AFRL-IF-WP-TR-2001-1553

TIMEBENCH A VISUAL ENVIRONMENT FOR
THE DESIGN AND INTEGRATION OF OBJECT
ORIENTED REAL-TIME SYSTEMS

'x%\\\.
P

Re, ~ |
. A

t%:;ﬁ(g

TIMESYS CORPORATION
4516 HENRY STREET
PITTSBURGH, PA 15213

SEPTEMBER 2001

FINAL REPORT FOR PERIOD 29 APRIL 1999 — 29 SEPTEMBER 2001

THISISA SMALL BUSINESSINNOVATION RESEARCH (SBIR) PHASE |11 REPORT

| Approved for public reease; distribution unlimited I

INFORMATION DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AlIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

7 ?/.-‘ - ra” >} N

" Al I (

fi*’ﬁﬂ"/: s u-fﬂ,ﬂ_u]/ ﬂ ﬁV
rd 7

STEPHEN {. HARY, Ph.D. u,/zf STEPHEN L. BENNING
Project Engineer Team Leader

Advanced Architecture & Advanced Architecture &
Integration Branch Integration Branch

DAVID A. ZANN, Chief
Advanced Architecture & Integration Branch
Information Systems Division

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (L eaveblank)

2. REPORT DATE
SEPTEMBER 2001

3. REPORT TYPE AND DATES COVERED
Final, 04/29/1999 — 09/29/2001

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS
C: F33615-99-C-1495

TIMEBENCH: A VISUAL ENVIRONMENT FOR THE DESIGN AND PE: 62173C

INTEGRATION OF OBJECT-ORIENTED REAL-TIME SYSTEMS PN: BMDI
TA: SC
WU: 02

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TIMESY S CORPORATION
4516 HENRY STREET
PITTSBURGH, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

INFORMATION DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334
POC: DR. STEVE HARY, AFRL/IFSC, (937) 255-4709 x4175

AGENCY REPORT NUMBER

AFRL-IF-WP-T R-2001-1553

11. SUPPLEMENTARY NOTES.

THISISA SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE || REPORT

12a DISTRIBUTION/ AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Phase || effort consisted of design, development, implementation, and testing of the software tools TimeStorm and TimeWiz for
RoseRT. The TimeBench program funded, in its entirety, the TimeWiz for Rational RoseRT tool. Asaresult of this Phasell SBIR,

the following capabilities have been

devel oped:

1. Working in conjunction with Information Directorate researchers under a SBIR Phase |1 contract and through other private
funding, TimeSys Corporation has developed a commercial product called TimeWiz® for Rational RoseRT. This product
isacustomized version of the TimeSys TimeWiz product that offers significant analysis and synthesis capabilitiesto the
users of the RoseRT modeling software. TimeWiz for RoseRT is described in more detail in Sections 4.1 and 5.

2. TimeStormisan integrated Development Environment (IDE) product that will be part of the TimeSys Linux operating
system, making it simple to generate TimeSys Linux/RT applications for afull range of emb edded platforms. The
TimeStorm environment is designed to provide this full range of productivity, no matter what the resource level of the
target. TimeStorm tools execute primarily on ahost development PC, with shared access to a host-based dynamic linker
and symbol table for a remote target system. TimeStorm is described in more detail in Sections 4.2 and 6.

3. TheRea-Time Foundation Class effort produced the Operating System Abstraction Layer (OSAL). The OSAL work is

described in more detail in Section 2.3 and Appendix C.

14. SUBJECT TERMS

15.NUMBER OF PAGES

Visual Design Tool, Schedulability Analysis, Component repository 68

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20.LIMITATION OF

OF THISPAGE
Unclassified

OF ABSTRACT ABSTRACT
Unclassified SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

L. INTRODUCTIONiiiiteirtieetieessisesersese s sessssessssessessssesssses st s e sss st s s aese s st s s bbbt ee s bbb n e s 1
11 TIMEBENCH PROJECT SUMMARY ..ccouniieutieeiremsessesessesessesesstsssssssssssssssssessssssssssse s sssssssssssssssssssssssnsssssssssassesssesaees 1

2. SUMMARY OF PHASE I WORK ..ottt ettt s s st snssennas 3
21 DESIGN OF OBJECT -ORIENTED TIMING ATTRIBUTES AND RT-UML (TASK #1)cvevvrierriireeireeeneeeeneeeeneeenns 3
211 Description of Timing Model in TiImeWIZ for ROSERTcovirrencrenenei e 4

22 CODE GENERATION AND REVERSE ENGINEERING (TASK #2)covuereierreeerrieeenessessesessssessssesssssesssssessssesssssssessssenns 6

221 Open C++
222 FLEX/Bison

223 ANTLR....cootrcrieriens
224 SORCERER
225 IMUSKOX VA.D....cotieieeteeessess st s bbb 8
226 EDG CA FIrONt ENG....ococvceeceeeiecereeereiesse st e 8
227 COMPITE RESOUICES......cecvreueeeeiieeetieestieessisessssese s ses s s st s e ee e s e s bbbt 9
228 CompariSON AN CONCIUSION.......c.ueuiietieereee s bbb ennis 9
23 REAL-TIME FOUNDATION CLASSES (RTFC) OVERVIEW (TASK #3)...cccueeerererereinersesessesesseesnesessesessssessssesssseens 10
24 DESIGN AND IMPLEMENTATION OF A COMPONENT AND ATTRIBUTE CATALOG AND API (TASK #4 AND
TASK H) ...ttt e s s R AR R R 1
241 SYNOPISIS o ceterer st ee R AR R 11
242 TIMEWIZ Property EXLENSIONS........cvuuuirererreerreerreeneies st sese s s e esssseas 11
243 TIMEWIZ API EXLENSIONS.....covieiieeteie ettt s bbb 11
25 DESIGN AND INITIAL PROTOTYPING OF A FRIENDLY VISUALIZATION USER-INTERFACE........cconteunmreenienens 11
26 ARCHITECTURE OPENNESS (TASK H#0) ...cvutueeerieereeesesseessesessesessesesssssssssssssssessssssssssss s st ssssssssssssssssssesssesssnes 12
3. SUMMARY OF PROGRAM ACCOMPLISHMENTSooieireirierrereereesessesesssessssesesssse s sss e ssessssessssssnes 13
4. COMMERCIALIZATION RESULTS......ooteittreerreer e sess s sesse st sssssnas 14
41 TIMEWIZ FOR RATIONAL ROSERT ..ottt ettt 14
42 TIMESTORM INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)....coiiiiiiririeririireeeneceneeenneeesss e 16
4.3 PRODUCT MARKETING PLAN ..ottt st esssseeas 17
5. TIMEWIZ FOR RATIONAL ROSERTcositinteintieetieesisessssese e ssess s s ssssessssssssssssssssssssse st st ssssssssssssssssssssnsssssssnes 19
51 OVERVIEW OF RATIONAL ROSERT ..ottt ese s ses ettt sssssssans 19
52 OVERVIEW OF TIMEWIZ FOR ROSERTovuitieiieeitinisisessisess s ssese s sses ettt essssssssssans 19
53 TIMEWIZ FOR RATIONAL ROSERT FEATURES.....coueunteeetieetteesrsesessese s sessssesssssssessssssssssssssssessssssssssssessssssssans 19
8. THMESTORM ..ottt ettt s8Rt s s 21
6.1 TIMESTORM OVERVIEW ..ccouiuiiueetieessesessssesessesessesssssssssssssssssesssstsssssssssssessessssessssanes
6.2 TIMESTORM CAPABILITIES
6.3 CROSS-DEVELOPMENT WITH TIMESTORMcccviuiiiiriienestinessinese s ssssssssssssssssssssssssesesssssssssesssessssesssssssessssssssans 2
6.4 TIMESTORM FEATURES....ccitttitteeteeesttsesetsese s sesss s ssssssss sttt esss s ssssssese b sss s ass s s ettt essssensssnnas 2
APPENDIX A — TIMEBENCH STATEMENT OF WORK ...ttt sess s sssessesesssss s esssseens 24
APPENDIX B-RESULTS OF PHASE || WORK SUMMARIZED BY TASK.....oteieerenessesesseesseessesessssesssssssseens 25
APPENDIX C — OSAL IMPLEMENTATION......cciititerriteiersenet et sese s sess s sssssssss e esssesssssssssenas 27
C.l. TSAPERIODICTHREAD.c.cuteettiessteeesttsessssesessesessesssssssssssssss s sstsssssessssessssesssssssessssesssssssesessesssssssssssnssesssessssessssanes 27
G2, TICLOCK weuruiuerriereeesesseessesessesessssesssseessssese s sese s ese e s s8R e AR R b ettt 28
C.3. T ICONDITION weueiuereeeseereseesesestsessseesssssessssesessesesseses s sesse s s s st e s s s e eseEeeseEees R e s bR s re b e R bt b e st s 29

CA4.
C5.
Co6.
C7.
C8.
Co.

