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ABSTRACT
   There have been a lot of studies addressing target-tracking problems, in which targets like aircraft and
missiles can move freely in the air without hard spatial constraints.  Tracking ground targets is a completely
different case.  Variable terrain structures not only limit the target’s moving capability, but also degrade the
quality of measurement data.  This paper describes an exploratory research project which studied the tracking of
a single ground target via traditional and atypical approaches.  Traditional Kalman techniques taking into
account the additional information provided by the ground restrictions in the tracking process, a road network in
our study, were implemented.  Additionally, another tracker using the Hidden Markov Model (HMM) with
transition array was also developed under the same scenario.  The results showed that Kalman techniques with
available road information significantly outperform the conventional Kalman approaches in terms of
longitudinal and transversal errors at the time when the target maneuvers.  The proposed adaptive HMM
tracker, composed of some regional HMM trackers, is not sensitive to transversal maneuvers, but may yield
large longitudinal errors at the time when the target approaches the boundary of each subscenario.

Keywords: Ground Target Tracking, Interacting Multiple Models, Hidden Markov Models, Viterbi algorithm.

1 Introduction

   Tracking ground targets is much more difficult than aerial targets due to topographic variations that can
influence a target’s motion patterns and obscurity to observation.  An exhaustive literature survey [1] showed
that not much specific work has been done for this tracking problem, certainly not when compared to freely
moving 3D targets.  Basically, we are particularly interested in two among several categories of trackers for
point ground targets that have no spatial extent.  The first category includes the Kalman-based approaches
where a number of studies taking advantage of available terrain information, such as elevation or roads, have
been carried out.  For example, in [2], a terrain aided passive estimation approach was developed as an
improved solution to the problem of accurately locating ground targets from aircraft referenced passive sensors.
The algorithm fused angular target measurements (azimuth and elevation angle) from all available sensors along
with the stored elevation data to obtain the least squared error estimates of the target location.  In [3], an
Interacting Multiple Model (IMM) estimator of variable structures was designed where the filter modes
associated with each target were adaptively modified, added or removed, depending on the topography for
tracking on-road and off-road targets, within the same framework.  Other work regarding tracking processes
involving map information in Kalman approaches can also be found [4], [5].
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   The second type of ground tracker is based on the theory of Hidden Markov Models (HMM) [6], [7], [8].
In this approach, it is assumed that targets moved in an area characterized as a rectangular grid at discrete time
instants.  The system modeled the states as the discrete target locations, and the state transitions as the target’s
possible geographic movement.  The actual history of the target’s location versus time could be retrieved using
the Viterbi algorithm.  However, it was not explicitly explained in these studies how to incorporate varying
terrain knowledge into the transition array.

   The road restriction is the most attractive terrain feature that interests us.  In this paper, the scenario map,
with solely the road network as the topographic feature, was taken from a small area in France where a battle
between German and French forces took place in World War II.  We refined the above two approaches for
tracking a single ground target by presenting a generalized structure to incorporate the road information, and
developed innovative tracking schemes with target dynamics guided by the road map.  A multitarget scenario
including the effects of data association processing was not considered for this study but will be explored in
future studies.  Since the elevation data was not of concern, all trackers were modeled in 2D space.

   Note that we only take care of the development of tracking algorithms.  It is not a hybrid method that
involves a high-level strategic decision-making scheme based on the track of the target.  As a matter of fact, in
the same project we work on, there is another group dealing with belief revision and automatic reasoning for
decision support in the same battle scenario [9].

   This paper is organized as follows.  In section 2, several trackers based on Kalman filtering with and
without ground information are proposed and analyzed.  In section 3, an adaptive HMM-based tracker is
presented where the coverage of the geographic region differs as the target moves.  The simulation results are
illustrated and discussed in section 4.  Finally, the concluding remarks are made in section 5.

2 Kalman-based Tracking Techniques

   In this section, some Kalman-based approaches for tracking a ground target moving on a road network are
proposed and analyzed.  A representation of this network, besides the methods to deal with it, is proposed, and
the effects of using this additional source of knowledge on the final performance are shown later.

   Here, we focus on the estimation of location and kinematic parameters of the target.  Within the Kalman
filter framework, there are two possible ways to include the road information in the models: 1) the modification
of data reported by sensors, according to the road restrictions, and 2) a “tuning” in the model of target
dynamics.  We will explore both options, especially the second that involves different ways to incorporate the
road information in the dynamic model of the target such that the Kalman equations can be changed
correspondingly.

