Award Number: DAMD17-96-1-6229

TITLE: Cancers Missed on Mammography

PRINCIPAL INVESTIGATOR: Robert M. Nishikawa, Ph.D.

CONTRACTING ORGANIZATION: University of Chicago
Chicago, Illinois 60637

REPORT DATE: October 2001

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Observer error in reading screening mammograms has been identified as a significant factor in delayed diagnosis of breast cancer. The magnitude of the problem is estimated to be about 30% of potentially detectable cancers are overlooked for one or more years before detection. Computer-aided diagnosis (CAD) programs have been developed to aid radiologists in the detection task, and pre-clinical studies have shown that CAD applied to digitized mammography films can flag about 50% of radiologists' observational oversights. Preliminary study has also shown a wide variability in radiologist observer performance. The purpose of this investigation is to test how many additional cancers are detected by radiologists using CAD, in an observer study using an enriched mixture of cancers. A pilot study has been completed and the results were used to plan the full observer study. Using more sophisticated statistical power analysis, we estimate that we need 400 cases containing 70 cancers with 12 radiologists. In addition, we will use a more accurate detection scheme that has a higher sensitivity and lower false-positive rate than was used in our pilot study. Final case selection is being done and observers are being recruited.
Table of Contents

Cover .. 1

SF 298 ... 2

Table of Contents ... 3

Introduction .. 4

Body .. 4

Key Research Accomplishments .. 6

Reportable Outcomes ... 7

Conclusions ... 7

References .. 7

Appendices .. 9
4. INTRODUCTION

Double reading of mammograms has been shown to significantly increase the number of cancers detected.1-5 Computer-aided diagnosis (CAD) has been proposed as an efficient method of implementing double reading.6 For CAD to be effective computers must find cancers that are missed by radiologists, and radiologists must react appropriately to the computer prompts. Others and we have found that computer detection schemes can find over 50\% of the observational misses made by radiologists reading mammograms.7-9 Our current study is designed to show that CAD can help detect cancers that they might otherwise be overlooked. We will collect a large database of cancers already missed by radiologists in routine clinical practice, and will test observers without and with the aid of CAD. It is expected that radiologists will detect about 10 to 15\% more cancers using CAD, which would have important implications for bringing this technique into clinical practice. We will also learn much more about the reasons for and types of radiologist misses on mammography.

5. BODY OF REPORT

5.1 Tasks

There are five tasks in the Statement of Work, which are listed below.

Task 1. Preparation of review forms and finalization of eligibility characteristics for cases to be entered into the missed lesion database.

Task 2. Accumulation of database cases and copying/digitizing 100 missed malignant cases and 300 normal cases, with categorization of features and characteristics of the malignant case. Verification of missed lesion cases. Ongoing data entry.

Task 4. An observer experiment conducted on 15 observers at about 3 hours per session, with 6 sessions per observer spaced at 2-3 months apart. Goal is to perform 2 observation sessions and analysis minimum per week, entering observation data into a computer database. Ongoing data entry.

Task 5. Final analysis of data comparing CAD observer results with non-CAD results and observer variability, and preparation of report summarizing the results of the observer experiment and the clinical characteristics of the missed lesions.

5.1.1 Preparation of forms

A copy of the review form has been submitted previously. The eligibility criteria are as follows:

1. Patients who have had screen-film mammograms read at the participating mammography facilities.
2. For cases of missed lesions, the mammogram had to be read clinically as normal in the area where a cancer subsequently developed, and the error had to be one of observation (failure to see the lesion) rather than interpretation (seeing the lesion and categorizing it as benign). In cases where the cancer is visible on multiple examinations prior to diagnosis, the two expert mammographers reviewing the cases will collaboratively select a single representative screening exam as the index missed case.

3. Case is a minimum of 1 year old (to avoid any interference with clinical care), unless bilateral mastectomy has been performed, or unless films clinically equivalent to those entered into the study from other years are available.

4. Case is not involved in any medical-legal action.

5. No copy films will be used that include significant marks made by a previous observer prior to the copying, and no originals with such permanent marks will be used.

5.1.2 Development of database of missed lesions

The database is nearly complete. All 100 cases with a missed cancer have been identified, although not all have been digitized or categorized. Over half the normals have been collected, with 160 cases from the University of Chicago. The remaining normals will be collected from the University of New Mexico and the University of Chicago. Three tables in the Appendices summarize some of the characteristics of the cancers entered into our database. The average size of the cancers is 11.7 mm.