C.10.
C.11.
C.12.
C.13.
C.14.
C.15.
C.16.
C.17.
C.18.
C.19.
C.20.
C2L
C.22.
C.23.
C.24.

LIRS AT B LTV I

TSMAPSTRINGTODW
LIRS 17 Y 1
LIRS 17 LU =0
TANULLLOG.....cccrercrcrrnee

TPERIODICTHREADocuiitieiereriereiererere et ssse e

TSRECURSIVESPINLOCK

Version Notice

FOREWORD

Document Release Date Revision Purpose

FR-Release-3.1 August 14, 2001 | Final technical editing based on feedback from customer
FR-Release-3.0 August 14, 2001 | Technica editing and review copy sent to customer
FR-Release-2.2 August 13,2001 | Added Appendix B and C

FR-Release-2.1 August 9, 2001 Addressed review comments from customer
FR-Release-2.0 May 23, 2001 Added Appendix A, Inserted new Section 3
FR-Release-1.3 May 7, 2001 Document baselined, and sent to customer.
FR-Release-1.2 May 4, 2001 Editing on section 2.

FR-Release-1.1 May 2, 2001 Wrote Sections 2, 4, 5.

FR-Release-1.0 April 30, 2001 Document created.

The current release of this document is considered a complete replacement of previous versions unless
otherwise stated.

TimeSys Corporation. has made every effort to ensure that this document is accurate at the time of
printing. Obtain additional copies of this document, as well as updated releases, from:

TIMEBENCH Project Manager
TimeSys Corporation
4516 Henry Street
Pittsburgh, PA 15213
(412) 681-6899

Final Report
TIMEBENCH

1. Introduction

This document represents the final technical report deliverable (CDRL A001) on the TimeBench
contract F33615-99-C-1495.

1.1 TimeBench Project Summary

The TimeBench project started under contract F33615-98-C-1343 with the Air Force Research
Laboratory (AFRL) as aresult of a Phase | proposal TimeSys submitted against topic BMDO98-
010. TimeSys, upon successful completion of the Phase | project was able to secure private sector
investment funding, and thus submitted a Phase |1 proposa to BMDO and AFRL for
consideration under the FasTrack program. In January 1999, TimeSys was notified that our
Phase |1 proposal had been approved for negotiation; we started our Phase I contract (F33615-
99-C-1495) in April 1999.

Table 1 summarizes our work on the entire (Phase | and I1) TimeBench project. Note, throughout
thisfinal report we use the term “TimeBench” to refer to the SBIR project/contract and
“TimeStorm and TimeWiz for RoseRT” as the software tools that have been developed under that
project, which will be commercialized by TimeSys.

Project Period of Summary of Work
Phase Performance

Phase | Jun98-Dec98 | We investigated, designed, and prototyped capabilities of avisua
F33615-98-C- software workbench environment called TimeBench for
1343 designing, modeling, analyzing, reusing, and integrating object-
oriented real-time systems.
Phase Apr99—May 01 | We developed and commerciaized TimeStorm and TimeWiz for
F33615-99-C- RoseRT, software workbench environments for designing,
1495 modeling, anayzing, reusing, and integrating object-oriented real-

time systems. In addition, the Real- Time Foundation Classes
(RTFC) was developed for the VxWorks, Win32 and RT-Mach
operating systems; this product is currently not commercialy
available from TimeSys. We anticipate being able to bring this to
market in the future.

Within TimeStorm and TimeWiz for RoseRT, class hierarchies
and timing information of reaktime and embedded systems were
represented visually. Object hierarchies and specified timing
congtraints were used to generate code for specific targets and
programming languages. Subsystems can be coded incrementally
while retaining the timing behavior of the find workload. Class

hierarchies were represented using real-time extensionsto UML
(Unified Modeling Language) resulting in RT-UML, which
captured timing, scheduling and concurrency information in
addition to relationships between subsystems, modules and
classes. RT-UML representation was tightly integrated with the
timing anaysis capabilities of TimeWiz, atool which applies rate-
monotonic analysis techniques.

TimeStorm and TimeWiz for RoseRT have (1) ahighly visua and
interactive interface, (2) a sophisticated diagramming utility to
represent class hierarchies and timing information of real-time
and embedded systems, (3) an auto-coding facility to generate
code for specific targets and programming languages, (4) an
incremental coding facility that allows subsystems to be coded
incrementally while retaining the timing behavior of the fina
workload, (5) a reverse-engineering facility to re-generate visua
and semantic information automatically from user code, and (6) a
component repository that can store and retrieve reusable COTS
and custom software components.

Table 1 — Summary of TimeBench Project

2. Summary of Phase Il Work

Phase || effort consisted of design, development, implementation, and testing of the software tools
TimeStorm and TimeWiz for RoseRT. The TimeBench program funded, in its entirety, the TimeWiz for
Rationa RoseRT tool. Asaresult of this Phase || SBIR the following capabilities have been developed:

1. Working in conjunction with Information Directorate researchers under a SBIR Phase |1 contract
and through other private funding, TimeSys Corporation has developed a commercia product
caled TimeWiz® for Rational RoseRT. This product is a customized version of the TimeSys
TimeWiz product that offers significant anadysis and synthesis capabilities to the users of the
RoseRT modeling software. TimeWiz for RoseRT is described in more detail in Sections 4.1 and
5.

2. TimeStorm is an Integrated Development Environment (IDE) product that will be part of the
TimeSys Linux Development Environment (LDE). TimeStorm has been developed especidly to
produce software for the TimeSys Linux/RT operating system, making it Ssmple to generate
TimeSys Linux/RT applications for afull range of embedded platforms. The TimeStorm
environment is designed to provide this full range of productivity no matter what the resource level
of the target. TimeStorm tools execute primarily on a host development PC, with shared access to
a host-based dynamic linker and symbol table for a remote target system. TimeStorm is described
in more detail in Sections 4.2 and 6.

3. The Real-Time Foundation Class effort produced the Operating System Abstraction Layer
(OSAL). The OSAL work is described in more detail in Section 2.3 and Appendix C.

21 Design of Object-Oriented Timing Attributes and RT-UML (Task #1)

Within TimeWiz for RoseRT, the representation of the attributes along with associated objectsis graphical,
textual (asin a spread-sheet), and as modifiable component properties. Since we are actively participating
in the Real-Time UML standards groups within OMG (Object Management Group) responsible for
standardizing Real-Time specific extensions to UML, this effort will enable us to support the RT-UML
standard product when the standard is released.

This task was a precursor to establish the scope of temporal model representation within object-oriented
architectures. The entities, their relationships, and the relevant properties, which are integra part of the
tempora model, need to be seamlesdly represented within the object-oriented paradigm.

As part of thistask we investigated and designed the timing attributes that will be associated with object-
oriented system components in the object-oriented representation. Although the mgjority of the concepts
aready existed in TimeWiz, we made important additions to the modeling of event-driven and distributed
systems. These involved the development of Trigger events that can be initiated from other actions (called
Internal Events), and Tracer events which enable tracing pipelined architectures.