   It can be asserted that the main issue determining the performance of Kalman filters is the correct model
of target dynamics.  Although it provides highly efficient and optimal solutions for scenarios where targets
move at constant velocity, biases and bad performance in the transient periods can often result when targets
maneuver.  The representation of maneuvers as additive Gaussian pseudonoise is a conventional way of
modeling target dynamics, although maneuver acceleration is naturally discontinuous and may not be well
represented.  Usually, an important factor to change the dynamics is the variance of the process noise [10].  The
maneuver detection and adaptation problem has been studied since Moose et al. [11].  It turns out that the IMM
algorithm is one of the best schemes to change the dynamic model adaptively [12].  The methodology suggested
here to incorporate the ground information in the tracker involves the adaptation of the dynamic model
parameters, depending on the characteristics of traversed ground elements.  Therefore, an algorithm is
implemented to locate the target inside the road network for updating the target dynamic model.  It can be
particularly effective in dealing with transversal maneuvers that occur when the target follows the turn in a
curved road, or changes the heading direction at the junction of roads.  This type of maneuver can be predicted
from the target locations in the map such that the model can be modified to take them into account.  The
longitudinal maneuvers such as stops or accelerations depend on the driver’s intention and cannot be predicted.
However, the direction and magnitude can be adjusted based on the road characteristics.



Figure 1:    The proposed ground target tracking architecture.

   The block diagram of the proposed system is shown in Figure 1.  The basic structures and equations of the
Kalman filter are augmented with the logic to locate the target on the ground and the additional processes to
incorporate the ground information into the prediction and observation models.  )(ˆ s kx  and )(s kP  denote the
smoothed estimation and covariance matrix, while )(ˆ p kx  and )(p kP  are the predicted estimation and
associated covariance.  The prediction stage involves the transition matrix, F, and the covariance of process
noise, Q.  The updating phase is controlled by the gain matrix, K, derived from the conventional Kalman
equations.

Figure 2:    Geographic representation illustraing the overlap of the road segment and the uncertainty region for
sensor measurement.

   The basic idea to identify if the target is inside a road is depicted in Figure 2.  The road structure is
composed of a number of segments linking a series of waypoints Pi and the associated widths wi.  To determine
if an observation falls inside a road segment, we need to search if there is an overlap between the rectangular
road segment and the uncertainty region of measurement, which is a geographic ellipse expressed by the
following equation
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where (xm, ym) is the sensor measurement, R is the associated covariance matrix, depending on the assumed
sensor model, and α  is the probability of locating the target inside the uncertainty region.  This is a typical
procedure to find out the road segment where the target is moving, considering only the sensor report.  In some    
complex situations, such as when the target is approaching a junction where several road segments overlap, the
procedure can be improved using the estimated locations from the tracker.
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2.1 Map-Tuned Variance Model

   The first method to incorporate the ground information into the dynamics contains a dynamic adaptation
of the noise variance for maneuvers.  As the target approaches the end of a road segment, there is a probable
transversal maneuver for the target to keep inside the road.  The value of this process variance can be “tuned”,
based on the distance between the target and the next waypoint, as well as the estimation of groundspeed.  The
assumed dynamic model is that the target moves with a constant velocity plus additive white Gaussian
acceleration process, given by
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   The parameter aσ , the standard deviation of processes ax and ay, is maintained low while the target is
inside a straight road segment, and is increased when it is getting close to the end of segment.  The increase of
variance depends on the target dynamic characteristics and the current speed.  This is a robust and easy scheme
to adapt transversal maneuvers.  Basically, it avoids the biases due to the mismatch between the constant
velocity prediction model and transversal accelarations, but increases the noise in the estimators.

2.2 Curvilinear Model

   A more sophisticated method, named the “curvilinear model”, may be used as an alternative to deal with the
influences of the road segment orientation on the dynamic model of target.  If the target is moving inside the
road at constant speed, its velocity vector should follow the orientation of the centerline.  During the transition
period from one segment to next, this approach models the target trajectory as a circular arc.  This type of
dynamic is described by the following nonlinear equations
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where θ  is the orientation and at is the transversal acceleration of the target.  If the jump in orientation from
one segment to the next is low enough, these equations can be linearized with a first order approximation and
included in a linearized extended Kalman filter with model
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   where α  is the angle between the estimated velocity and the centerline.
   Some studies [13], [14] have used this technique to include heading information in the dynamic equations.

