to mind (e.g., network size, number of precedence constraints,
number of resources, etc.), they were neither suitable nor sufficient.  For example, network size
was determined to be inapplicable because in many cases a network could be considered either
as a subnetwork of a larger problem or to possess its own internal subnetworks.  In either case,
depending upon one’s perspective, one may have a “different” problem.  The intent was to
provide an assessment of the buffer sizing processes in a truly practical environment.
Accordingly, even if network size would have an effect, it would not be practical.

Across the measures, an attempt was made to preserve the notation of Kolisch, Sprecher,
and Drexl (1995) and Kolisch and Sprecher (1996).  Their notation was used as much as possible
for uniformity.  When necessary, new variable names were created such that they might fit into
the naming convention as much as possible.  Note, for example, the uncertainty measure below.
The name dunc was used because of the similar duration measures, dmin and dmax and in order to
avoid confusion with Umin or Umax.

It seemed appropriate to include measures that related to the network’s complexity, and
the level of resource contention.  A search of the recent literature in this area resulted in several
works in which network characterization was used.  Besides the two works in the preceding
paragraph, Brucker, Drexl, Mohring, Neumann, and Pesch (1999) and Elmaghraby (2000) had
some relevance, although the notation in the Kolisch et al. works appeared more likely to be
widely accepted (due at least in part to their extensive and accessible problem library).  Other
works were too general to be of assistance.  The focus of the characterization by Kolisch et al.,
however, was upon describing a network that would be developed via an automated tool
(ProGen).  As such, while the measures were not inapplicable, they were less usable from a
practitioner’s viewpoint.

It seemed important to include a measure of network complexity or connectedness.
Possible metrics could include 1) the number of feeding (i.e., non-critical) paths, 2) the
percentage of tasks on the critical chain or path (such that a higher percentage would imply lower
connectedness because the network would be more serial than parallel), or 3) the ratio of the
number of paths to the number of tasks.  In keeping with Kolisch, Sprecher and Drexl (1995) and
their predecessors (they cite Pascoe (1966) and Davis (1975)), the network complexity, NC is
shown below.  It equates to an average number of non-redundant arcs per node.  Note that a
perfectly serial network would have J-1 arcs.  Note also that redundant arcs are not counted;



Methodology  (pg 10)

DISTRIBUTION: Approved for public release; distribution is unlimited

while including them certainly makes the network appear complex, it would not necessarily be
complex.

Kolisch, Sprecher and Drexl (1995) note that Pascoe (1966) introduced a measure called
resource factor that was also subsequently used by other authors.  They adapted the measure to
include both renewable and non-renewable resources and to account for multiple modes of the
activities.  They acknowledge that their measure reduces to Pascoe’s measure for the single-
mode case for problems with no non-renewable resources.  Since the problems used in this
analysis are only single-mode activities requiring only renewable resources, it is easier to use the
less complex Pascoe measure.  The measure is shown below with one minor modification from
Pascoe’s original measure to prevent the dummy super-source and super-sink from affecting the
resultant value.  Essentially, the measure is a density of the non-zero elements of the activity ×
resource array.  Its range is [0,1] with 0 corresponding to the case where no activity requires any
resources and 1 corresponding to the case where every activity requires some non-zero amount
of each resource.  Note that this does not differentiate between networks whose activity ×
resource array is fully populated by low non-zero numbers and one whose array is fully
populated by high non-zero numbers.

Kolisch, Sprecher and Drexl (1995) note that Cooper (1976) introduced a measure called
resource strength that was subsequently used by other authors.  They criticize the measure on
three counts: 1) it is not normalized to the interval [0,1]; 2) that, when generating problems, a
small resource strength does not guarantee a feasible solution; and 3) that the measure does not
differentiate between networks that are predominately parallel and those that are predominately
serial.  (In parallel networks, there is a greater potential for simultaneous demand on a given
resource that is not present in serial networks.)  They propose a modification to the measure that
also generalizes it to the multi-mode, multi-resource type case.  However, the added complexity
does not seem to be worth the payoff, especially for this study.  Accordingly, this study uses
Cooper’s measure as stated below.  (As with the resource factor, this measure has one minor
modification from Cooper’s original measure to prevent the dummy super-source and super-sink
from affecting the resultant value.)

However, because the measure is a ratio of the resource availability to the average
demand, no specific conclusions can be drawn from it.  It can give an indication of the strength
level of the resource in general across the entire problem but it cannot be used to determine task
feasibility.  (A few activities could require more of a resource than is available (i.e., kjr>Kr).  But,
if there are a number of other activities in the network with lesser resource requirements, the

NC = 
Total # non-redundant arcs

J

RF = 
1

J-2
1
|R|

Σ
j=2

J-1

Σ
r ∈ R

1   if kjr>0,
0   otherwise.

RSr = 
Kr

1
J-2 Σ

j=2

J-1
kjr



Methodology  (pg 11)

DISTRIBUTION: Approved for public release; distribution is unlimited

average demand could be below the maximum available amount of the resource (i.e., Avg
kjr<Kr,) creating the appearance that adequate resources are available.)  Nonetheless, the measure
still holds promise in a general, overarching way.

To overcome the most significant limitation of Cooper’s resource strength measure (as
noted by Kolisch, Sprecher and Drexl above), additional measures of resource strength were also

collected.  The resource strength measure number two, designated RS2r, measures the proportion
of the resources available to the minimum level at which they would need to be set to prevent
resource contention.  Accordingly, values of RS2r>1 imply that the resource is not constraining
the schedule; values <1 imply that the resource is constraining the schedule.  (It should be noted
that Kr

reqd:LF is a value based on the network using the estimated durations as deterministic
values.)  Resource strength measure number three, designated RS3r, is a modification to
Cooper’s measure, changing it from a simple average to a weighted average based on the
activity’s estimated duration.  Because it is an average, it is still subject to the same limitations as
RSr.

It also seemed important to investigate the effects of uncertainty of the duration
estimates, acknowledging in some cases it is very difficult to obtain reasonably close tolerances
on the initial task estimate durations.  The measure, denoted dunc, is shown below.  Note that only
activities with non-zero durations are included.

The last measure considered was average task duration.  It was suspected that CCPM’s
general rules of dealing with fractional time periods in reducing estimates to their 50:50 values
and in sizing the buffers (i.e., rounding up to integer values) could have impact, especially in
networks where the average task duration is low.  In such networks, rounding up to integer
values provides a higher percentage of built-in safety time on a given chain explicitly in the
buffer as well as implicitly within the (slightly higher) 50:50 duration estimate.  The two
examples below illustrate the impact via two 2-task chains.  Although the “half” buffer sizing
method is shown, the concept applies across all buffer sizing methods (if for no other reason than
their initial schedules are laid out based on reduced activity durations that are rounded up to
integer values).

Task
ID

High
confidence

task estimate

Actual
“half”

amount

“Half”
rounded up
to integer

Buffer
size

Example 1: Low, odd activity duration estimates
A 3 1.5 2 1
B 1 .5 1 1
Total 4 2 3 2 -> buffer= 2/4 = 1/2 of original

          chain duration

RS2r = 
Kr

Kr
reqd:LF

where Kr
reqd:LF is the minimum level of renewable 

resource r required that would allow the original 
(precedence only) late-finish network to proceed
without contention

RS3r = 
Kr

djΣ
j=1

J

Σ
j=1

J
djkjr) /(

dunc = 
dj

max – dj
min

J:dj>0

Σ
J:d>0



Methodology  (pg 12)

DISTRIBUTION: Approved for public release; distribution is unlimited

Example 2: Higher, even activity duration estimates
C 4 2 (2) 1
D 8 4 (4) 2
Total 12 6 3 -> buffer = 3/12 = 1/4 of original

           chain duration

Performance measurement
At first reflection, it might be thought that an appropriate performance measure would be

whether the plan met or failed to meet the planned delivery date.  After all, one of the primary
goals of a project scheduling mechanism is to meet an established delivery date.  On-time
delivery is one of the primary objectives of any project organization.  However, establishing the
performance of the developed critical chain schedule requires some extra consideration.  In
general, one would expect that, if the buffers were sized adequately, the project would meet its
stated delivery/completion date.  Accordingly, schedules that completed their project within the
planned project buffer would be viewed as superior to those that overran their project buffer (i.e.,
were completed after the planned delivery date).  By extension, it might be reasonable to assess
that buffer sizing techniques that consumed less of the project buffer to be better than those
techniques that consumed more of the project buffer.

However, consuming a lesser amount of the project buffer is not necessarily always good.
While it is apparent that overrunning the project’s planned end date would be bad, one must also
consider the ramifications of significantly underrunning the project’s planned end date.  Large
amounts of safety time can be detrimental.  It is important to be able to deliver a product
(complete a project) by the established delivery date.  A demonstrated history of such
performance allows potential customers to have faith that the company will make good on its
promises.  Delivery dates that are proposed to be far in the future may likely continue to receive
potential customer good will (due to expected ability to meet promises).  However, excessively
distant promised dates run the risk of being perceived as unresponsive by customers.  For
example, if several firms are bidding on a project and one has an earlier delivery date than the
others, it may well win the contract (assuming the customer believes he will get quality
performance at a reasonable price and that the vendor will indeed deliver by the promised date).
There may be cases where large safety time amounts are good – e.g. on projects deemed as “high
risk.”  Nonetheless, for a given “high risk” project, the vendor that promises an earlier delivery
date is likely to win the contract over other vendors that promise a later date (again, assuming
quality performance, a reasonable price, etc.).

Accordingly, the size of the project buffer can be viewed as a trade-off.  On one hand, it
is important to meet promised delivery dates, for failing to do so can result in financial penalties,
loss of potential customer confidence, and ultimately, loss of future business.  On the other hand,
it is also important not to build in excessive safety time in the project schedule because doing so
could also lead to loss of future business as customers migrate to other vendors that promise (and
meet) earlier delivery dates.