All the existing attributes were summarized and documented for future reference. This effort aso partialy
contributed to the development of a supplementd user manual for TimeWiz. These attribute form
stereotypes can be used within the UML. We have proposed this mode with essentia attributes for
adoption as the Real-Time UML standard.

2.1.1 Description of Timing Model in TimeWiz for RoseRT

TimeWiz for RoseRT uses an object-oriented framework to capture and analyze the temporal model of a
real-time system. A brief summary of this model is presented here, further details can be found in Chapter
3 of the TimeWiz for RoseRT user manual.

While there are many techniques for object modeling (e.g., Unified Modding Language), tempora models
have been built largely using the Software Engineering Ingtitute (SEI) standard model described in [1] ™.

In the context of the TimeWiz for RoseRT tool, the following terms are used:

= System architecture describes the composition of the system in terms of system hardware
architecture and system software architecture.

» Hardware architecture is described using hierarchy objects (which can contain other objects)
and resources (which represent hardware elements capable of executing software ‘ actions').

= Software architecture is described using hierarchy objects (which can contain other objects) and
events (which represent thread triggers, such as clock interrupts), and actions (which represent a
sequence of executable code in a thread between scheduling points of interest).

2.1.1.1 Resources

Resources represent elementary (typically, hardware) objects on which actions execute. A resource can
be a physical resource (a processor, network element, backplane, etc.), or alogical resource (a buffer,
semaphore, or shared memory).

TimeWiz for RoseRT allows the resource to be any hardware component. The properties of the resource
can be customized by a TimeWiz developer. The TimeWiz APl (Application Programming Interface) can
then be used to implement the andlysis and smulation ‘plug-in” specific for that resource.

Single node analysis for the “CPU” resource is supported in TimeWiz for RoseRT using the same API.
The relevant resources in this context are the CPU and the Logical Resource.

2112 CPU
The CPU resource represents a processor and possibly an operating system.

The CPU object may have zero, one, or more logical resources, or may execute zero, one, or more
actions. Events may reference a CPU or Logical Resource.

The Logica Resource typically represents a shared resource, e.g., a buffer or semaphore. A logical
resource is bound to a physical resource via the user-entered property “Physical Resource’. The data

K A Practitioner's Handbook for Real-Time Analysis. Guide to Rate Monotonic Analysisfor Real-Time
Systems, from Software Engineering Institute and Carnegie-Mellon University by Mark H. Klein, Thomas
Ralya, Bill Pollak, Ray Obenza, Kluwer Academic Publishers.

sharing policy for access to the logical resource is defined by the property Data Sharing Policy of the
CPU.

2.1.1.3 Actions

Actions represent a single, sequential, executable segment of code that requires one physical resource and
zero, one, or more logica resources. Also, Actions need to be “triggered” through an Event as part of the
response to that Event. More than one event may trigger the same Action as part of its response.

An action that is not bound to a physical resource does not execute in the system. Also, an Action which
is not in the response of any Event does not execute, even if it is bound to a Resource.

An action can only be bound to one physical resource. However, multiple logical resources can be used by
an action. Thisrestriction follows from the basic RMA model and the definitions of physical resources and
actions and the ability to do schedulability analysis on physical resources.

An Action is bound to aresource via the property “Executes On” smply by sdecting from the list of
available CPUs, or by dragging and dropping the action on a CPU or by selecting automatic binding
agorithms from the Analyze menu within TimeWiz.

Logica Resources may be specified for consumption by the Action viathe property Logical Resource
List. This property can be set to a string, a comma delimited list of names of the Logical Resources.

An action can be made part of aresponse to an event viathe ‘Response’ property of the Event. This
property is manipulated by connecting the event to the action in the software diagram view.

2.1.1.4 Events
Eventsin TimeWiz for RoseRT are Trigger Events.

Trigger Events represent a periodic (or aperiodic) scheduling of a sequence of actions on asingle
resource. On a single CPU resource, these represent the “arrival” or “ready state” of athread or process;
they may aso represent the arrival of an interrupt, in response to which a sequence of actionsis initiated.

2.2 Code Generation and Reverse Engineering (Task #2)

Parsers and code generators to support this activity were investigated. The critical aspect of the
parser/generator subsystem is a C++ parser that can parse C++ program into specified representations,
extract specific tokens, constructs, and patterns. The following is a survey of available parsing options that
were considered.

221 Open C++

OpenC++ isatoolkit for C++ trandators and anayzers. It was designed to enable the users to develop
those tools without concerning tedious parts of the development such as the parser and the type system.
There are anumber of tools that OpenC++ facilitates the development of. For example, the users can
easly develop a C++ trandator for implementing a language extension to C++ or for optimizing the
compilation of their class libraries. Moreover, OpenC++ is useful to develop a source-code anayzer such
as one for producing the class-inheritance graph of a C++ program.

The programmer who want to use OpenC++ writes a meta-level program, which specifies how to
trandate or analyze a C++ program. It is written in C++ and defines a small number of classes. Then the
meta-level program is compiled by the OpenC++ compiler and (dynamicaly or staticaly) linked to the
compiler itself as a compiler plug-in. The resulting compiler trandates or analyzes a source program (it is
called a base-level program for distinction) as the meta-level program specifies.

meta-lewvel
program . oo

|
|DpenC-H- cotgriler |_| CH+ compiler I_. .20
l dynamic load

The meta-level program is written according to the programming interface called the OpenC++ MOP
(Metaobject Protocol.) Through this interface, the internal structure of the compiler is exposed to the
programmers with object-oriented abstraction.

The base-level program is first preprocessed by the C++ preprocessor, and then divided into small pieces
of code. These pieces of code are trandated by class metaobjects and assembled again into a complete
C++ program. In the OpenC++ MOP, the pieces of code is represented by Ptree metaobjectsin the form
of parsetree (that is, linked list). Although the metaobjects are identical to regular C++ objects, they exist
in the compiler and represent a meta aspect of the base-level program. Thisis why they are not smply
called objects but metaobjects.

The class metaobject is selected according to the static type of the trandated piece of code. For example,
if the piece of code is amember call on a Point object:

p0->move(3, 4)

Then it is trandated by the class metaobject for Point (the type of p.) It is given to the class metaobjectin
the form of parse tree and trandated, for example, into this:

(++counter, pO->move(3, 4))

Thistrandation is similar to the one by Lisp macros, but it is type-oriented. The trandation by the
metaobjects is gpplied not only a member cal but also other kinds of code involved with the C++ class
system, such as data member access and class declaration.

The programmer who wants to customize the source-to-source trandation writes a meta-level program to
define a new class metaobject. This class metaobject is associated with a particular class in the base-level
program and controls the trandation of the code involved with the class. Thus, the trandation is applied
only to the particular class and the rest of the code involved with the other classesremains asis.

The class metaobject can use other aspects of the base-level program during the source-code trandation.
In addition to the parse tree, it can access the semantic information such as static types and class
definitions. These various aspects of the program facilitates the implementation of complex source-code
trandation and analysis. Furthermore, the OpenC++ MOP enables syntax extensions so that the base-level
programmers can write annotations to help the trandation or the analysis.

The meta architecture of OpenC++ might look very different from the architecture of other reflective
languages. However, note that the class metaobject still controls the behavior of the base-level objects,
which are instances of the class. The uniqueness of the OpenC++ MOP is only that the class metaobject
does not interpret the base-level program in the customized way, but rather trandates that program at
compile time so that the customized behavior is implemented. The readers will find that, asin other
reflective languages, the class metaobject has a member function for every basic action of the object, such
as member calls, data reading/writing, object creation, and so forth, for customizing the object behavior.