Here, the continuous correction of target velocity with segment orientation allows both adaptation to turns and a
high degree of smoothing.  The characteristic of the longitudinal maneuver noise allows the projection of the
process noise in this direction to maintain a low transversal error.

   Note that a key component in the entire tracker is the correct target location in the current traversed road
segment.  A robust method is required to ensure the selection of the correct road segment such that the errors in
orientation and some stability problems can be reduced.  Instead of selecting the nearest segment to locate the
measurement in the road network, the location of the predicted estimation is determined, leading to fewer noise
corrections in the changes of segments.  However, a problem occurs in road branches where several segments
are joined.  In that case, a track splitting technique may be used to improve the results.

 

2.3 Map Prepreocessing Technique

    We continue to discuss a refined technique which preprocesses the sensor measurements with available
road information by transforming the parameters of the measurement error distribution.  Assume that the target
location (x, y) is uniformly distributed inside the road coverage C :
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 where A is the area of C.  Then the probability density function of target location, given the sensor measurement
(xm, ym), can be expressed as
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 where l(x, y, xm, ym) is the likelihood function associated with (xm, ym), usually a Gaussian distribution with
covariance matrix R.  Because the resulting likelihood function is spatially truncated and thus bounded to the
road coverage, which is not easy to deal with under Kalman model assumptions, it can be approximated by a
new Gaussian distribution through the following process which is graphically illustrated in Figure 3.

   The original measurement is (xm, ym), and the road section is specified by the end points (x1, y1), (x2, y2),
where θ  is the orientation of the road with respect to the horizontal axis.  The approximation process projects
the measurement distribution onto the road and yields the other Gaussian distribution oriented along the road
segment and centered at (xt, yt), the projection of (xm, ym) on the centerline.  lσ  and tσ  are longitudinal and
transversal standard deviations of the new distribution, respectively.  Hence, the transformed measurement is
given by
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The covariance matrix, Rt, is obtained from the original measurement covariance matrix, R, in the following
way:
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    The same comment about the importance of correct location is applicable here.  An inaccurate location
will result in an incorrect transformation of measurements directly, with degradation even more severe than the
dynamic correction.  Therefore, the logic to decide when to apply this preprocessing is a key factor affecting the
final performance.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:     Graphical illustration of the approximated joint distribution of measurement and road segment.
 

3 HMM-based Tracking Techniques

   Other than the Kalman-based trackers described in the last section, we also developed an HMM-based
tracker as an extended study of [1] and [6], for making comparisons under the same scenario.  Consider a single
target moving in a certain geographic area partitioned into a rectangular lattice of cells at discrete time instants,
and an HMM tracker λ  characterized by the following elements [15].
•  The target locations and the sensor observations are modeled by a set of states, { }NSSSS ,,, 21 �= .
•  The set of time-invariant transition probabilities

NjiSqSqPa ikjkij ≤≤=== − ,1],|[ 1 (10)
where qk denotes the actual state at time k.

•  The observation probability distribution
NiSqOPOb ikkki ≤≤== 1],|[)( (11)

where Ok denotes the observation state at time k.
•  The initial state distribution

NiSqP ii ≤≤== 1,][ 1π (12)
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   The Viterbi algorithm is then used to find the best state sequence, **
2

*
1 ,,, Tqqq � , given the observation

sequence TOOO ,,, 21 � .  The highest probability along a single path, which accounts for the first k

observations and ends in Si at time k, is defined as
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The best state sequence can be retrieved by keeping track of the argument that maximizes (14) for each k and j.
The complete procedure can be described as follows:
1) Initialization:
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(15)

2) Recursion:
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4) State sequence backtracking:
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   There are a number of issues to be addressed.  Note that the actual state sequence is usually unavailable
and the sensor measurement sequence is thus used instead.  The observation probability distribution is a
Gaussian likelihood function as mentioned above.  The probability transition array, the most important factor in
our HMM model, must be location dependent in order to incorporate the ground restrictions.  The Viterbi
algorithm can be extremely computational and time consuming if the size of the geographic area is large.  As a
matter of fact, the target can only move onto a reasonable number of spatial adjacent cells, if the cell resolution
and the target kinematics are properly chosen.  This implies that we can save significant resources by
considering a more compact and efficient HMM technically.  Since the road network is the only feature in the
scenario map, we can assume that the target would like to stay on the road, leaving the non-road cells hard to
reach.  Here we propose an adaptive HMM tracker where several subscenarios covering the road of interest are
defined a priori.  Each subscenario is associated with a “regional” HMM tracker whose transition array
accounts for the covered road segment.  The time instants when each regional HMM tracker begins to operate
may be determined in advance or based on the estimated target location.  Each regional HMM performs the
Viterbi algorithm and offers its subtrack.  Joining all subtracks at the end forms the entire track.  The
experimental result in next section demonstrates how this adaptive HMM tracker works geographically.