The trick is establishing what to consider “excessive.”  Before delving into the proposed
amount, one must realize that this simulation experiment does not include the effect of
management action.  (See assumptions and limitation section.)  One would expect competent
management action to shrink the simulated size of the project by some amount.  (This, of course,
assumes that the management team recognizes an impending buffer penetration, that the
penetration occurs early enough in the project to allow the team to have an effect, that crashing



Methodology  (pg 13)

DISTRIBUTION: Approved for public release; distribution is unlimited

the network is possible, and that their actions have the desired effect.)  By not including effects
of management action, the simulated project is essentially running on autopilot.  Once the plan is
established, the management team takes no further action.  The management team, if it were
present in the simulation, should have a positive effect when reacting to potential overruns.
Since the team is not present in the simulation, it would be reasonable to assess as “good” those
simulated projects that slightly overrun their planned delivery dates (i.e., the expectation is that if
they were present, they could fix small overruns).

It is interesting to note that Williams (1999), in describing ways of enhancing realism in
simulations, notes that management action is one of the hardest elements to simulate.  He adds
that the difficulty lies not in implementing an algorithm or process in the simulation but rather in
developing actual expected effects (i.e., detailing what effects the algorithm or process would
actually have).

Accordingly, for a simulated project with no management action, ideal performance may
slightly overrun the planned completion date.  Resolving how to score the performance remains
the issue.  Is 10% overrun too much?  Is 5% underrun as good as 5% overrun?  The diagrams
below show several of the options considered.

Alternative 1 allows a perfect score if the project ends exactly in accordance with the
plan.  Scores taper to zero for small underruns and, more sharply, for small overruns.  A variant
of this alternative would be to vary the amounts shown to other values, e.g., -25%,+15%.  This
scoring method is quite simple and, because it has one perfect score that is located at the planned
completion date, it is also intuitive.

Alternative 2 allows a perfect score if the project ends exactly in accordance with the
plan, plus or minus a small amount.  Beyond these points, the score tapers to zero.  Although this
scoring method is slightly more complex than Alternative 1, it is also quite simple.  Because the
perfect score is allowed to be a range that straddles the planned completion date, it requires the

Project Buffer

overrununderrun

Planned project
completion date

Sc
or

e

0

1

Sc
or

e

0

1

15% of
Proj buffer

5% of
Proj buffer

Sc
or

e

0

1

20% of
Proj buffer

Alternative 1

Alternative 2

Alternative 3



Methodology  (pg 14)

DISTRIBUTION: Approved for public release; distribution is unlimited

reader to acknowledge that there is little difference between the points along the flat top of the
curve, and that because of the aforementioned lack of management action in the simulation, that
small overruns are as worthy as small underruns.

Alternative 3 is similar to Alternative 2 but accommodates a wider range of scores.  In
the previous alternatives, no differentiation is made between a project that ends prior to its
planned completion date by 40% of the project buffer amount and one that ends prior to its
planned completion date by 60% of the project buffer amount.  This scoring method is the most
complex of the three, requiring a more complex formula for the tails.  Nonetheless, it is also the
most realistic.

For simplicity, Alternative 2 was selected.  Buffer consumption percentage was collected
as part of the simulation.  The scoring metric was applied for each run of the simulation and the
results were analyzed.

Input Distribution
There seems to be a general consensus that most project activity distributions are right-

skewed (i.e., with a longer right tail).  In fact, most sources assume that the reader agrees with
such an assertion, effectively treating the assertion as a foregone conclusion.  A few sources,
such as Gutierrez and Kouvelis (1991) actually take steps to explain the underlying reasoning for
such a distribution and its implications.  There are also cases for symmetric distributions (e.g.,
for relatively simple processes that have been done before – the shape would likely become
closer to that of a manufacturing process).  Such activities are certainly not the predominant type
in projects, where, by definition, the undertaking is relatively new or unique.  There is even an
example for left-skewed distributions (e.g., for activities with extremely firm deadlines – one
might work on the activity as long as possible, improving its quality beyond some initial amount
with the distribution of activity completion dates concentrated shortly before the deadline).

Nonetheless, a right-skewed distribution is the generally accepted form.  However,
different authors advocate different specific shapes, with the primary three being triangular, beta
and lognormal.

Wendling and Lorance (1999) recommend the use of a modified triangular distribution in
simulations due to the difficulty in developing the quality of the inputs required for most
distribution types.  They note that the beta and lognormal distribution types are generally
superior however, and recommend their use if the parameters can be reasonably determined.

A triangular distribution is desirable for simulation because it is conceptually easy – both
to develop estimates as well as to implement.  Its straight line shape and closed form makes
calculations simple and eliminates consideration of long tails.  It is easy to communicate to
others and can be shaped in various ways: symmetrical or skewed to the right or left.

The beta distribution has been frequently used in activity time estimates and remains
popular as a result of its initial association with the PERT technique.  While some authors decry
its use, others such as Kamburowski (1997) defend its legitimacy.  It has a realistic (smooth)
shape and its parameters can be varied to match differently shaped activity time estimates.
However, it can be conceptually difficult, because its shape can vary widely, even with small
changes in its shape parameters.  It can be difficult to elicit estimates of its descriptive
parameters, but given optimistic, pessimistic and most likely time estimates, its parameters can
be estimated via the method shown in Badiru (1991).  Its lack of closed form accommodates
reality, allowing for non-zero probabilities over a potentially infinite range of values.



Methodology  (pg 15)

DISTRIBUTION: Approved for public release; distribution is unlimited

A lognormal distribution also has a more realistic (smooth) shape than the triangular
distribution and is also frequently used in representing activity duration estimates.  However,
besides some potential difficulty meeting the assumptions for normality, the simulation tool did
not conveniently handle the transform necessary to allow the distribution to begin at values other
than zero.

The simulation tool used did not conveniently handle beta distributions that started at
non-zero values.  Instead, it required the minimum value to be zero.  While a subsequent
transform could be applied, it required 1) generating additional input values and 2) would not
conveniently be included in the automated reports feature.

Because of its simplicity and its reasonability, the triangular distribution was chosen as
the input distribution of the activity durations.  The lack of smoothness of the shape of the
distribution is not expected to make a significant difference.  In any case, it would probably be
far overshadowed by the variability of the particular distribution (whichever one is chosen).

Since the sample problems provided only one duration for each activity, the other
associated parameter estimates had to be generated.  The activity duration value in the problem
(dj) was used as the triangular distribution’s high confidence “b” value; the low confidence “a”
and most likely “c” values were then calculated based on the “b” value.

Decimal values were allowed in describing “a” and “c” for shaping the input distribution
(“b”, as given in the problem statement was an integer value).  While duration estimates elicited
from functional experts would likely be integer values (other than perhaps for short duration
tasks), the decimal values were necessary for the subsequent assessment of the impact of task
variability.  If calculated values were rounded to integer values for the input distribution,
variability would not be adequately controlled, making any subsequent conclusions suspect.

In choosing the “a” and “c” values, I considered establishing a mathematical rule (e.g.,
a=1/3*b) to develop the missing values.  In doing so, I further considered allowing the
proportion to vary randomly or to fix it as a constant.  While the randomization would perhaps
result in the most realistic scenario, I chose to use constant values throughout the problem
generation process.  Doing so would allow an investigation of the effect of task estimate
variability on the buffer performance.  (This could be accomplished by executing one iteration of
the problem set with “a” and “c” set at one value and then repeating but with “a” and “c” at
different values.)

The high and low estimate variability values for “a” were chosen as 1/3*b and 2/3*b,
respectively.  The value of “c” was chosen as 1/3*(b-a) for both the high and low estimate
variability runs.  The figures below show the resultant shapes of the two general processes.  They
each show plots of the triangular distribution for sample durations of b∈{3,6,9}.  The first figure
represents the high estimate variability case (with a=1/3*b) and the second figure represents the
low estimate variability case (with a=2/3*b).

0 1 2 3 4 5 6 7 8 9
0

0.5

1

x

f(x
)

Sample plots for various b: a=b/3, c=a+1/3(b-a)

0 1 2 3 4 5 6 7 8 9
0

1

2

f(
x)

Sample plots for various b: a=2b/3, c=a+1/3(b-a)



Methodology  (pg 16)

DISTRIBUTION: Approved for public release; distribution is unlimited

Initially I was concerned about the way the estimates vary with respect to the magnitude
of the provided duration (i.e., the “b” value of the problem description).  However, further
reflection convinced me to consider this effect wholly reasonable – it seems likely that the
variance for an activity that is expected to take a long time would be greater than (i.e., consist of
more time periods) the variance for an activity that is expected to be completed in a short time.
In other words, it is perfectly reasonable to expect greater precision in estimating a simple task
than a long complex one.  (Of course, one can always find exceptions.  Some long tasks, such as
regulatory waiting periods, could have relatively small variances.  Nonetheless, in general, the
expectation that greater variance exists in longer tasks is reasonable.)

Establishing the Critical Chain Plan
Developing the critical chain schedule is no simple task.  Herroelen, Leus, and

Demeulemeester (2001) make this point and note how at least two different critical chain
software tools (one that has an integrated critical chain component and one that has a critical
chain component as an add-in to the basic program) result in different schedules.  Goldratt
(1997) and Leach (2000) describe a manual method in which one moves pieces of paper
representing the tasks around on a table or board in order to establish the plan and ensure
resource and precedence logic constraints are met.  However, it becomes exceedingly difficult to
keep track of both resource and precedence requirements in moderate to large networks.  This is
especially true for multi-resource tasks or networks with high resource contention.  This may be
why Leach (2000) advocates narrowing the focus of the project’s activities until there is only one
significant resource per activity.  Doing so can avoid the involved logic checking that results
when each activity has the same resources assigned (albeit in different combinations than the
other activities).