2.2.2 FLEX/Bison

http://www.monmouth.com/~wstreett/lex-yacc/lex-yacc.html

flex isatool for generating scanners. programs which recognized lexical patternsin text. flex reads the
given input files, or its standard input if no file names are given, for a description of a scanner to generate.
The description isin the form of pairs of regular expressions and C code, called rules. flex generates as
output a C sourcefile, lex.yy.c, which defines aroutine yylex(). Thisfile is compiled and linked with the -
Ifl library to produce an executable. When the executable is run, it analyzes its input for occurrences of the
regular expressions. Whenever it finds one, it executes the corresponding C code.

Bison is a general-purpose parser generator that converts a grammar description for an LALR(1) context-
free grammar into a C program to parse that grammar. Once you are proficient with Bison, you may use it
to develop awide range of language parsers, from those used in simple desk calculators to complex
programming languages.

Bison is upward compatible with Yacc: al properly-written Y acc grammars ought to work with Bison with
no change. Anyone familiar with Y acc should be able to use Bison with little trouble. Y ou need to be
fluent in C programming in order to use Bison or to understand this manual.

223 ANTLR

Features: ANTLR constructs humantreadabl e recursive-descent parsersin C or C++ from
predicated-L L (k>1) grammars. Many context-sensitive languages and languages requiring
infinite look-ahead are recognizable with ANTLR parsers. Can automatically build AST’s.
Has new and powerful error recovery mechanism.

Distribution:

Platform:

Complete C source code, totally public domain. Free at Site ftp://ftp.parr-
research.com/pub/pccty.

Any platform that compiles C or C++.

2.24 SORCERER

AST transformer / walker (source-to-source trandation)

Features:

Distribution:

Platform:

A SORCERER grammar describes AST content and structure. 'Y ou may annotate the
grammar with actions to effect a trandation or manipulate the tree itself. Generates
recursive-descent tree walkersin C or C++ (soon Java). Same flavor/syntax as ANTLR.
Not tied to a parser generator or any other tool.

Complete C source code, totally public domain. Free at site
ftp://ftp.parresearch.com/pub/pccts/sorcerer/.

Any platform that compiles C or C++.

225 MUSKOXv4.0

C++ and Java Parser Generator

WEB:

Features:

Didribution:

Platform:

http://www.mastersys.com

Annotates C++ & Java classes and interfaces with EBNF LR(K) grammars.
Grammear inheritance and redefinition of rules.

Multiple parsers, recording/replay of trace logs, HTML pretty-printing.
Default and user-defined lexer and error processing.

Syntactic look-aheads, semantic predicates, syntax trees.

Parser Generator executable.

Runtime Framework C++ & Java source.
Downloadable from the web site.

Documentation in Postscript and Adobe PDF formats.
PC Windows 95 & NT.

226 EDG C++Front End
Compiler Front End

WEB:

Features:

http://www.edg.com

Does full syntax and semantic analysis on C++ source code, producing an AST-likeinterna
representation. Accepts most of the modern features of the language, e.g., templates,
exceptions, RTTI, new-style casts, array new/del ete, namespaces, member templates. Also

accepts ANSI/ISO C, severa older diaects of both C and C++, and Microsoft C and C++
extensions.

Didtribution: Source code and internal documentation

Patform: Portable; has been used on al mgor Unix platforms, plus Windows NT/95.
2.2.7 Compiler Resources

OO0 Lexer and Parser Generator for C++ and Class Library

Y acc++ and the Language Objects Library

Phone 1 (508) 435-5016 Fax 1 (508) 435-4847

Features: Outputs C++ classes of lexers and parsers and optionaly for tokens, non-terminals, and
rules as specified in the grammar. Regular expressions integrated with BNF, LALR & LR,
grammar inheritance. Library support for various AST, input, error, and symbol table
classes.

Didribution: The Y acc++ generators are shipped as executables (sources available) and the Language
Objects Library is shipped as C++ source code and pre-compiled for supported targets.
Numerous examples and makefiles are included. Printed manuals include Installation,
Tutoria, and Reference Guides.

Platform: Windows NT/95 Microsoft Visua C++

2.2.8 Comparison and Conclusion

OpenC++ [ANTLR | Flex/Biso | Sourcerer | Musko | EDG Compiler
Resources

Platform Win Win Win Win Win Win Win
Source code available | Yes Yes Yes Yes Yes Yes No
Cost Free Free Free Free Free Yes Yes
Royalties None No No No No Yes Yes
Support for other Yes No Yes No No Yes No
languages
Ease of use Great Fair Fair Fair Fair Good Good

Open C++ was chosen due to its ease of use, support for multiple languages, and cost and source code
avallability.

We did not have to make any modifications to core Open C++ parser, athough we needed to implement
its interface with the rest of the TimeStorm program.

2.3 Real-Time Foundation Classes (RTFC) Overview (Task #3)

The Real-Time Foundation Classes serve as an uniform interface for the code generators for different
platforms. They present an abstraction above the operating system layer that applications can invoke.
Since the TimeBench project was specificaly intended to be platform neutral, this abstraction is an
essentiad component of the finished effort.

We implemented the System Services component of the Real-Time Foundation Classes as the Operating
System Abstraction Layer (OSAL). The OSAL consists of an uniform API and a set of platform specific
Adaptors. The API provides System Services and Debug Services. Platform specific Adaptors hide the
operating system details for the specific operating systems they are targeted to.

Broad categories of OSAL services are as follows:

= Threads

= Events

= Clocks

= Timers

» Mutex

= Semaphores

» Shared Memory

OSAL Adaptors were implemented for VxWorks, Windows, and RT-Mach.

When the strategic decision was made to utilize the Rational RoseRT as the modeling base for the timing
andysis, the origina RTFC implementation was rendered unusable, since the API layer and modeling
layers needed extensive redesign, which was commercially impossible.

In addition, Rational RoseRT includes its own set of libraries which are platform neutra. Therefore, we
decided to utilize the Rational RoseRT primitives to achieve the intended purpose of supporting multiple
platform with an uniform modeing interface and being able to perform atiming anaysis.

Appendix C provides an index of the origind TimeSys OSAL implementation.

10

24 Design and Implementation of a Component and Attribute Catalog and API (Task #4 and Task #6)

241 Synopsis

The mgjority of the attribute-value model was adready developed earlier as part of TimeWiz effort. As part
of the TimeBench project, we devel oped extensions to our existing attribute-value model that can express
relationship among objects in addition to their properties. We also developed extensions to the API that
alow parsing of the object relationships.

2.4.2 TimeWiz Property Extensions

In the basic TimeWiz property-value model, objects have properties. These properties can be custom
defined using attributes that can be specified for each property. Each property has atype, which can be
numeric or string.

The new property types of CTWZObject and CTWZObjList were added to our existing moddl. The
former is used to contain a reference to another object and the latter is used to contain referencesto an
array of objects.

An example of CTWZObject’s use would be a object referencing another object. For example, if an
Action references a physica resource, the CTWZObject property of the Action is set to the Physical
Resource it references.

An example of the CTWZODbjList’s use would be an object referencing another set of objects. For
example, when a physical resource references a set of actions, the CTWZObjList property of that
physical resource is set to the array containing the actions.

2.4.3 TimeWiz API Extensions

API extensions were created to alow enhanced hierarchical navigation. The following specific functions
were created as part of the TimeBench project:

1. GetParent: Gets the parent object of an object

2. GetFirgChild: Getsthe firgt child of the parent object

3. GetNextChild: Getsthe next child object of the parent object
4. GetFirgtConnection: Gets the first connection of an object
5

GetNextConnection: Gets the next connection of an object

25 Design and Initial Prototyping of a friendly Visualization User-Interface

This task completed theinitiad prototype of the highly visud, friendly and hierarchica interface within
TimeStorm and TimeWiz for RoseRT. An interactive demonstration was available and was presented at
the Phase | status meeting.

Further details of the user interface, menus, didogs, and the interaction are documented in the TimeStorm
and TimeWiz for RoseRT user manuals.

1

As part of this TimeBench project, we designed and developed the entire user interface in TimeStorm,
including its advanced features of Class Diagrams and Activity Diagrams, which are not yet available in
the retail version.