4 Experimental Results

4.1 Kalman-based Techniques

    In this section we present results showing the performance of some alternative Kalman-based ground
tracking algorithms.  These results were obtained using 50 Monte Carlo runs for each test condition.  The
scenario is shown in Figure 4, where there are three stationary ground-scanning sensors taking turns to acquire
measurements with a regular scanning period of 9 seconds.  Each sensor’s characteristic is incorporated into the
covariance matrices and likelihood functions for Kalman and HMM approaches, respectively.  The scanning
period of each sensor can also be made uneven, if one desires so.  Therefore, we do not further consider fusing



sensor measurements in one way or another, because a continuous track for the target can be well generated
within the limited spatial extent of our scenario.  On the other hand, although our transition models are able to
predict the target trajectory along the road, non-successive measurements would lead to degradations, especially
due to the presence of road junctions.  Thus, we assume that there is no large detection loss, e.g., there are not
any terrain masking effects that prevent sensors from making detections in certain geographic areas.  Sensor
performance accuracy depends on the distance to the target, with standard deviation ranging from 50 to 150
meters.
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Figure 4:    Simulated scenario.
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Figure 5:    Plots of (a) longitudinal error and (b) transversal error for various trackers.

   Assume a ground vehicle is moving along the road where the centerline is depicted, with a constant speed
20 m/s and a transversal acceleration 15 m/s2 for making turns.  There are three road junctions where the
algorithms may not be able to identify the correct target heading rapidly.

   The performance metrics selected evaluate the accuracy of the estimated location, in terms of the root
mean square (rms) of longitudinal and transversal errors.  As a benchmark to analyze the advantage of
considering ground information, a conventional Kalman filter and an IMM filter with two models have been
implemented under the same scenario.  Figure 5 plots the errors of four tracking algorithms.  Peaks of errors are
present at about t = 180 s for each algorithm when the sharpest maneuver begins.  The IMM tracker
performance exhibits a peak of shorter duration than for the Kalman since its adaptation scheme begins just
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after the maneuver is detected.  However, the IMM does not anticipate the maneuver as the map-based trackers
do, since its adaptation scheme is based on the post-maneuver measurement.  The curvilinear tracker performs
best in all the transversal maneuvers, at t = 42, 65, and 186 s.  The heading correction allows high smoothness
and low bias, reducing the rms longitudinal error 55%~60%, and the transversal 65%~70% with respect to the
Kalman filter.  The map-tuned Kalman filter reduces rms error at about 40% during maneuvers by increasing
the noise to remove the biases.  However, when the target reaches the junctions at t = 126 and 158 s, the
performance of the curvilinear filter is degraded due to wrong heading corrections.  Compared to Kalman, its
error is about 30% higher.  Limiting the corrections, or using additional information such as expected ground
movement plans, could reduce this effect when there is a road junction.

   In Figure 6, we only compare the map-based techniques.  Significant improvement in reducing the
transversal errors can be seen due to the preprocessing stage.  Again, the errors are raised due to incorrect
heading at the junctions and can be restricted in the same way mentioned above.

   Finally, to have a more graphical view of what happens with each tracking technique when there is a
maneuver, Figure 7 illustrates the estimated target locations (the symbols) and velocities (the lengths of line
segments following the symbols) of each tracker in a single run.  We can see the map-aided trackers eliminate
the biases of Kalman filter successfully, and the curvilinear model is able to maintain a high smoothness and
good estimation of velocity at any time.
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Figure 6:     (a) Longitudinal error and (b) transversal error for map tracking algorithms.