Herroelen, Leus, and Demeulemeester (2001) point out several problem areas that can
occur when establishing a critical chain schedule.  They note that these areas could cause
problems because much of the literature does not discuss in detail the intricacies involved,
leaving practitioners without readily accessible adequately detailed knowledge to forestall the
problems.  They develop four different baseline schedules for the same simple network and point
out flaws in Goldratt’s and Leach’s assertions about the choice and ambiguity of the critical
chain.  However, I believe their attacks are not warranted.  Goldratt’s assertion that the choice of
critical chain does not matter is somewhat out of context; I believe the assertion was based on
chains of equal durations within a single plan rather than ones of differing lengths due to
different development methods.  The authors similarly do not note that Leach provides an
explicit step to examine the baseline schedule to identify modifications that could shorten the
overall project duration.

To develop the critical chain plan from the original problem information, the following
steps were taken.  The steps correspond to general concepts in Goldratt (1997) and the more
detailed implementation descriptions of Leach (1999, 2000) and Newbold (1998).

First, a late finish schedule was developed using the reduced activity durations.  The
schedule was based solely on precedence relations; resources were initially allowed to be over-
allocated.  Microsoft Project was used as the primary tool.  This schedule was then modified to
meet resource constraints by starting at the end and working backward, resolving conflicts by
inserting tasks in priority order (i.e., higher priority tasks inserted first would be later in the
project than contentious tasks of lower priority).  Priority was determined based on critical path



Methodology  (pg 17)

DISTRIBUTION: Approved for public release; distribution is unlimited

durations for the network segments up to and including the tasks in conflict – the task with the
longest path preceding it received higher priority.

The critical chain was identified as the longest continuous path through the load-leveled
network.  The load-leveled network was briefly reviewed to identify obvious ways of re-
sequencing the tasks to shorten the overall project duration.

Buffers were sized in accordance with the corresponding method and inserted into the
plan.  As expected, the most significant difficulties occurred when inserting buffers on the
feeding chains.  Any new resource contentions that developed due to the insertion of the feeding
buffers were resolved.  Newbold (1998) emphasizes that the calculated buffer sizes are
guidelines only; they can and should be adjusted based on a variety of factors (such as
confidence in resource availability, number of tasks on the critical chain, number of significant
risks, the importance of delivery time, etc.).  Nonetheless, since the objective of this paper was to
examine differences in the sizing methods, the buffer sizes were not modified to attempt to
accommodate any of these factors.  Buffer sizes were modified, however, to resolve gaps that
would otherwise be forced into the critical chain.  Such gaps can occur when feeding buffers are
inserted on a feeding chain that includes predecessor tasks from the critical chain.  The gaps
were resolved per Leach’s (2000) instructions: for small gaps, the feeding buffer was reduced to
eliminate the gap and the amount that was removed from the feeding buffer was added to just
prior to the project buffer.  Such action does not change the overall length of the project: the
critical chain with the gap removed and the increased buffer at the end of the project is the same
as the critical chain with the gap and the original project buffer.

For all buffer sizing methods, the duration stated in the problem (dj) was assumed to be
the “safe” estimate (sometimes denoted “S” in the literature).  This high confidence value
(assumed to correspond to ~95% confidence) was also used as the “b” value in the triangular
distribution.  For the “half” method of buffer sizing, this “S” value was simply divided by two to
determine the 50:50 time.  The resulting reduced activity durations (and the corresponding
buffers) were rounded up to integer values.  For the “RSE” method of buffer sizing, the “most
likely” “c” value was assessed as the Average time estimate (sometimes denoted “A” in the
literature).  Decimal values were allowed for this value throughout calculations but final buffer
sizes were rounded up to integer values.

In cases of precedence networks that have multiple tasks whose only successor is the
dummy super-sink, the feeding buffers for the non-critical chains were allowed to run
concurrently with the project buffer.  This concept does not violate any of the tenets of CCPM
but none of the implementation literature I could find specifically describes this nuance.  In the
example below, the first row of tasks is the critical chain and the second row is the feeding chain.
Both tasks y and n have only the dummy super-sink as a successor task.  Thus, the project is
complete when both y and n are complete.  The normal convention is to have the feeding buffer
“completed” prior to the next task on the critical chain.  Remember, however, that feeding
buffers are established to prevent feeding chains from delaying the critical chain.  In this case,
since there are no additional activities on the critical chain, the feeding chain need not “merge”
prior to the project buffer: provided that the feeding buffer is less than the project buffer, it can
be scheduled concurrently with the project buffer (only contingency work would be occurring
during either of the buffers’ scheduled durations and it should be completed by the end of the
buffer).



Methodology  (pg 18)

DISTRIBUTION: Approved for public release; distribution is unlimited

Calculations in the simulation for consumption of project buffer accounted for the
potential case where task n could be completed later than task y and the actual project completion
date (i.e., the later of the completion of task y or n) was used in determining the percentage of
project buffer consumed.

Running the simulation
The plan was then entered into the simulation.  The simulation was a simple spreadsheet

using Microsoft Excel as its basis with Decisioneering’s Crystal Ball add-in to provide the Monte
Carlo simulation and the automated reporting formats.  (See description of tools in Appendix E
for information on Crystal Ball.)  It should be noted that the most difficult part of implementing
the simulation was ensuring all constraints (both logical precedence relations as well as resource-
derived precedence relations) were included in the examination of the total project duration.
Because the simulation was not a time-step simulation, the final checks of the project duration
included in some cases relatively long “IF” statements).  (See assumptions and limitations
section.)

Thus, the simulation performs a consolidated “what happened” type of view, looking
collectively at the results of each task.  An alternative would be to use a classical simulation tool
such as Rockwell Software’s Arena that would be time-phased, stepping through the project
lifespan and accomplishing each task in small increments.  Doing such a simulation would be
more representative of how a project would progress (and would make simulated management
action more realistic if it were desired to be implemented).  However, the method used is
reasonable in light of the scope of this investigation.

The simulation was run 500 iterations for each problem-buffer sizing technique
combination.  A report was created for each of the feeding buffers, the project buffer and project
duration forecast values.  Reports for each run were conveniently generated by Crystal Ball and
include histograms of data, summary statistics and icosatiles.  Also included in each report was a
record of the parameters for each activity duration (“assumptions” in Crystal Ball).  Data for
each of the runs for the following parameters was also extracted:  project buffer consumed,
project buffer overrun, percent project buffer consumed, and simulated project duration.
Printouts of these reports are located in Appendix E.

Each run was scored via the second of the previously-presented alternatives (shown again
below) and the scores were then compared.

Analyzing the results

Task y Project Buffer

Task n Feed Buffer

Task x

Task m

Project Buffer

overrununderrun

Planned project
completion date

Sc
or

e

0

1

15% of
Proj buffer

5% of
Proj buffer

20% of
Proj buffer

Alternative 2

Score = 5*pb%-3.25
Score = -20*pb%+22



Methodology  (pg 19)

DISTRIBUTION: Approved for public release; distribution is unlimited

Designing the experiment was more time consuming than initially expected.  Netel,
Wasserman and Kutner (1990) proved invaluable in this respect and served as the basis for
sample sizing, experimental design, etc.

The objective of the paper is to examine the effects of the buffer sizing techniques.  It
seemed apparent from the outset that a single-factor design was appropriate such that the
different buffer sizing techniques represented the different factor levels.  It also seemed clear that
a repeated measures ANOVA design was appropriate, with each buffer sizing method applied to
each of the selected problems.  Repeated measure designs have the primary advantage of precise
comparisons because sources of variability between subjects are excluded from experimental
error.  The primary disadvantages of repeated measures design, interference, was not present due
to the nature of the problems.  The “dumb” problems assured that there would be no interference
effects across the buffer sizing techniques for each of the sample problems (e.g., order of the
treatment – application of the buffer sizing technique – was irrelevant).

However, since no single model seemed perfectly appropriate, it appeared that some
adaptation of one of the basic models would be necessary.  The diagram below shows three
primary approaches that were considered.

Approach 1 Approach 2 Approach 3
Experimental units Block Experimental units Block Experimental units

Factor j=1 j=2 j=3 … 1 (half, RSE) a (half, RSE)
i=1 “half” a b c … 2 (half, RSE)

1: NC1, RS1
b (half, RSE)

i=2 RSE a b c … 3 (half, RSE) c (half, RSE)
… …

2: NC2, RS2

d (half, RSE)
… … …

a,b,c,… = problems selected at random
from Patterson dataset

each block is a problem
selected at random from the
Patterson dataset

each block represents a particular combination
of NC and RS measures; a,b,c,… are problems
selected at random from within each category
of the Patterson dataset

The first approach is the simplest (cell means model).  Problems are selected at random
from the Patterson dataset and each treatment (buffer sizing technique) is applied.  The random
selection effectively treats the Patterson dataset as a population (which is itself a sample of the
larger population of all possible network problems) from which a sample is drawn and examined,
with conclusions applied not only to the sample but also to the total population.  The model
would be effective for noting the overal performance of one buffer sizing method with respect to
another.  However, this design alone will not facilitate additional conclusions about other factors
expected to have an effect on the best technique (e.g., NC, RS, etc.).  Actually, the model as
shown is a modification to the basic cell means model that ensures each treatment is applied to
each selected problem, effectively creating a repeated measures case.  In the normal case, the
cells in the table (where the a,b,c,… are shown) would have only one instance of each selected
problem.

The second approach is a single factor experiment with repeated measures on all
treatments.  This is essentially the same as the first method except that it is more formally
aligned with the standard terminology.  The problems are viewed as blocks (usually called
subjects as one way of demonstrating the repeated measures case) as a random sampling of the
larger population. This model is more appropriate because it acknowledges that there are
differences attributed to the blocks (i.e., that the best buffer sizing method may be problem-
dependent).