None of the TimeWiz for RoseRT user interface was developed as part of this program since that portion
was derived from TimeWiz, developed previoudy.

2.6 Architecture Openness (Task #6)

In support of Task #6, the plug-in architecture was designed whereby external modules could operate as
plug-in units. An open API extension was designed and documented as part of Task #3. Part of the
implementation was completed in Phase |, with the remaining portion completed in Phase 1.

3. Summary of Program Accomplishments

Commercialization and full product release of the TimeStorm (May 2001) Integrated Devel opment
Environment (IDE) tool. The TimeStorm tool is currently bundled as part of the TimeSys Linux
Development Environment (LDE).

Commercidization and full product release (November 2000) of the TimeWiz for RoseRT. See
www.timesys.com/news/pr111000.html.

Worked with Program Manager and Lockheed Martin to develop a SBIR success story for the
TimeBench project.

Created and delivered product demonstrations for both TimeStorm and TimeWiz for RoseRT to a
variety of commercia and defense contractors.

Ddlivered technical presentations regarding our TimeWiz for RoseRT at conference such as.
Embedded Systems Conference and LinuxWorld.

Based on our tool development activities, participated and contributed to the Real- Time UML
standards groups within OMG responsible for standardizing Real-Time specific extensions to
UML.

Designed and implemented the System Services component of the Real-Time Foundation Classes
as the Operating System Abstraction Layer (OSAL). Created runtime bindings to VxWorks,
WIinNT, WinCE, and Real-time Mach.

13

4. Commercialization Results

The TimeBench program funded in its entirety, the development and commerciaization of the TimeWiz for
Rational RoseRT tool.

41 TimeWizfor Rational RoseRT

Working in conjunction with Information Directorate researchers under a SBIR Phase |1 contract and
through other private funding, TimeSys Corporation has developed a commercia product called Timewiz®
for Rational RoseRT (see Figure 1). This product is a customized version of the TimeSys TimeWiz
product that offers significant analysis and synthesis capabilities to the users of the RoseRT modeling
software.

A TimeWiz design/analysis model consists of models of resource architecture, software architecture, and
amapping of software architecture elements to the resources. TimeWiz can be used in the early stages of
architecture analysis to model the real-time software architecture of a system, by focusing only on aspects
relevant for performance modeling. At later stages, when a model of software architecture has been built
in Rational RoseRT, it can be automatically imported into TimeWiz. The software architecture modeling
also alows users to specify the timing requirements and assumptions for analysis purposes.

The analysis and synthesis engine gives users the ability to assess whether a TimeWiz design model can
meet the response-time requirements specified. The analysis engine also gives users worst-case response
times (under the given workload assumptions), and provides feedback when response time requirements
cannot be met. By changing various properties, users can also perform “what-if” analysis. The synthesis
engine of the tool computes scheduling attributes (priorities) for elementsin the design model in order to
meet the response-time requirements (whenever possible). The synthesis engine can also be used to
optimize the mapping from logical threads to physica threads.

mwmﬂmwum TWHMTWN.#WH

#H (S0 kP |2z | BRED T pro Exa
ORI S T S S S R R e T R T8 | T
uE(-EE PreE (EEE |
= = - e . it
e | | I oo e T ot i
U &l el — o I
- i Eeipadl el Hura I w el
E m::-:; 1, H. | fmed | e Bevvod T [ewnnin:
IE LogealThrasdy O 1 vardl ™ =0 By (i 70
A Acsian I) b Cuedin (mawci [30
] I)]
9 4 |iww obed
L
L l '.
s Evea B 5] 4 | !
i = Sechn ds Lk b
i T e Lt LT T
m‘ chy =10 T "“'L"’:F:‘: .
-
Ik ”J His s foes
Tordd Evpz Tima J200
Ledl] A
| 3
I_ —‘ e
[N : T Fral Tl s kpal
- : Lsgical Thanadt LnglmlTI e o bl
1 e | L4
il | = + g w_,m.,: ;2
T T i | 4
| [| r___'ln Fr— |t-5um-n - [T E EvartFict | et

Tamee'R/iz Amalysia Tor Aaliossd Rase AeskTame
Laeteend werainn 10 o8 CAProgress FileoTome Sy Time Wiz s eF Tipbeginc] TWEFn o e AT FUARabysss. dI|

Wﬂ.ﬂmﬁ_whﬁ-up_a-x; el |

Foa Halp, prams 1

l-

Figure 1 — Screen shot of TimeWiz® for Rational RoseRT tool

14

TimeWiz® for Rationa Rose Rea Time is designed to work in conjunction with RoseRT during the entire
development cycle, thus providing a complete solution for UML based modeling, design, automatic code
generation, and timing analysis for developing timing sensitive embedded systems.

The analysis and synthesis engine in TimeWiz for Rational RoseRT is based on proven rate-monotonic
analysis (RMA) techniques that have been specifically extended for addressing response-time
requirements of time-critical scenariosin a Rational RoseRT design mode. This technology devel opment
work is based on severa years of research done by TimeWiz researchers aimed at extending rate-
monotonic techniques to take advantage of Rational RoseRT' s superior capabilities for modeling, design,
and automated implementation of complex event-driven software.

TimeWiz for RoseRT provides a unique combination of UML-based design and temporal analysis
capabilities such as:

Support for RMA analysis for UML models with an underlying event-driven execution paradigm.

Support for synthesis and optimization of implementation attributes/parameters based on RMA
design. The synthesized implementation attributes feed into code-generation engine.

An approach for interfacing between a UML design tool, and an RMA analysis/synthesis tool.

15

4.2 TimeStorm Integrated Development Environment (IDE)

Working in conjunction with Information Directorate researchers under a SBIR Phase |1 contract and
through other private funding, TimeSys Corporation has aso developed acommercia product called
TimeStorm (see Figure 2) based on the innovative development of the prototype software in Phase Il on
the TimeBench contract F33615-99-C-1495.

I Emoidig- [ChildFi.cpp)

[A Bk Edt Wiew PEmjedt Huld Took indos Haj —|&] =|
(O s TS| e SR | [SR CMonFame o]| B A <
B = [= i S |31 i o A, o O et . S TR "R P e e - W e .
sl
Tasthrymccistion® wrok; A
%m! FlasamZ mamypole)
= W e ToDD: add menbar andtisdization dm har
E:':fi::_::m_p for [int t = 0 t=< 389 t++]
% DECLARE_[iHCR g M NL SRR
1‘: DECLARE_WES3A ink jo = 1; J
sy
 Edlinciamiun Fie VLR T
i Edilimplemenizion Fin ford dnt d =0) d = 1y 4 4830
' DpanAckdl Diagrm ity Rl 3
1
4 %8 b 3
% Testtemnmaion iffd == i)
= Tesivhert 2 74
da-=;
sla=
A Jll
il] el | Lald ¥
B i View L P v] E!Dlhﬁwp]

Searching for ‘CanmFrame’ .. ii
[rmacieiTWProjectFiles\ Teme Warp BuldWnd.cpp{81F CMainFrames= fr = {CMainFramespafxGetMainWnd{cn
[HmacieiTWProjectFiles\ Tene Warpl BustdWnd. cppib4p - MTCMainFramaes fr = [CMamPrames) ahodiet MamWnd ()1

[rmarieiTW ProjectFiles\ Teme Warph Clas s Yiee cppdd 7). CMainFrames fr = [CMamFPrame =) aAbcGet Masnidnd():

OrmacieiTW ProjectFlles\ Teme Warph Clas s Yieacpg24); CMainFrames fr = [(CMamFPrame =) abcGet Mamidnd():
[HmacieiTWProjectFiles\ Teme Warph CustomWrkspoBxcpp{ 135 CMainFrame spWind = [ClamPrames)AtcGet MamWnd():
[macieiTWProjectFiles\ Tene Warph CustomwrkspcExcpp{ 180); CMainFrame spind = [CMamFPrames)sbcGet Mamdnd():
[RmacieiTW ProjectFiles\Teme WarpiF#e Selactopp(b); CMainFrame wpWiad = [ChainFrames)abeGet Mamwndd();