400 500 600 700 800 900 1000 1100 1200 1300 1400
-2800

-2700

-2600

-2500

-2400

-2300

-2200

-2100

-2000

Kalman

Map tuned Kalman

curvilinear+preprocessing

measurements
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

-3200

-3100

-3000

-2900

-2800

-2700

-2600
Kalman

Map tuned Kalman

curvilinear+preprocessing

measurements

y 
(m

et
er

s)

y 
(m

et
er

s)

x (meters)
(a)

x (meters)
(b)

Time (seconds)
(a)

Lo
ng

itu
di

na
l E

rr
or

s (
m

et
er

s)

Curvilinear with
preprocessing

Curvilinear

Map Kalman

Time (seconds)
(b)

Tr
an

sv
er

sa
l E

rr
or

s (
m

et
er

s)

Curvilinear with
preprocessing

Curvilinear

Map Kalman



Figure 7:    Tracker performance evaluation for (a) the first double turn and (b) the sharp maneuver.

4.2 HMM-based Techniques

   For HMM application, the same scenario shown in Figure 4 was discretized into grid cells of resolution
60 m by 60 m.  An adaptive HMM tracker composed of 11 subscenarios was built to cover the same road path
of interest jointly.  As illustrated in Figure 8, each subscenario is a square, containing 11 grid cells in both x and
y directions, and the road is one cell wide.  Assume that the target may only reach the closest 4 adjacent cells in
one single move from the cell it currently resides.  The probability transition array can thus be determined in the
following way.  If the target is off the road, it intends to reach a nearest road cell, whereas if it is on the road, it
will move onto all immediate adjacent road cells with equal likelihood at next time instant.  For the first
regional HMM, the initial state is given by the sensor measurement; for others, it follows the last estimated state
of the previous regional HMM.  The initial state probability distribution is then completely committed to the
selected initial state.
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Figure 8:    Adaptive HMM Tracker performance evaluation.
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Figure 9:     Longitudinal error and transversal error for the adaptive HMM tracker.

Figure 8 shows the estimated target locations of the adaptive HMM tracker for a single run in the discrete
spatial domain.  Visually, we can see that the track stays close to the trajectory, at most one cell away, even at
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the sharpest maneuver.  This implies a small transversal error.  However, the longitudinal error is much greater.
It can be explained as follows.  Due to the feature that Markov models are memoryless, the transition array is
built in such a way that the target does not remember where it had been in the past.  When the target is on the    
road, there are at least two possible reachable road cells, forward and backward along the path, at next moment.
If it moves backward, the track lags behind the trajectory by two cells.  As this effect for potential duplicate
estimates propagates spatially, the track provided by each regional HMM is usually shorter than expected.  This
increasing longitudinal lag is corrected as soon as the next regional HMM becomes dominant, whose initial
state can be chosen as the closest cell from the last estimation.  Figure 9 depicts the results for 50 Monte Carlo
runs.  It can be seen that the peaks of longitudinal error are present at the time that each regional HMM tracker
ends.  The transversal error is generally much smaller and is not obviously related to edges of subscenarios.
Compared to the Kalman techniques, the adaptive HMM tracker yields larger longitudinal but smaller
transversal errors; both are independent of target maneuvers.

5 Conclusions

   We have developed and evaluated several tracking techniques in two categories, Kalman-based and HMM
based approaches, for a single target moving on a road-based geographic terrain.  When the ground information
is unavailable, the conventional Kalman filter and IMM with two models have roughly the same performance in
terms of estimation errors.  To reduce the peaks of errors due to transversal maneuvers, we have implemented
three methods to take road structures into account properly.  The first is to tune the variance of the process noise
for maneuvers.  The second is the curvilinear model that considers the road orientation in target dynamics, but
may become unstable if the target heading changes substantially in a short time.  Both methods can be improved
by an additional stage to preprocess the sensor measurements.

   An adaptive HMM tracker has also been proposed in order to save computation time for the Viterbi
algorithm due to the large size of the scenario.  A number of HMM subscenarios are predetermined to cover the
road path of interest jointly.  These regional HMMs take turns to operate and keep the transversal errors small.
Due to the road-based transition array, some regional HMM may lose tracks at the end, resulting in large
longitudinal errors.  The adaptive HMM tracker is not sensitive to transversal maneuvers.

   Generally speaking, the HMM-based tracker is more time consuming than Kalman-based trackers.
However, it can freely incorporate any terrain features, target kinematics, and even military doctrines into the
transition array such that the track can be more accurate.  Kalman-based trackers are efficient and robust, whose
performance can also be improved by incorporating road structures.  Future studies should investigate how
these approaches may be refined technically if more topographic information is available.
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