Methodology  (pg 20)

DISTRIBUTION: Approved for public release; distribution is unlimited

The model is identical to the randomized block model except that it includes no
replications.  Hence, because there is no interference (as noted earlier) a combination of this
model and the random block model is appropriate: it would allow for multiple replications (one
iteration in the simulation for one problem for each of the buffer sizing techniques = one
replication) and it would allow for repeated measures.

While the second approach is more formally correct than the first, it is similarly limited in
the conclusions that can be drawn from it (i.e., overall, is one sizing method better than
another?).  While the approach would also note the significance of problem, it would not
necessarily characterize the problem nor allow any inferences about how the problem structure
or type affected the results.

The third approach acknowledges the problems can be categorized by their descriptive
characteristics.  It accommodates more than one blocking variable to allow 1) an overall
assessment of whether one is better than another and 2) for combinations of blocking runs, which
technique is best   [is this true?]…

A 23 factorial design was ultimately chosen because it allowed inferences based on not
only buffer sizing method but also the relative impact of other factors that were expected to
influence the results.  As noted earlier in this paper, it was expected that network characteristics
such as NC and RS could have an impact on the buffer performance because highly complex nets
and poor resource strength effectively create a highly dependent network.  Such a strong
dependence on other tasks creates greater likelihood of delay since an increase in dependence
means more tasks are now available to delay any given task.

The 23 factorial design divides the factors into “high” and “low” levels.  As noted
by Montgomery (1997), although such a design does not characterize the effects of factors across
their entire range, it works well for initial investigations (such as this one).  The design is shown
below.  In it, the three main effects factors (A, B, and C) are chosen as buffer sizing method, net
complexity, and average resource strength, respectively.  Treatment labels are inserted in the
body of the table.  Two problems were assigned to each treatment cell and were run 500
iterations each.

Experimental Design with annotated treatments
B

NC (-) NC(+)
C C

Avg RSr (-) Avg RSr (+) Avg RSr (-) Avg RSr (+)
“Half” (1) c b bc

A
“RSE” a ac ab abc



Assumptions and Limitations   (pg 21)

DISTRIBUTION: Approved for public release; distribution is unlimited

Assumptions
The plan and corresponding simulation generally assumes independence of tasks.  While

there is dependence based on project task order logic and resource availability, no other
significant interaction is assumed between the tasks.  For example, the technical performance of
one task does not affect the other tasks except from the point of view that the simulated duration
somewhat accommodates the extended activity duration that would result from unforeseen
technical difficulty.  There is also no systemic effect of multi-task interaction that would have an
overall common effect on the project.  (An example of a systemic effect that could occur in real
life is workforce illness: if bad food in the company cafeteria caused a number of workers to
become ill, multiple apparently unrelated tasks could be expected to run long due to reduced
resource availability.)

Limitations
Because the simulation is not a time-step simulation, one of the key aspects of critical

chain management is removed from consideration.  Specifically, one does not get to have insight
into the ability of the different buffer sizing methods to provide adequate warning and support
for management purposes.  (Recall that in the CCPM concept, expected penetration of the
buffers triggers management action to adjust project performance to help ensure on-time
completion.  It uses the threshold levels (i.e., at the one-third and two-thirds points) and simple
rules (e.g., three consecutive reports that estimate increases in buffer consumption) as the trigger
points.)

However, it also avoids the issue of developing a process for applying management
action.  Williams (1999) notes that identifying the actual specific effect of management action is
not only difficult, it is often counter-intuitive.  Developing a process for inclusion in this
simulation would not only have potentially exceeded the scope of the effort, but also jeopardized
the conclusions.  After all, how would one determine which tasks to designate as adjustable (and
to what extent), which precedence logic to designate as adaptable (perhaps with slight extension
of some individual activities), etc.  Accordingly, not including management action not only
avoids a significant difficulty, it also removes a particularly difficult confounding effect that
would be subject to attack.

Without management action, the simulation is essentially a project that is well-planned
but that is executed on autopilot.  Again, while this is not a perfect replication of reality it is
nonetheless a reasonable representation.  One should recognize that the buffers should be
consumed in this autopilot mode.  Indeed, as noted earlier, it could even be argued that right-
sized buffers with no management action during the project execution will not only be fully
consumed, but could even slightly overrun.

The sizing methods studied do not include Newbold’s (1998) two standard deviation
method nor Herroelen and Leus’ (2001) modification to it.  The method proposed by Hoel and
Taylor (1999) is also not included.  Newbold’s method is not included due to the math error
noted by Herroelen and Leus (2001) and Herroelen and Leus’ method is not included for two
reasons: it appears far less popular (Herroelen and Leus seem to offer it as a concession to the
pre-existing Newbold method) and it requires the use of the lognormal distribution.  Besides
potential issues with normality assumptions necessary for the lognormal distribution, the
available simulation tool did not conveniently handle the transform necessary to adapt the
distribution for initial values greater than zero.  Hoel and Taylor’s method could not be examined
here because it would have an unfair advantage due to the artificiality of the test environment.



Assumptions and Limitations   (pg 22)

DISTRIBUTION: Approved for public release; distribution is unlimited

Specifically, because the method to test buffer performance (Monte Carlo simulation of the
network) would be the same as the one used to generate the values for Hoel and Taylor’s
method, it was recognized that it could not be included.

Only single mode, makespan minimization problems were examined.  Accordingly, one
must beware of generalizing conclusions beyond the range of the cases discussed in this paper.

Although uncertainty of the duration estimates was expected to have an effect, it could
not be completed at this time.  Accordingly, rather than allowing the variability of the dj
estimates to be random (i.e., when developing the “a” and “c” parameters for the triangular input
distribution), the high variance case (a=b/3) was used with the expectation that the low variance
case (a=2b/3) could be performed in a later work.



Results and Analysis   (pg 23)

DISTRIBUTION: Approved for public release; distribution is unlimited

This section of the paper details the results and analysis of the experiment.  It is divided
into several sections: Filling the experimental design, Establishing the feeding buffers, Rounding

effects, Overview of the simulation results, and Scoring.

Filling the experimental design
Network characteristic measures for a random selection of 25 problems from the

Patterson dataset are in the table below.  (A slightly expanded version of this table is included in
Appendix D.)

The figures below show plots of the values for the Resource Strength measures.  In the
first figure, all three Resource Strength measures are shown.  Note that there is little difference
between the average RSr and RS3r; it appears that Avg RSr is a slightly smoother line than the
line for Avg RS3r.  A more detailed examination of the data shows that, in general, Avg RS3r is
slightly larger than Avg RSr.  Because Avg RS2r varies across a tighter range than the other two,
it is difficult to determine from the first figure whether it has the same relative shape as the other
two.  In the second figure, Avg RS2r is plotted separately and the scale is exploded to more
clearly identify relative changes between adjacent values.  Comparing the shape of this line to
the lines for Avg RSr and Avg RS3r in the first figure, one can see that the general shapes of the
three variables are the same.  The most apparent difference occurs at observation 16: in the first
figure, it corresponds to a relative high (adjacent values are lower) but in the second figure, it
corresponds to a relative low (adjacent values are higher).  Examining the data, one can see that
observation 16 corresponds to problem 9, one of the few single-resource problems within the
selection.  There is also a difference at observation 11 (problem 7): in the first figure it
corresponds to a relative low while in the second figure it seems to be “status quo”, with a less
drastic change than expected.  Inspecting the data, one can see that this observation also

# 
Resources

Resource 
Factor

ra
nd

om
 

or
de

r 
se

q 
# Problem 

ID J R Kr : r1 Kr : r2 Kr : r3non-redundant NC RF Avg RSr Avg RS2r Avg RS3r
1 86 27 3 15 15 15 41 1.519 0.973 5.004 1.027 5.149
2 99 27 3 10 10 10 39 1.444 0.973 3.336 0.536 3.311
3 73 27 3 10 8 10 41 1.519 0.973 3.120 0.583 3.207
4 77 27 3 6 6 6 41 1.519 0.973 2.002 0.422 2.060
5 81 27 3 10 10 10 41 1.519 0.973 3.336 0.685 3.433
6 94 27 3 10 10 10 38 1.407 0.973 3.336 0.566 3.433
7 26 22 3 6 10 10 35 1.591 1.000 2.603 0.630 2.566
8 95 27 3 10 10 10 39 1.444 0.973 3.336 0.669 3.181
9 57 22 3 15 15 15 32 1.455 1.000 4.530 1.010 4.618

10 6 22 3 13 13 13 35 1.591 1.000 3.926 0.890 3.926
11 7 9 1 5 0 0 11 1.222 1.000 2.059 0.714 2.125
12 63 27 3 10 10 10 42 1.556 0.973 3.336 0.643 3.453
13 92 27 3 10 10 10 36 1.333 0.973 3.336 0.643 3.207
14 59 27 3 10 10 10 40 1.481 0.973 3.336 0.655 3.444
15 22 22 3 10 10 10 34 1.545 1.000 3.020 0.655 2.978
16 9 18 1 8 0 0 30 1.667 0.875 4.324 0.526 3.750
17 96 27 3 10 10 10 36 1.333 0.973 3.336 0.703 3.183
18 82 27 3 11 11 11 41 1.519 0.973 3.670 0.753 3.632
19 23 22 3 7 10 10 33 1.500 1.000 2.707 0.707 2.853
20 30 22 3 10 10 10 34 1.545 1.000 3.020 0.683 3.029
21 8 9 1 4 0 0 11 1.222 1.000 1.647 0.571 1.700
22 110 51 3 10 12 10 70 1.373 0.973 3.529 0.697 3.736
23 48 22 3 10 10 10 24 1.091 1.000 3.020 0.655 3.079
24 28 22 3 7 10 10 34 1.545 1.000 2.707 0.592 2.634
25 83 27 3 12 12 12 41 1.519 0.973 4.003 0.821 4.119

# 
Activities # of ArcsResource Max Availability

Network 
Complex Resource Strength



Results and Analysis   (pg 24)

DISTRIBUTION: Approved for public release; distribution is unlimited

corresponds to another of the 3 problems in this random selection that have only one resource
type.  (The third problem does not exhibit this apparently anomalous behavior.)