[rmacieiTW ProjectFlles\ Teme WarpiFée Seloctopp(108F - CMambrame spwnd = [CMainFramespaf=GetMaln W]

[EmacieiTWProjectFlles\ TemeWarp\Fe Salectopp(159k CMamFrame spWnd = {CMainFrame wpafGatbainWnd{c =
LA TR B Py), P e | ||td X
Fimrhy Life 31 ol 1 T

Figure 2— Screen shot of TimeStorm Tool

TimeStorm is an Integrated Development Environment (IDE) product that will be part of the TimeSys
Linux Development Environment (LDE). TimeStorm has been devel oped especially to produce software
for the TimeSys Linux/RT operating system, making it smple to generate TimeSys Linux/RT applications
for afull range of embedded platforms. The TimeStorm environment is designed to provide this full range
of productivity no matter what the resource level of the target. TimeStorm tools execute primarily on a
host development PC, with shared access to a host-based dynamic linker and symbol table for a remote
target system.

16

4.3 Product Marketing Plan

TimeSysis aleading vendor of a predictable, rea-time, open source based software devel opment and
runtime platform that is robust enough to be used in used in complex, rea-time, multi-function,
convergence devices and systems. Our broad range of solutions incorporate:

an open, run-time platform (based on Linux) with guaranteed real-time performance
a standard middleware platform based on Java that provides predictable real-time performance

astrong set of interoperable tools addressing real-time software development and software
architectural design and analysis

expert training, mentoring and consulting services

We sdll and market our products/services into the following markets:

Telecommunication/Networ king — telecommunications and data infrastructure equipment such
as switches and routers for service providers, enterprise network equipment, remote access
concentrators, and mobile phones/pagers, etc.

Telecommunication/networking is the largest segment (30% share) of the current embedded
systems market, and is still growing at over 20% compounded annually. The magjor

telecommuni cation/networking equipment manufacturers (e.g., Cisco, Lucent, Alcatel, Nortd,
3Com) have been competing fiercdly, trying to differentiate themselves by delivering more robust
functionality to the Service Providers (e.g., AT&T, Sprint, Verizon, WorldCom) as well as
reducing their prices and delivery times. This had precipitated a move to open source software,
and also the development of more complex, real-time, multi-function, convergence devices and
systems. All of these trends represent an excellent opportunity to sell TimeSys products/services
because of our unique value-add provided by our predictable, real-time, open source based
software development and runtime platform, and by our Partitioned Virtua Machine (PVM)
solution. This segment is also attractive to us because the “product to market” success rate here
(>90%) is considerable higher when compare with the Consumer Electronics segment (75%) for
example.

Defense/Aer ospace — commercid and military aircraft, satellite systems, radar/sonar systems,
C3, missile guidance, avionics, smulators, etc.

Defense/Aerospace continues to be a large segment (2nd largest at 16% share) of the current
embedded systems market. This segment has strict requirements for predictable, real-time
systems, and thus, represents an excellent fit for TimeSys products/services, especially as major
weapon system programs migrate to use of open source and COTS products.

Industrial Automation — manufacturing and process control systems, motion controllers,
operator interfaces, robotics, etc.

Industrial Automation is also alarge segment (3rd largest at 10% share) of the current embedded
systems market. Process control systems have requirements for predictable, real-time behavior in
the context of controlling enterprises such as power, manufacturing, and chemical plants. This
segment is starting to move away from expensive, proprietary software systems, and thus,
represents an excellent opportunity for selling TimeSys products/services.

17

Consumer Electronics - set-top boxes, multimedia (Internet) appliances, home networking
gateways, gaming systems, automotive entertainment systems, etc.

Consumer Electronicsis arapidly growing segmert of the current embedded systems market
(over 50% CAGR), which builds smal memory footprint, multi-function, convergence devices.
The requirement for open source solutionsis very strong in this segment because of “time to
market” and “cost of development” business drivers. This segment will provide good business
opportunities for TimeSys because of our unique value-add provided by our predictable, rea-time,
open source platform and our Partitioned Virtua Machine (PVM) solution. However, these
opportunities have to be well qualified for us because the project cancellation rate is considerably
high (over 25%) in this market segment.

Automotive — eectronic control unitsin chassis systems, powertrain electronics, body
el ectronics/security systems, in-vehicle information/computing systems, etc.

Automotive is also arapidly growing segment of the current embedded systems market (over 30%
CAGR). The in-vehicle information/computing systems (i.e., a multi-function, convergence device)
piece of this market is growing at over 75% CAGR. Aswith the Industrial Automation segment,
the first-tier automotive subsystem suppliers are starting to move towards COT S solutions and
away from expensive, proprietary products. This segment is also a strong believer in the use of
software modeling tools such as our TimeWiz tool. All of these trends represent an excellent
opportunity to sell TimeSys products/services because of our unique vaue-add provided by our
predictable, rea-time, open source platform, our Partitioned Virtua Machine (PVM) solution, and
our real-time software design, anadysis, and modeling tools.

We estimate that the addressable market size for TimeSys solutions is $2.3B in 2003, while the estimated
sizein 1999 was $1.1B, representing a 20% annual growth in size.

Market size for Real-Time Operating Systems products is expected to be $1.2B in 2003, with
TimeSys addressable market size of $360M, representing the projected share for the Linux based
RTOS's. The product addressing this market is TimeSys Linux.

Market size of large real-time software solutions (including telecommunications infrastructure,
automotive and defense areas) is $10B in 2003, with TimeSys addressable market size of $1.5B,
representing outsourced software solutions provided by TimeSys. The products addressing this
market are our SuiteTime family of tools, packaged solutions and turnkey systems.

Market size for the new embedded devices is expected to be $3.8B, with TimeSys addressable
market size of $500M, representing real-time and QoS aspects of these devices. The products
addressing this market are JTime and TimeSys Linux.

TimeSys Corporation’s product strategy is to provide the best integrated bundle of tools for rea-time
system design, analysis, development, and deployment. We want to become the de facto real-time Linux
vendor of choice in our target markets.

In the Defense/Aerospace market, our senior staff members have an excellent and long-standing
reputation for expertise in real-time systems. To date, TimeSys products such as TimeBench and
TimeWiz for RoseRT have been used by prime contractors for many Navy and Air Force programs
including the DD-21, AWACS, B1-B, BSY submarine program, the 16 and F-22 programs. Our
customer base in this market includes leaders such: Lockheed Martin, Raytheon, Boeing, and BAE
Systems.

18

5. TimeWiz for Rational RoseRT

TimeWiz™ for Rational RoseRT is atool for the design and analysis of real-time systems. It is based on
extended rate-monotonic anadysis for addressing response-time requirements of time-critica scenariosin a
Rational RoseRT design model. The analysis and synthesis engine in TimeWiz for Rose RT is based on
severd years of research done by TimeWiz technology experts aimed at extending rate-monotonic
techniques to take advantage of Rational RoseRT’ s superior capabilities for modeling, design, and
automated implementation of complex event-driven software.

5.1 Overview of Rational RoseRT

Rational RoseRT™ from Rational Software, is a UML-based design and devel opment environment for
devel oping embedded real-time software. Developers can use RoseRT to design their applications using a
mix of UML modes and C or C++ code and then generate executable code using automatic code
generators and in-built support for language compilers and target environments. It dlows aflexible many-
to-one mapping from active objects (capsules) to threads - allowing the designer to trade off
implementation overheads with the desired level of preemptibility needed to meet response time
requirements. In addition, it allows events to be prioritized to meet response time requirements.