5.1.3 Computer analysis of case

We will run the computer CAD program on the database, once the database has been completed. This will allow us to use the most current version of our detection schemes. It will take approximately 1 week to run and print the computer results.

5.1.4 Observer study

The formal observer study has not yet begun. We have completed a pilot observer study using 75 cases that contained 24 cancers (all but two were clinically missed cancers) and 51 normals. The objective was to gather data as to the minimum number of cancers we need to include in our observer study and to examine if the computer false positive rate was going to be too high. Also, we tested the logistics of the planned observer study: the user interface to record observers' ratings, whether the questions asked were understandable by the radiologists and how effective was our training session.

Four radiologists read the cases in one session. For each case, they answered two questions: (i) Give your BI-RADS assessment of this case; and (ii) what is your level of confidence that the patient should be called back for further work-up or a biopsy? The later question was answered using a visual analog scale, in which the observer marks a point on a 5-cm line - the left end of the line is labeled "definitely DO NOT call back", and the right end is marked "Definitely call back". These questions were first answered after the radiologists viewed the films and a second time after viewing the computer detection output. Some minor "bugs" in the software have been identified and will be corrected. Otherwise the interface was easy to use and recorded all the information that we needed.
The results for the other four are given in Table V. The important information from this experiment in terms of planning the full observer study are: Az with and without aid and the correlation between the two Az values. It was disappointing that we did not see much of an improvement when the readers used the computer aid. We attribute this to:

1. High false-positive rate of the computer aid (approximately 2.5 per image). The sensitivity for this set of images was roughly 55%, compared to the clinical reading of 8%. The high false-positive rate reduces the time the radiologist spends considering the computer findings and therefore, reduces the likelihood that an overlooked cancer detected by the computer will be noticed. Furthermore, the high false-positive rate increased radiologists’ call back rate, thus reducing performance. To solve this, we have negotiated with R2 Technology, Inc., to borrow one of their ImageChecker 1000 systems. Their detection scheme has a sensitivity of approximately 90% with a false-positive rate of less than 0.5 per image.

2. Insufficient training. Two of the readers had used the R2 Imagechecker CAD system. This biased them to pay more attention to the calcification results and spend less time considering the mass results. Since most of missed cancers were masses, the radiologists were biased against finding the missed masses. A more extensive and interactive training regime will be developed.

3. Use of the confidence scale. The ROC curves were generated from the confidence that the patient needs to be recalled, not from the BI-RADS scale. Since this question is not a “natural” question for radiologists, we will use a nine-point scale in final observer study as shown below:
 1.0 No evidence for recalling the patient.
 1.5
 2.0 Some, but insufficient evidence for recalling the patient
 2.5
 3.0 Equivocal. [If you read this case on 10 different days, half the time you would recall.]
 3.5
 4.0 Sufficient evidence for recalling the patient.
 4.5
 5.0 Overwhelming evidence for recalling the patient.

5.1.4.1 Observer study: Power calculation

One of the objectives of our proposal is to simulate, as best as possible, actual reading conditions. To do this we would like to use a low cancer prevalence in our observer study. This is an attempt to require the readers to maintain high vigilance in reading as need to do clinically where the call back rate is 5-15%. For the power calculations, we used approximately 75 cancers and 400 cases which gives a prevalence of 19%. We also want to be able to measure a difference in the area under the ROC curve of at least a 0.06. We then used our pilot date to estimate the number of readers required.

Recently a complete and sophisticated method for estimating the number of cases and readers in an observer study has been developed. Specifically, Beiden et al.,11 have used bootstrapping to estimate all the sources of variation required to estimate the number of readers and cases. Their method estimates the variation from all possible sources, including the interactions between cases, readers, and modality. Using their method, one can calculate the number of cases and readers to obtain a 95% confidence interval of 0.05 in the difference in area
under the ROC curve between aided and unaided conditions. Based on our pilot study, this can be obtained with 7 readers and 70 cancers in 400 cases.

We have compared this method to the one published by Obuchowski.12 Using her empirically-derived method we need approximately 12 readers with 69 cancers and 416 cases total. To be conservative we will use 12 readers with 70 cancers and 400 cases.

5.1.5 Data Analysis

Data analysis of the missed lesion/CAD study cannot begin until the observer study has been completed.