To confirm the correlation between the resource methods, values for Avg RS2r and Avg
RS3r were plotted against Avg RSr.  The results are shown in the two figures below.  Note that
there is a fair amount of variability between Avg RSr and Avg RS2r but very little between Avg
RSr and Avg RSr3.  Accordingly, subsequent investigations into resource strength as a measure
would be better to investigate the impact of Avg RS2r rather than Avg RS3r.

Resource Strength

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0 5 1 0 1 5 20 25

x

A
vg

 R
S

r

Avg RS2r Avg RS3r Avg RSr

Resource Strength

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 5 10 15 20 25

x

A
vg

 R
S

2r

Resource Strength

0.000

1.000

2.000

3.000

4.000

5.000

6.000

-0.100 0.100 0.300 0.500 0.700 0.900 1.100 1.300 1.500
Avg RS2r

A
vg

 R
S

r



Results and Analysis   (pg 25)

DISTRIBUTION: Approved for public release; distribution is unlimited

The figures below show histograms and ranges for each of the network characteristics for
the same random selection of problems.  (Data counts and summary statistics corresponding to
these histograms are included in Appendix D, Section 1.)  Note that there is a concentration of
observations for each of the characteristics (i.e., they are not uniformly distributed throughout the
range).  Note further that the concentration occurs in the upper half of the range for NC but
appears roughly in the middle of the range for the resource strength measures.  The concentration
is split between two values for resource factor (except for one observation at a lower value).

Network Complexity: NC

0

1

2

3

4

5

6

7

8

9

1 0

1-1
.05

1.0
5-1

.1

1.1
-1.1

5

1.1
5-1

.2

1.2
-1.2

5

1.2
5-1

.3

1.3
-1.3

5

1.3
5-1

.4

1.4
-1.4

5

1.4
5-1

.5

1.5
-1.5

5

1.5
5-1

.6

1.6
-1.6

5

1.6
5-1

.7

1.7
-1.7

5

1.7
5-1

.8

1.8
-1.8

5

Bin

Fr
eq

ue
nc

y
0

2

4

6

8

1 0

1 2

1 4

1 6

0.8
6-0

.87

0.8
7-0

.88

0.8
8-0

.89
0.8

9-0
.9

0.9
-0.9

1

0.9
1-0

.92

0.9
2-0

.93

0.9
3-0

.94

0.9
4-0

.95

0.9
5-0

.96

0.9
6-0

.97

0.9
7-0

.98

0.9
8-0

.99 0.9
9-1

1-1
.01

1.0
1-1

.02

1.0
2-1

.03

Bin

F
re

q
u

en
cy

Resource Strength

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0.000 1.000 2.000 3.000 4.000 5.000 6.000
Avg RS3r

A
vg

 R
S

r



Results and Analysis   (pg 26)

DISTRIBUTION: Approved for public release; distribution is unlimited

Because the values have a fairly strong central tendency, decomposing the range into
bands to support a factorial experiment could prove problematic.  Picking the dividing line at the
center of the distribution can indeed yield half the observations above the value and half below
it.  However, the concentration of values would be near the adjacent ends of these range bands.

Resource Strength: Avg RSr

0

1

2

3

4

5

6

7

8

9

1-1
.25

1.2
5-1

.5

1.5
-1.7

5
1.7

5-2
2-2

.25

2.2
5-2

.5

2.5
-2.7

5
2.7

5-3
3-3

.25

3.2
5-3

.5

3.5
-3.7

5
3.7

5-4
4-4

.25

4.2
5-4

.5

4.5
-4.7

5
4.7

5-5
5-5

.25

Bin

Fr
eq

ue
nc

y

Resource Strength: Avg RS2r

0

1

2

3

4

5

6

7

8

0.3
-0.3

5

0.3
5-0

.4

0.4
-0.4

5

0.4
5-0

.5

0.5
-0.5

5

0.5
5-0

.6

0.6
-0.6

5

0.6
5-0

.7

0.7
-0.7

5

0.7
5-0

.8

0.8
-0.8

5

0.8
5-0

.9

0.9
-0.9

5
0.9

5-1
1-1

.05

1.0
5-1

.1

1.1
-1.1

5

Bin

Fr
eq

ue
nc

y

Resource Strength: Avg RS3r

0

1

2

3

4

5

6

7

1.2
5-1

.5

1.5
-1.7

5
1.7

5-2
2-2

.25

2.2
5-2

.5

2.5
-2.7

5
2.7

5-3
3-3

.25

3.2
5-3

.5

3.5
-3.7

5
3.7

5-4
4-4

.25

4.2
5-4

.5

4.5
-4.7

5
4.7

5-5
5-5

.25

5.2
5-5

.5

Bin

Fr
eq

ue
nc

y



Results and Analysis   (pg 27)

DISTRIBUTION: Approved for public release; distribution is unlimited

In other words, there might not be a significant enough difference to expect an influence by the
factor.  It would probably be best to force the “low” and “high” value selections to be separated
from each other.  One could do this by decomposing the range into three bands: a narrow central
one and two larger ones at the ends.  Then one could select “low” and “high” values from the
larger bands.

After inspecting the histograms above, I had initially selected the range bands as noted
below.

Factor Low band High band
NC 1.05<x<1.45 1.5<x<1.7
Avg RSr 1.6<x<3.2 3.4<x<5.25

This selection resulted in a reasonably even split: for the random selection of 25 problems, there
were 9 and 13 problems in the low and high NC bands (respectively) and 10 and 7 in the low and
high Avg RSr bands (respectively).  However, I could not fill the experimental design (for a 23

factorial design) because there were an inadequate number of problems in each of the cells.  The
table below shows the number of problems that met the criteria above.  (The first part of the table
provides the counts for the random sampling of 25 of the problems; the second part of the table
expands the sampling to 46 of the problems.)  Note that nearly doubling the size of the sample
did not result in any additional problems for the NC (-) ∩ Avg RSr (-) or NC (-) ∩ Avg RSr (+)
cases.  (Also, a number of problems in the sample failed to simultaneously meet NC and Avg
RSr range band requirements.  Accordingly, the number of problems within the table are less
than the total sample size.)

Number of problems meeting criteria
(sample n=25)

NC (-) NC (+)
Avg RSr (-) 3 7
Avg RSr (+) 1 5

Number of problems meeting criteria
(sample n=46)

NC (-) NC (+)
Avg RSr (-) 3 13
Avg RSr (+) 1 8

Since there seemed to be no problem meeting the NC (+) ∩ Avg RSr (-) and NC (+) ∩
Avg RSr (+) cases, I considered adjusting the range bands in hopes of distributing the available
problems to get more problems available for each cell.  Inspecting the sample, I found that
centering the narrow middle (exclusionary) band at Avg RSr = 3.3 was a good choice and that
the 0.2 width of this band was also a good choice.  This meant that the middle band was well-
centered and that it was slightly wider than 1/4  standard deviation.  Narrowing the band could
result in inadequate differences between the “low” and “high” bands.  Besides, the
decomposition of Avg RSr values seemed to be less of a problem than the NC values.

Inspecting the data more closely shows that the initial estimation of the center of the NC
distribution was slightly off.  A better middle (exclusionary) band would be the interval (1.475,
1.525).  For the random sampling of 46 problems, this would place 15 problems in the “low”
band and 20 problems in the “high” band.  The for this new range decomposition, the number of
problems meeting the criteria are shown in the table below.  Minor changes that tighten the



Results and Analysis   (pg 28)

DISTRIBUTION: Approved for public release; distribution is unlimited

interval do not change the number of elements within each of the bands (until the middle range
drops to near zero, an undesirable case).

Number of problems meeting criteria
(sample n=25)

NC (-) NC (+)
Avg RSr (-) 3 4
Avg RSr (+) 2 2

Number of problems meeting criteria
(sample n=46)

NC (-) NC (+)
Avg RSr (-) 7 10
Avg RSr (+) 2 7

Accordingly, the chosen intervals for NC and Avg RSr bands are shown in the table
below.

Range intervals: NC, Avg RSr
Factor Low band (-) High band (+)
NC 1.05<x<1.475 1.525<x<1.7
Avg RSr 1.6<x<3.2 3.4<x<5.75

Problems (ordered sequentially based on the previously-used random order) that apply to
each cell of the design matrix are shown below.  Note the dividing line between the initial 25-
problem sample and where the sample was expanded to a 46-problem sample.

NC (-) NC (+)
Avg RSr (-) Avg RSr (+) Avg RSr (-) Avg RSr (+)

pat7 pat57 pat26 pat6
pat8 pat110 pat22 pat9 n=25
pat48 pat30 pat15
pat20 pat28 pat 14
pat21 pat35 pat 5
pat32 pat18 pat 4
pat50 pat38 pat 104 n=46

pat24
pat27
pat29

Thus the layout of the experiment is as shown below.

NC (-) NC (+)
Avg RSr (-) Avg RSr (+) Avg RSr (-) Avg RSr (+)

pat7 pat57 pat26 pat6
“Half”

pat8 pat110 pat22 pat9
pat7 pat57 pat26 pat6

“RSE”
pat8 pat110 pat22 pat9



Results and Analysis   (pg 29)

DISTRIBUTION: Approved for public release; distribution is unlimited

It is interesting to note that of the eight problems, three were single-resource problems
(pat7, 8 and 9) despite the fact that the selection process did not have an explicit bias related to
the number of resources.  The number of resources should not have an impact on buffer sizing or
its effectiveness.  The same constraining effect can occur regardless if there are one or many
resources; the key difference is that with many resources there are simply more requirements to
check.  It is possible that an implicit bias (with respect to the number of resources) was present.
In single resource problems, the Avg RSr is not tempered by additional resources.  It is
equivalent to Avg RSr for the single resource.  For the multi-resource problems, the Avg RSr is
the combination of the multiple resources, where high values in one resource can be balanced by
low values in another.  In hindsight, a more suitable measure might have been to select the
minimum of the Avg RSr for each of the resources.