5.2 Overview of TimeWiz for RoseRT

TimeWiz for Rational RoseRT is designed to be used in conjunction with Rational Rose Real-Time
throughout the design and development lifecycle. In the early stages of architectura analysis, TimeWiz for
Rational RoseRT can be used to get early feedback on the feasibility of meeting the system timing
requirements. It can also be used to quickly analyze the impact of different architectures on the ability of
the system to meet its timing requirements, thus facilitating the selection of an appropriate architecture. All
this can be done before any detailed behavioral modeling is undertaken.

During later stages of development, as more details are added to the system structure and behavior,
TimeWiz for Rationa RoseRT can be used to continually assess the impact of design choices on the ability
of the system to meet the timing requirements, and giving valuable feedback to the designers when
performance bottlenecks are identified.

TimeWiz for Rationa RoseRT is aso designed to extend the automatic code generation capabilities of
RoseRT by automatically synthesizing design attributes such as event and thread priorities, as well as
mapping the logical design model to threads. TimeWiz for RoseRT diminates the guesswork that must be
used by designersin assigning values to these attributes - it not only analyzes the impact of these attributes
on response times, but also synthesizes values for these attributes to meet specified response time
requirements.

5.3 TimeWiz for Rational RoseRT Features
TimeWiz for Rational RoseRT features include:

Modeling - aTimeWiz design/analysis model consists of models of hardware or resource
architecture, software architecture, and a mapping of software architecture elements to the
resources. TimeWiz can be used in the early stages of architecture analysis to model the real-time
software architecture of your system, by focusing only on aspects relevant for performance
modeling. At later stages, when amodd of software architecture has been built in Rational

19

RoseRT it can be automatically imported into TimeWiz. The software architecture modeling also
alows you to specify the timing requirements and assumptions for analysis purposes.

Analysis and Synthesis - the analysis and synthesis engine gives you the ability to assess
whether a TimeWiz design model can meet the response-time requirements you specify. The
analysis engine gives you worst-case response times (under the given workload assumptions). It
also gives you feedback when response time requirements cannot be met. By changing various
properties, you can aso perform "what-if"* analysis. The synthesis engine of the tool computes
scheduling attributes (priorities) for elements in the design model in order to meet the response-
time requirements (whenever possible). The synthesis engine is particularly useful to automatically
generate an optimal mapping from the design’slogical concurrency architecture to a physica
concurrency architecture in the implementation.

Visualization of Results - the results of TimeWiz analysis and synthesis can be visualized using
action, event, and resource plots and tables, which come in awide variety of styles and can be
customized as needed.

Documentation - the software and hardware architecture diagrams, as well as the anaysis and
synthesis results, can be documented in reports. These reports include software and hardware
diagrams, tables, and plots, and can be viewed onscreen or printed.

Integration with Rational RoseRT - TimeWiz for RoseRT is integrated with Rational Rose
Real-Time to dlow you to develop your model in Rationad RoseRT, then export the model to
TimeWiz, and re-import the modified properties back into Rationa RoseRT

6. TimeStorm

6.1 TimeStorm Overview

TimeStorm is an integrated development environment (IDE) from TimeSys Corporation. TimeStorm has
been developed primarily to produce software for the TimeSys Linux operating system, making it smple to
generate TimeSys Linux applications for afull range of embedded platforms. TimeStorm interactive

devel opment tools include:

An integrated source-code editor

A customizable project management facility

Integrated C and C++ compilers and make

A source-level debugger

Support for downloading and executing applications on a remote target

The TimeStorm IDE is designed to run on a Windows host environment, thus enabling the devel opment of
applications for Linux targets with modest resources that is typical in an embedded system. It supports a
seamless interaction with the application target. With TimeStorm, concepts can pass from idea to
implementation very quickly. Fast incremental downloads of application code are linked dynamically with
the TimeSys Linux/RT operating system and are thus available for symbolic interaction with minimal
delay. The TimeStorm development environment offers a unified perspective that integrates design,
development, and anaysis.

6.2 TimeStorm Capabilities

TimeStorm runs on a host machine running Windows NT, using the gnu compiler tools as a backend for
compiling source files into target executables. It then automatically exports these gpplications to custom
embedded targets running TimeSys Linux and helps ensure that they execute. A project settings wizard
enables you to specify target platform compilation, as well as linking and exporting properties, for each
individual project. TimeStorm’s support of projects means that an entire group of files can be compiled into
asingle executable. Additiondly, TimeStorm offers support for makefiles, alowing you to specify the
interrelationships between the filesin a project.

TimeStorm alows you to write and edit source code for TimeSys Linux programsin C and C++. It offers
complete editing features, including code-specific highlighting and search-and-replace capabilities. Two
control trees make manipulating code easier and more efficient. One of these trees indexes al the classes,
methods, and variables used in a project; clicking on alist item takes you to where that item is declared or
implemented and adding an item to the list will cause its source code to be automatically generated. The
other tree lists every file in the project, alowing you to quickly locate and select files to open.

Additiondly, TimeStorm makes use of the Unified Modeling Language (UML) to ad in visudizing

systems. TimeStorm’s UML-based features center on two different UML diagrams, the class diagram

and the flow-chart activity diagram. A class diagram describes the characteristics of and relationships
between the classes used in a program, while a flow-chart activity diagram models every step between the
initiation and the completion of atask. With TimeStorm, you can draw class and activity diagrams from
scratch, generate them by reverse-engineering C++ code, and use them to generate code. TimeStorm aso
keeps the diagrams and the code in sync o that, if you edit one, the other will change accordingly.

21

6.3 Cross-Development with TimeStorm

The philosophy behind TimeStorm is that different operating systems excel at different things, and
programs should be designed so that each operating system does what it is best at. TimeSys Linux is
designed especidly for running embedded systems with time congtraints, while Windows NT is one of the
most prevalent operating systems for software development. Therefore, we have created a development
environment for TimeSys Linux in which Windows NT handles the editing and compilation tasks, exporting
the completed executable to TimeSys Linux so that al it needs to worry about is the actua running of the

program.

TimeStorm lets you edit, compile, link, and store gpplication code using only the Windows NT host. Even
once the code is exported to the target, the host machine still controls its running and debugging. To
understand the TimeStorm environment more clearly, it is helpful to describe the typica development
process.

The hardware in atypica development environment includes one or more networked devel opment host
systems and one or more embedded target systems. A number of means exist for connecting the target
and host systems, but the most popular options are Ethernet or serid links.

A typica development system is alotted large amounts of RAM and disk space, backup media, printers,
and other peripherals. In contrast, atypical target system has only the resources required by the real-time
application, and perhaps a small amount of additional resources for testing and debugging. The target may
comprise no more than a CPU with on-chip RAM and a seria /O channel.

Application modulesin C or C++ are compiled with the cross-compiler provided as part of TimeStorm.
These gpplication modules can draw on the TimeStorm run-time libraries to accel erate application
development. A fundamental advantage of the TimeStorm environment is that the application modules do
not need to be linked with the run-time system libraries or even with each other. Instead, TimeStorm can
load the re-locatable object modules directly, using the symbol tables in each object module to resolve
externa symbol references dynamicaly. In TimeStorm, this symbol table resolution is done by the target
server (which executes on the host).

Because the application does not need to be linked fully, object modules during development are
considerably smaller in TimeStorm than they would be in other environments. Thisisamgor advantage in
a cross-development cycle — the smaller the downloads, the shorter the development cycle. Dynamic
linking means that it makes sense for even partially completed modules to be downloaded for incremental
testing and debugging. The host-resident TimeStorm debugger can then be used interactively to invoke and
test elther individua application routines or compl ete tasks.

TimeStorm maintains a complete host-resident symbol table for the target. Thistableis incrementa: asit
downloads each individua object module, it incorporates the symbols from that module. Thus, you can use
the original symbolic names to perform a host of activities, like examining variables, caling subroutines,
spawning tasks, disassembling code in memory, setting breakpoints, or tracing subroutine calls.

The TimeStorm IDE aso includes a debugger, which alows developers to view and debug an application’s
origina source code. Setting breakpoints, single-stepping, examining structures, and other similar tasks are
all done at the source level, using a convenient graphica interface.