5.2 Discussion

Given the results from our pilot study, we have changed our observer study to include 400 cases that contain 70 cancers and 12 observers. This should be sufficient to see an improvement in A_Z of 0.06 when CAD is used. We are now finalizing case selection. We will begin recruiting observers and start the observer study.

5.3 Recommendations in relation to the Statement of Work

- Other than re-specifying the number of cancer cases and the number of observers we will use in our observer study and making use of commercial CAD software in place of the schemes we developed in our laboratory, we do not anticipate making any changes to the Statement of Work.

6. KEY RESEARCH ACCOMPLISHMENTS

- Pilot observer study performed
- Detailed planning of observer study complete
- Final case selection and observer recruitment are being made.

7. REPORTABLE OUTCOMES

None since last report.

8. CONCLUSIONS

Data collection is nearly complete and so we will begin to conduct our main observer study in year 2001. Valuable data has been collected from a preliminary smaller observer study, which will influence the design of the larger scale observer study. We anticipate that we will be able to demonstrate that CAD can reduce the number of missed cancers by 50%, which has not
yet been shown in a structured observer experiment. These results should provide information on which health care providers and governmental organizations can base decisions on the value of introducing this promising new technology into the clinical practice of breast cancer screening.

9. REFERENCES

10. APPENDICES

Table 1. Distribution of breast density in our database

<table>
<thead>
<tr>
<th>Breast Density</th>
<th>Frequency of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.30</td>
</tr>
<tr>
<td>Fatty</td>
<td>0.21</td>
</tr>
<tr>
<td>Dense</td>
<td>0.37</td>
</tr>
<tr>
<td>Focal</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 2. Distribution of subtlety on a 5-point scale, where 1 is extremely subtle.

<table>
<thead>
<tr>
<th>Subtlety Rating</th>
<th>Frequency of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Distribution by lesion type*
<table>
<thead>
<tr>
<th>Type of Lesion</th>
<th>Frequency of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric Density</td>
<td>0.29</td>
</tr>
<tr>
<td>Architectural Distortion</td>
<td>0.24</td>
</tr>
<tr>
<td>Developing Density</td>
<td>0.07</td>
</tr>
<tr>
<td>Mass</td>
<td>0.46</td>
</tr>
<tr>
<td>Calcifications</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*numbers sum to greater than 1, because some cases have multiple lesions.

Table 4. Distribution of possible reasons for cancers being missed.*

<table>
<thead>
<tr>
<th>Possible Reason</th>
<th>Frequency of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seen on only 1 view</td>
<td>0.48</td>
</tr>
<tr>
<td>Obscured by overlying tissue</td>
<td>0.40</td>
</tr>
<tr>
<td>Looks like normal tissue</td>
<td>0.36</td>
</tr>
<tr>
<td>"Busy" breast</td>
<td>0.29</td>
</tr>
<tr>
<td>Film technique</td>
<td>0.26</td>
</tr>
<tr>
<td>Distracting lesions</td>
<td>0.24</td>
</tr>
<tr>
<td>Subtle lesion</td>
<td>0.14</td>
</tr>
<tr>
<td>Marginal lesion</td>
<td>0.10</td>
</tr>
<tr>
<td>Developing density</td>
<td>0.10</td>
</tr>
<tr>
<td>Benign appearing lesion</td>
<td>0.07</td>
</tr>
<tr>
<td>Lack of prior films</td>
<td>0.07</td>
</tr>
<tr>
<td>Too small to prompt workup</td>
<td>0.05</td>
</tr>
<tr>
<td>Lucent lines</td>
<td>0.05</td>
</tr>
<tr>
<td>Stable lesion</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*numbers sum to greater than 1, because up to three reasons were given per case.
Table 5. Summary from pilot observer study.

<table>
<thead>
<tr>
<th>Reader</th>
<th>Unaided</th>
<th>With Aid</th>
<th>Correlation between aid and no aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.686</td>
<td>0.685</td>
<td>0.967</td>
</tr>
<tr>
<td>B</td>
<td>0.725</td>
<td>0.775</td>
<td>0.817</td>
</tr>
<tr>
<td>C</td>
<td>0.805</td>
<td>0.793</td>
<td>0.943</td>
</tr>
<tr>
<td>D</td>
<td>0.710</td>
<td>0.688</td>
<td>0.988</td>
</tr>
<tr>
<td>mean</td>
<td>0.731</td>
<td>0.735</td>
<td>0.929</td>
</tr>
</tbody>
</table>