Network characteristics for NC and Avg RSr for the eight problems are consolidated in
the table below.  For additional characteristics, see the summary spreadsheet in Appendix D,
Section 1.  See Appendix D, Section 4 for large-format Gantt charts and network diagrams of the
problem networks.

Problem
ID NC Avg RSr

pat6 1.591 3.926
pat7 1.22 2.059
pat8 1.22 1.647
pat9 1.667 4.324
pat22 1.545 3.020
pat26 1.591 2.603
pat57 1.455 4.530
pat110 1.373 3.529



Results and Analysis   (pg 30)

DISTRIBUTION: Approved for public release; distribution is unlimited

Establishing the Feeding buffers
An issue arises that is especially prevalent in highly-connected (i.e., relatively high NC)

networks with weak resources.  For a feeding buffer to be viable, there must be enough resources
available for the preceding tasks to run into the buffer while still allowing the parallel tasks
(especially, but not necessarily only the critical chain) to be executed.  This should be (and
perhaps is) inherent within the critical chain process.  However, the concept is not discussed as a
fine point in the literature, perhaps because of the simple examples commonly used.  It may be
part of the more detailed instruction provided in CCPM seminars.

The figure below shows two ways to plan the workload.  The top line represents tasks on
the critical chain.  Below it are two options for scheduling tasks on a feeding chain.  Assume that
all tasks require the same resource type, that each task requires one unit of the resource and that
there are two units of the resource available for the project throughout all time periods.  (The
result is that, during any one period, only one task can be accomplished simultaneously with the
task on the critical chain.)  Immediate successor tasks for task m includes task y and n;
immediate successor for task n is task z.

In the first of options, each of the tasks on the feeding chain are separated by a FB.
While this would guarantee viability re: no issue re: overrunning segments of the feeding chain,
it appears counter to critical chain principles because it forces a pause in the schedule when one
may not be necessary.  (Consider the case where the first task on the feeding chain ends as
scheduled.  No feeding buffer is consumed and the subsequent task is held instead of beginning
immediately.)

The second option shows a better case: the critical chain is protected by the FBs and each
of the tasks on the feeding chain is allowed to run consecutively without pause.  After all, the
real use of the feeding buffers is to protect the critical chain.

However, an issue concerns the sizing of such FBs.  Should they be based on the size of
the feeding chain segment (i.e., those tasks since the start of the project or the last task that was a
predecessor task of a task on the critical chain) or should they be based on the size of the larger
cumulative segment of all tasks that are part of the same consecutive chain?

It seems more appropriate that for the buffers to be sized in accordance with the second
(i.e., cumulative segments) method.  The reasoning is best explained via example.  Consider two
tasks on a feeding chain and that the first is a long duration task while the second is short.
Suppose that the first task consumes some but not all of its feeding buffer (i.e., overruns the
planned end date for the task but does not delay the critical chain).  The second task cannot begin
until the preceding one is complete (due to the resource constraints in the preceding example).
Even if this subsequent task performs in accordance with its estimated 50:50 time, it could
overrun its segment buffer (which would be smaller than the preceding task’s segment buffer).

Task y Task z

Task n FB2

Task x

Task m FB1 Task n FB2

Task m

FB1



Results and Analysis   (pg 31)

DISTRIBUTION: Approved for public release; distribution is unlimited

In some cases, it is accepted to insert feeding buffers (or portions of them) onto the
critical chain just prior to the project buffer.  The method is used to prevent gaps in the critical
chain that might otherwise occur when inserting feeding buffers at the end of a chain that
includes a predecessor task on the critical chain.  When inserting the buffer, the tasks on the
feeding chain get pushed backward (earlier in time) until the buffer fits into the plan at the end of
the feeding chain.  However, if the buffer is large enough, it could push the predecessor tasks on
the critical chain backward, creating a gap in the critical chain.

Leach (2000) describes the process to resolve the gaps, stating that if the gaps are small,
one should insert the balance of the feeding buffer at the end of the project just prior to the
project buffer.  Although such a feeding buffer is immediately adjacent to the project buffer,
considering the two as separate blocks allows them to be separately accounted for and helps
prevent the buffer management reports from getting confusing.  However, the literature does not
define “small” nor does it indicate what one should do if multiple feeding buffers have this same
problem on a single project.

There is also a danger of double counting, both within the plan as well as when running
the simulation.  This is especially true for cases where some portion of multiple feeding buffers
on the same feeding chain are moved to just before the start of the project buffer (to preclude
forcing gaps into the critical chain).  Such buffers should be allowed to run simultaneously in
order to preclude “double counting.”

When establishing the critical chain plans for the problems in this report, I made no
distinction for “small” versus “large.”  In other words, the balance of any feeding buffers that
would otherwise create a gap in the critical chain was inserted on the critical chain just prior to
the project buffer.

In a normal project where feeding buffers can be shown directly and completely at the
end of their respective chains, overrunning the feeding buffers could create an additive delay of
the project.  Accordingly, I reasoned that the feeding buffers in this special case should also have
the potential for an additive delay and I portrayed them consecutively prior to the project buffer.
(For example, see the critical chain plan for problem pat22 in Appendix D, Section 2.)  Again,
this is a fine point that does not show up in the literature due to the typically simple problems
that are used as examples.

Rounding effect
It was obvious that the practice of rounding up when converting “high confidence”

estimates to their reduced values can be detrimental.  It was expected that this would be the case
due to the generally short activity times (all of the selected problems had single-digit durations in
the original problem).

The effect is obvious in the problem patterson6, where each activity has a duration of 1
time unit.  Following the established guidelines, reducing this “high confidence” estimate by 1/2
and then rounding up to the next integer value results in no change.  Thus, the values in
developing the critical chain plan are the same as the “high confidence” values.  As expected,
when running the simulation, buffer consumption did not exceed 0 because the upper value of
each activity’s duration distribution is the same as the plan.  All of the simulated times fall below
this value.  Thus, such extreme cases make CCPM worse than reverting to traditional methods
where safety time is distributed across each of the activities: not only does this same spread of
safety time occur but an additional buffer is added.



Results and Analysis   (pg 32)

DISTRIBUTION: Approved for public release; distribution is unlimited

One should thus beware when establishing a plan with low values for the “high
confidence” estimates and should not blindly follow the guidelines.  The intent of the “round up”
concept was probably only to recognize that the estimating process is inexact and that a minor
adjustment would be irrelevant.  Also, displaying “half” periods portrays a precision that is not
actually present.  However, in reality, if time period estimates are low single-digit values, it is
probable that the estimate has greater precision but needs a different scale (e.g., if all activities
are estimated as “1 day” it would probably be better to convert to an “hours” schedule).

In hindsight, it might have been better to treat the activity durations in the original
problems as the reduced times (50:50 times) instead of the “high confidence” times.  Doing so
would have prevented the effect of the “rounding.”  However, time available did not allow
repeating the process with different activity times.  One could not simply re-run the problems
because the mix of activities in each problem (i.e., with and without rounding) would require
new critical chain plans.  However, the exception is patterson6, because all the activity durations
are 1 time unit.  Thus, the same adjustment could be applied to all activities and the chain logic
would not need to be changed.  Using “1” as the reduced times and changing the activity time
distribution in the simulation would preclude re-creating a new critical chain plan and the
corresponding simulation logic.

The original results for problem patterson6 had no iterations that consumed any project
buffer.  They were not included in the subsequent analysis.  Instead, the activity time
distributions were modified as described in the preceding paragraph (the original problem
duration was considered the 50:50 duration).  Accordingly, the original times were doubled to
get new “b” values for the triangular distribution and the “a” and “c” values were then calculated
in the same manner as for all the other problems.  This problem is listed as patterson6-
MODIFIED throughout this paper.

New a,b, and c values (= .67, 1.1, and 2, respectively) were inserted as the activity time
distributions in the simulation and the simulation was repeated for both the “half” and “RSE”
methods.  Results of this modified problem were included in the analysis.

Overview of Simulation Results
Output data from the simulation runs is in Appendix E, Section 3.  However, due to the

magnitude of information, it consists of summary results only.  More comprehensive data reports
(e.g., listing the results of the feeding buffer consumption) are located within the enclosed
electronic files.  In general, the appendix is organized such that there are several pages of data
for each problem.  However, for convenience, a consolidated set of histograms for percent
project buffer consumed (pb% consumed) is included at the beginning of the section.

The consolidated set allows a quick comparison between the two buffer sizing methods.
Note that both the vertical and horizontal scales vary for each of the histograms.  Nonetheless,
one can see that, in general, the differences between the two methods for most of the problems
appears very small.  For example, for problem pat7, both methods had similar frequency of zero
consumption percentages (approximately 23% and 33% for “half” and “RSE”, respectively).
One can also see that the balance of these percentages is scattered across a similar range (0-57%
and 0-52%, respectively).  There are differences but only a few of the problems appear to be
particularly sensitive to the buffer sizing method.

Although it takes a close examination, one can see that the “RSE” method consumes
more of the project buffer than the “half” method for pat26, including values up to 90%
(compared to only 46% for the “half” method).  A similar effect occurs for problem pat57 and



Results and Analysis   (pg 33)

DISTRIBUTION: Approved for public release; distribution is unlimited

pat110.  In pat110, only approximately 12% of the runs resulted in some non-zero amount of
buffer consumption for the “half” method while the “RSE” method had a value closer to 70%.

Scoring
The scoring method that I had planned to use (previously referred to as “Alternative 2”

(see Methodology section) could not be used.  While I believe such thresholds are appropriate,
leaving them in place would have resulted in little data to analyze.  The table below shows
counts for the number of non-zero scores for each of the problem-buffer sizing method
combinations using Alternative 2 scoring.  Recall that the simulation was run 500 iterations for
each problem-buffer sizing method combination.  (The identical values for both buffer sizing
methods for problem patterson9 is due to two reasons.  First, both methods resulted in equivalent
project buffer sizes for this problem.  Second, a common random number seed was used for the
simulation.)

Count of non-zero scores based on scoring Alternative 2 (n=500)
pat6MOD pat6MOD pat7 pat7 pat8 pat8 pat9 pat9

half RSE half RSE half RSE half RSE
13 33 1 0 1 16 139 139

pat22 pat22 pat26 pat26 pat57 pat57 pat110 pat110
half RSE half RSE half RSE half RSE

0 0 0 41 30 71 0 16

Accordingly, it was deemed necessary to adjust the scoring in order to allow more non-
zero scores so that potential differences between the methods could be examined.  The model is
shown below and is referred to as “Alternative 2a”.  The only change from the planned model
was the widening of the base of the trapezoid such that non-zero scores were produced for
iterations that now had project buffer consumption percentages in the range 40%<pb%<125%.
The scoring model is depicted in the figure below.

Using the same simulation run data (i.e., the same percent project buffer consumed),
scoring “Alternative 2a” was applied and the results were obtained.  They are shown in the table
below.

Project Buffer

overrununderrun

Planned project
completion date

Sc
or

e

0

1

15% of
Proj buffer

5% of
Proj buffer

45% of
Proj buffer

Alternative 2a
Score = 2.22*pb %-0.888

Score = -5*pb%+6.25

15% of
Proj buffer



Results and Analysis   (pg 34)

DISTRIBUTION: Approved for public release; distribution is unlimited

Count of non-zero scores based on scoring Alternative 2a (n=500)
pat6MOD pat6MOD pat7 pat7 pat8 pat8 pat9 pat9

half RSE half RSE half RSE half RSE
73 129 41 29 44 84 290 290

pat22 pat22 pat26 pat26 pat57 pat57 pat110 pat110
half RSE half RSE half RSE half RSE

0 1 16 122 184 254 0 89

Note that there is generally a large increase in the number of non-zero scores with scoring
Alternative 2a.  This implies that a fair number of projects were consuming their buffers but only
at relatively low amounts.  That is, both buffer sizing methods seem to overestimate the
necessary safety time.  (See Appendix E, Section 3.)  One can confirm from the histograms for
the project buffer consumed (pb consumed) that projects were indeed consuming some amount
of buffer.  (Remember that “pb consumed” is in time units while “pb % consumed” is a
percentage.)

Few of the runs for either buffer method achieved a score of 1.  Counts are provided in
the table below.

Count of scours = 1 based on scoring Alternative 2a (n=500)
pat6MOD pat6MOD pat7 pat7 pat8 pat8 pat9 pat9

half RSE half RSE half RSE half RSE
4 7 0 0 0 1 49 49

pat22 pat22 pat26 pat26 pat57 pat57 pat110 pat110
half RSE half RSE half RSE half RSE

0 0 0 9 3 11 0 4

One of the differences noted between the methods is that, compared to the “half” method,
the “RSE” method essentially shifts safety time from the project buffer to the feeding buffers.
This is due to the effect that for short chains the “RSE” method results in longer buffers than the
half method, with just the opposite effect on longer chains.  Accordingly, project buffers,
because they are developed from the relatively long critical chain, are usually shorter in “RSE”
than via the “half” method; feeding buffers are usually longer.  However, the feeding chains in
these problems are potentially unnaturally short due to the high interconnectivity of the feeding
and critical chains.  Given this complementary effect of the “RSE” buffer sizes for long critical
chains and short feeding chains, there is a potential balance point where both methods provide a
similar amount of safety time.  To confirm whether this phenomenon was occurring, I examined
the feeding and project buffer sizes for the two methods across all the selected problems.  The
results are in the table below.  Note that the “RSE” method had a slightly larger average feeding
buffer size but that its project buffer size was dramatically shorter.  If the feeding and critical
chains were less inter-connected (i.e., the feeding chains were allowed to be longer due to
relative independence), the feeding chains would be longer than in these problems and then both
the project and feeding buffers would be smaller via the “RSE” method, thereby reducing overall
safety time.



Results and Analysis   (pg 35)

DISTRIBUTION: Approved for public release; distribution is unlimited

“Half” Method “RSE” Method
Problem ID Avg FB size PB size Avg FB size PB size
pat6MOD 1 4 1 2
pat7 1 3 1.67 3
pat 8 1 4 1.5 3
pat 9 2.4 6 2.8 6
pat 22 3 12 3.29 7
pat 26 1.2 14 1.8 7
pat 57 2.75 6 2.25 5
pat 110 6.31 27 6.31 13
Overall Average 2.3 9.5 2.6 5.8

It is further possible that the true effect of the sizing methods were masked due to the
high interconnectivity between feeding and critical chains.  As noted earlier, a number of feeding
buffers were inserted on the critical chain prior to the project buffer to preclude gaps in the
critical chain.  While the practice is acceptable, it can hide the result of the project buffer
consumption because the feeding buffer (if not consumed by the feeding chain) is now available
to be consumed by the critical chain.

Inserting the score counts for scoring Alternative 2a into the experiment matrix seems to
indicate that the “RSE” method is superior for all combinations of NC and RSr.  Not only does it
achieve better scores than the “half” method for every combination, it also is better for almost
every problem.  (Note that both are equivalent at 290 for pat9 and that they are virtually
equivalent at 0 and 1 for pat22.)

Count of non-zero scores based on Scoring Alternative 2a
                                                                                            (n=500 each cell)

NC (-) NC (+)
Avg RSr (-) Avg RSr (+) Avg RSr (-) Avg RSr (+)

41 184 16 73
“Half”

44 0 0 290
29 254 122 129

“RSE”
84 89 1 290

Repeating the table with the average score results in the following table.  Recall that the
score range is [0,1].

Average score based on Scoring Alternative 2a
                                                                                            (n=500 each cell)

NC (-) NC (+)
Avg RSr (-) Avg RSr (+) Avg RSr (-) Avg RSr (+)

.015 .111 .004 .044
“Half”

.016 0 0 .314

.009 .203 .109 .098
“RSE”

.058 .056 0 .314

While the results are not what I would call desirable, it is encouraging that there are
positive values.  This indicates that buffers are sized such that projects are entering the region
where there is neither too little nor too much safety time.



Results and Analysis   (pg 36)

DISTRIBUTION: Approved for public release; distribution is unlimited

In general, the “RSE” method appears better across all the combinations.  Indeed, only
for problem pat7 does “half” score better than “RSE” (scores are .015 and .009, respectively).
Scores are equivalent for two of the problems (pat9 and 22 with scores of .314 and 0,
respectively).  Although the percent increase of one method over another may be sizeable, the
raw scores are nowhere near as dramatic as I had expected.

To conduct a more detailed analysis of variance, the average scores in the preceding table
were replaced by score sums and the table was extended to include row and column totals.  The
table is shown below.  Because of its size, the raw score data is not included in an appendix but
the data is available on the enclosed electronic media.

Score sums by treatment combination, scoring alternative 2a
                                                                                               (n=1000 each cell)

NC(-) NC (+)
RSr (-) RSr (+) RSr (-) RSr (+) Row Total

“Half” 15.4386 55.46324 2.078031 179.2239 252.2037
“RSE” 33.163 129.6802 54.73699 206.265 423.8452
Col Total 48.6016 185.1434 56.81502 385.4888 676.0489

Both problems in each cell were combined (i.e., scores were added for each of the 1000
observations across the two problems in each cell).  It is possible that some type of blocking
based on the problem could improve the quality of these results.  The resulting analysis of
variance table is shown below.

ANOVA Table
Source SS DF MS F P-value

Buffer method (A) 3.682598 1 3.682598 87.50416 1.07258E-20
Net complexity (B) 5.437097 1 5.437097 129.1937 1.03936E-29
Resource strength (C) 27.0532 1 27.0532 642.8253 1.8033E-136
AB 0.018731 1 0.018731 0.445082 0.504699061
AC 0.119156 1 0.119156 2.831325 0.092481103
BC 4.614336 1 4.614336 109.6437 1.71411E-25
ABC 0.842765 1 0.842765 20.02539 7.74791E-06
Error 336.342 7992 0.042085
Total 378.1099 7999

From the table, one can see that the mean square for all treatments is larger than the mean
square for error.  Thus, all treatments have an effect with the largest effects by resource strength,
net complexity.  Note that the effects due to buffer sizing method rank fourth behind the net
complexity-resource strength interaction.  Nonetheless, the effects are significant as confirmed
by the P-value less than .0001.

I suspect that if the previously-described adaptation for Avg RSr were used instead Avg
RSr, its effect would be more significant than that of Avg RSr above.  This measure, like
network complexity, has the potential to slow network performance due to delays on a parallel
but connected path.



Conclusions   (pg 37)

DISTRIBUTION: Approved for public release; distribution is unlimited

Both buffer sizing methods scored much more poorly than I had expected.  While it is
possible that some of the result can be attributed to potential masking of project buffer
consumption due to forced placement of feeding buffers on the critical chain, it is unlikely
because only a few of the networks had critical chain plans with such a structure.

Most problems had networks with short chains.  This is perhaps due to the fact that they
were highly resource constrained problems and that they shared the same (generally 3) resources.
This meant that resource comparison (linking tasks due to resource limitations) was just as likely
to drive a particular sequence as precedence logic.

These short chains frequently meant that the strings of tasks could not be “chains” at all;
while there may have been a logic sequence, tight resource constraints prevented flexibility on
parallel chains as parallel tasks were forced onto a task-for-task schedule comparable to the
critical chain.  The net effect was that, in a number of cases, chains were only 1 to 2 time periods
long.

Both buffer sizing methods seem to overestimate the necessary safety time.  This may be
less of an issue with longer, less inter-connected chains.  In such cases, the “RSE” method will
result in lower buffer size estimates and likely result in higher scores.  It is, however, difficult to
determine without investigation whether the “RSE” would then underestimate the buffer and
result in scores of zero due to overruns.

Depending on the length of the feeding chains, the “RSE” method may simply shift
safety time from the project buffer to the feeding buffers.  However, for long chains, the “RSE”
method will result in less overall safety time (both in feeding and project buffers).  Accordingly,
one may choose one buffer sizing method over another depending on the length of the chains
involved in the project, the expected risk level, and the uncertainty of the estimates.

While the buffer sizing method did explain a significant amount of the variation of the
scores, it was surpassed by the network complexity, the resource strength, and the interaction
between the two as a source of variation.  Of the two methods, the “RSE” method performed
better than the “half” method.

The additional resource strength measures did not make as significant a difference as I
had expected.  For future experiments involving network characterization, Avg RS2r may hold
more promise than Avg RS3r.

Some fine points of critical chain scheduling are not adequately discussed in the critical
chain literature, perhaps due to the relatively simple problems used as examples.  While texts
such as Leach (2000) and Newbold (1998) make great strides in explaining CCPM to the
practitioner, holes still exist.  Particular areas include resolving gaps in the critical chain and
sizing feeding buffers on chains that have multiple inter-connections with the critical chain.



Areas for Future Research   (pg 38)

DISTRIBUTION: Approved for public release; distribution is unlimited

There are a number of areas for additional research or areas in which to improve this
report.

The most noteworthy concerns the problem selection.  There are two main parts to this
issue:

1)  Reconsider whether the Patterson dataset is adequately representative of
projects or at least characterize its primary differences.  Recognize that the problem set was
developed to test solution methods for the resource constrained project scheduling problem.
Accordingly, the set may be characterized as skewed toward a level of difficulty not necessarily
common in practice.  An initial step would be to expand the dataset summary sheet for the
network characteristics (see Appendix D, Section 1).

2)  Expand the problems considered to a larger set, either within the Patterson
dataset or via others.  The Project Scheduling Problem Library (see Appendix B) contains a large
number of other problems.  Although most of them are multi-mode problems, there are plenty of
single-mode problems.  It would be beneficial to compare them to the Patterson dataset.

Another obvious area for additional research, is to investigate the effects of other
characteristics or to refine those used in this paper.  For example, a potentially more appropriate
measure of the resource difficulty is the minimum of the resource strength (possible either as a
minimum of the average resource strengths by resource or as a minimum of the individual kjr).
Task estimate uncertainty is another likely network characteristic that could have a correlation to
the preferred buffer sizing method.  Since this paper used a “high uncertainty” case rather than a
random uncertainty level, one could investigate the effect of uncertainty simply by expanding
this investigation to include a “low uncertainty” case.

When investigating the effects of other characteristics, consider that there may be a non-
linear response for resource strength.  In a network with exceedingly strong resources, task
precedence logic drives the order of tasks.  For the same network structure but with weaker
resources, determining the path through the network can be difficult because one is trying to
work at maximum capacity.  At this maximum capacity case, additional inter-relations are
created.  If the same net had extremely weak but (feasible resources), the resource constraints
play a very significant role, at the extreme, converting the initially complex network into an
entirely serial structure.  Identifying whether different buffer methods would be preferred in
these differing instances of the same network would be interesting and potentially beneficial
work.

Future expansion of this paper should confirm nuances of critical chain accepted practice
and ensure that these nuances are accommodated within the critical chain plan.  Primary among
these is the concept of feeding buffers on the critical chain prior to the project buffer.  Also
included is the concept of a feeding chain with multiple links to the critical chain: should these
segments be considered as separate chains or as segments of the larger chain?  Another point
concerns whether it is appropriate to add buffers into chains that merge into a feeding chain and
that subsequently merge into the critical chain.  Should such buffers exist, should they be sized
differently?  Another obvious nuance concerns the concept of rounding the durations to integer
values.  While such a guideline is certainly common in the literature, it is clearly not appropriate
for all cases (see the earlier discussion about problem #6).

Obviously, since one of the limitations of this paper was that it did not investigate all the
popular buffer sizing methods, an area for future research would be to expand the experiment to
investigate their relative performance.  While using the lognormal distribution could allow the



Areas for Future Research   (pg 39)

DISTRIBUTION: Approved for public release; distribution is unlimited

addition of Herroelen and Leus’ (2001) modified 2-Standard Deviation method, it appears
difficult to develop a fair test of Hoel and Taylor’s (1999) method.

It may be a good idea to change scoring method to the Alternative 3 described in the
Methodology section of this paper.  Doing so would allow non-zero scores to be developed, even
though they may be at very low levels.  Since many of the runs in this initial investigation
resulted in low project buffer consumption, expanding the scoring range might help to
differentiate between the methods.

Alternatively, one could simply adopt scoring Alternative 2 and widen the base of the
trapezoid to encompass the entire project buffer in the left tail; extending the he right tail may or
may not be necessary.

Another recommendation for future work would be to attempt to identify a better buffer
sizing method or at least a few guiding principles about adapting the existing methods.  That is,
one could provide adjustment coefficients to the base methods that would be related to the
network characteristics.

Some other lessons learned could help future researchers.
Consider using a supporting tool (e.g., ProChain to develop critical chain plans).  While I

had avoided using it because I wanted to test the concepts of the buffer sizing methods instead of
validating the software, it could still be beneficial in establishing a recommended plan that could
then be individually confirmed and adapted if necessary.  The @RISK tool to run the Monte
Carlo simulations via Microsoft Project could also be beneficial, potentially reducing the need to
re-create problem structures in multiple programs.

I would recommend using the original problem durations as the “reduced” times to
eliminate the effects of rounding to integer values.  Although rounding would still apply to the
buffer size, at least it would not necessarily be rampant throughout the network.



Appendix A: Cited Works

DISTRIBUTION: Approved for public release; distribution is unlimited

Sources:

Badiru AB.  A simulation approach to PERT network analysis.  Simulation  1991; 57(4): 245-
255

Brucker P, Drexl A, Mohring R, Neumann K, Pesch E.  Resource-constrained project
scheduling: Notation, classification, models, and methods.  European Journal of Operational
Research  1999; 112(1):  3-41

Cook DP.  A simulation comparison of traditional, JIT, and TOC manufacturing systems in a
flow shop with bottlenecks.  Production and Inventory Management Journal  1994; 35(1): 73-
78

Cooper DF.  Heuristics for scheduling resource-constrained projects: An experimental
investigation.  Management Science  1976; 22: 1186-1194

Elmaghraby, Salah E. On criticality and sensitivity in activity networks.  European Journal of
Operational Research  2000;  127:  220-238

Goldratt EM.  Critical chain.  Great Barrington (MA): North River Press; 1997.  246 p.

Grey S.  Practical Risk Assessment for Project Management.  Chichester, England: John Wiley
and Sons Ltd, 1995.  140 pp

Gutierrez GJ, Kouvelis P.  Parkinson's Law and its implications for project management.
Management Science  1991;  37(8): 990-1001

Herroelen W, Leus R.  On the merits and pitfalls of critical chain scheduling.  Journal of
Operations Management  2001; 19(5): 559-577

Herroelen W, Leus R, Demeulemeester E.  Critical chain project scheduling: Do not
oversimplify.  Unpublished article  2001;

Hoel K, Taylor SG.  Quantifying buffers for project schedules.  Production and Inventory
Management Journal  1999; 40(2):  43-47

Kamburowski J.  New validations of PERT times.  Omega  1997; 25(3): 323-328

Kolisch, R, Sprecher A.  PSPLIB - A project scheduling problem library.  European Journal of
Operational Research  1997;  96(1):  205-216

Kolisch R, Sprecher A, Drexl A.  Characterization and generation of a general class of resource-
constrained project scheduling problems.  Management Science  1995; 41(10):  1693-1703

Leach LP.  Critical chain project management improves project performance.  Project
Management Journal  1999; 30(2):  39-51



Appendix A: Cited Works

DISTRIBUTION: Approved for public release; distribution is unlimited

Leach LP.  Critical chain project management.  Boston: Artech House; 2000.  330 p.

Montgomery DC.  Design and Analysis of Experiments (4th ed).  New York: John Wiley &
Sons, Inc.; 1997.  704 pp

McKay KN, Morton TE.  Critical chain.  IIE Transactions  Aug 1998; 30(8):  759-762

Neter J, Wasserman W, Kutner MH.  Applied Linear Statistical Models (3d edition).  Boston:
Richard D. Irwin, Inc.; 1990.  1181 pp

Newbold RC.  Project management in the fast lane:  Applying the theory of constraints. Boca
Raton: St. Lucie Press; 1998.  284 pp

Pascoe TL.  Allocation of resources.  C.P.M. Revue Francaise Recherche Operationelle  1966;
38: 31-38

Patterson J.  A comparison of exact procedures for solving the multiple constrained resource
project scheduling problem.  Management Science 1984; 30(7):  854-867

Ramsay ML, Brown S, Tabibzadeh K.  Push, pull and squeeze shop floor control with computer
simulation.  Industrial Engineering  1990;  22(2):  39-45

Steyn H.  An investigation into the fundamentals of critical chain project scheduling.
International Journal of Project Management  2000; 19(6):  363-369

Wendling RV, Lorance RB.  Basic techniques for analyzing and presenting schedule risk
analysis.  AACE Transactions  1999: 8.1 - 8.8

Williams T.  Towards realism in network simulation.  OMEGA International Journal of Mgmt
Science  1999;  27(3):  305-314