64 TimeStorm Features

TimeStorm features include;

Full ability to export programs to a variety of embedded systems running TimeSys Linux/RT

Project Settings Wizard to specify target platform compilation and set linking and exporting
properties

Control trees for ease of navigation — view lists of every class, method, and variable used in a
project, or of every file currently open. Create classes and methods from within the tree.

Unified Modeling Language (UML)-based visualization features
Powerful editor with search-and-replace and code-specific highlighting features

Multiple targets per project — use the same project to build different versions of your code, such
as debug and release builds, or projects aimed at different processors

Threaded execution — continue working with the editor while a program compilesin the
background

The GNU Tooalkit, a high-performance 32-bit cross-development compiler for C and C++. make
and other supporting programs are aso included.

23

Appendix A —TimeBench Statement of Work

Quarters after

Task 1. RT-UML Support
Task 1a. Class Diagrams
Task 1b. Use Case Diagrams »
Task 1c. Deployment Diagrams

Task 1d. Activity Diagrams |
Task le. Sequence Diagrams *

Task 2. Code M anagement |
Task 2a. Code Generation

Task 2b. Reverse Engineering *
Task 3. Real-Time Foundation Classes [[
L 2
Task 3a. System Services | ¢ ¢
Task 3b. Debugging Services
Task 4. Component Repository [
Task 4a. Component Design ' <
Task 4b. Visual Component Manager
BT e
Task 5. Automatic Documentation Generation
Task 5a. Text Output to MS-Word *
Task 5b. Integrated Visual Symbol Export
Task 6. Extensbility Support ' !

Task 6a. Customization Support 2
Task 6b. External Plug-In Support

Task 7. Analysisand Simulation Support

Task 8. Final Report Preparation

A Demonstration 4 Local Integration Tight Global Integration @ Reports * Product Release

24

Appendix B - Results of Phase Il Work Summarized by Task

1

Task 1. RT-UML Support
» TimeStorm (advanced version) supports class diagrams and activity diagrams.

= Sincethe TimeWiz analysis modules were integrated with Rational RoseRT, Use Case,
Deployment, and Sequence diagrams are available in Rational Rose and therefore supported
in the final integrated TimeWiz for RoseRT product.

Task 2. Code Management

» Code Generation and Reverse Engineering capabilities were prototyped in the advanced
verson of TimeStorm.

Task 3. Real-Time Foundation Classes
= Task 3a. System Services:

= Weimplemented the System Services and Debugging Services library modules as
documented in Section 0. However, since the analysis modules were integrated with Rational
RoseRT, these services ,which are dso available in Rational RoseRT, were used in the final
TimeWiz for RoseRT product.

Task 4. Component Repository

» TimeWiz for Rationa RoseRT contains customized palettes with module objects required for
timing analyss. These had to utilize the TimeWiz Catalog Designer, which serves as a form of
component design tool.

» Theorigindly envisioned Visud Component Manager was not completed.

Task 5. Automatic Documentation Generation

= Since the TimeWiz analysis modules were integrated with Rational RoseRT, the Text Output
to MS-Word and Integrated Visual Symbol Export features are available in Rational Rose and
therefore are supported in the final TimeWiz for RoseRT product.

Task 6. Extensibility Support

25

= Sincethe TimeWiz analysis modules were integrated with Rational RoseRT, the
Customization Support and Externa Plug-In Support features are available in Rational Rose
and therefore are supported in the final TimeWiz for RoseRT product.

7. Task 7. Andysis and Simulation Support

= The TimeWiz andysis modules were integrated with Rational RoseRT. The Simulation
support modules were not integrated with Rational RoseRT.

26

Appendix C—OSAL Implementation

C.1. tsAperiodicThread

Header
tsThread.h

Parent
tsThread

Children
None

Methods

static tsAperiodicThread create(tsThreadFunc pFunc, void *pArg);

Description

A class wrapper for aperiodic threads.
Notes

The function passed in to create must have this Sgnature:
uint32 (*userfunc)(void *);

M ethods

static tsAperiodicThread create(tsThreadFunc pFunc, void *pArg);

Creates an aperiodic thread. The thread runs immediately. The user passesin afunction of type
tsThreadFunc and an argument it wishes to pass to the function. The argument may be NULL. The
thread is assigned the default system priority - the gpplication may change the priority with the priority
cal.

27

C.2. tsClock

Header
tsClock.h

Parent
none on Win32 and WinCE, tsRefObject on RT-Mach

Children
None

Methods
static tsClock create();
tsTi meSpec current Ti ne();
ui nt 64 frequency() const;

Description

tsClock isatimer reative to the boot of the machine. It is a high-frequency timer.
Notes

M ethods

static tsClock create();

Creates a clock.

t sTi meSpec currentTi ne();
Returns the current system time. tsTimeSpec is a platform-specific way of returning relative times. Note

that the time returned by currentTime is relative to the boot of the system and should not be interpreted
as an absolute time or date.

ui nt 64 frequency() const;

Returns the frequency of the clock in ticks per second.

28

C.3. tsCondition

Header
tsCondition.h

Parent
tsRef

Children
None
Methods

static tsCondition create(const char *pscName=NULL);
bool wait(tsMitex);
bool signal ();

Description

An implementation of pthread-style condition variables. Condition variables require amutex and an
external condition to check. The mutex must be locked during callsto wait and signal. Condition
variables can be process-local or process-shared.

Notes

A typica use of condition variables (error checking code removed for brevity:

#i ncl ude "tsMitex. h"

#i ncl ude "tsCondition.h"

tsMutex g _nutex; // assunme these are initialized somewhere el se
tsCondition g _cond;

bool g_f SomeCondition;

void waiter()

{
g_mutex. |l ock();
whi | e(! g_f SomeCondi ti on)
{
/1 the while loop is necessary to handl e spurious wakeups
g_cond. wai t (g_rut ex) ;
}
g_mut ex. unl ock();
}
voi d waitee()
{
/1 do sone stuff
/1 now we are ready
g_nutex. | ock();
g_cond. signal ();
g_nut ex. unl ock();
}

29

M ethods

static tsCondition create(const char *pscNanme=NULL);

Creates a condition object. If pscName is NULL, then a process local object is created. If pscNameis
not NULL, then the system creates a process-shared object with the name pscName. If create falls,
then the returned tsRef will be NULL. Thelast error can be retrieved with tsLastError.

bool wait(tsMitex);

Waits for the condition variable to be sgnaed. The passed in muted must be locked before cdling this
method. On some systems, waits can be woken up spurioudly, even if the associated condition has not
been met. Therefore it isimportant to enclose calsto wait in awhile loop that checks the vaue of the
associated condition (see above). A return vaue of false indicates an error, use tsLastError to check the
error value.

bool signal ();

Signds the condition variable that the associated condition is now true. The associated mutex with the
condition variable must be locked, and must be the same mutex that is being waited on (see above). A
return value of false indicates an error, use tsLastError to check the error value.

C.4. tsConfigDB

Header
tsConfigDB.h

Parent
None

Children
tsHleDB

Methods
virtual void clear()=0;
virtual void read()=0;
virtual void wite()=0;
virtual void category(const char *pscCategory)=0;
virtual const char *category() const=0;
virtual bool query(const char *pscKey, const char *&val ue)=0;
virtual bool set(const char *pscKey, const char *pscVal ue)=0;
virtual bool erase(const char *pscKey)=0;
virtual bool erase()=0;

Description

An abstract interface for a configuration database made of categories and key/vaue pairs. The category
is a namespace for various string keys and their string values. This configuration database is used

interndly for per-file debug logging.
Notes
None

Methods
virtual void clear()=0;

Clear the entire configuration database.

virtual void read()=0;

Read the configuration database from the data source.

virtual void wite()=0;

Write the configuration database to the data source.

virtual void category(const char *pscCategory)=0;

31

Set the current category. If the category does not exis, the database will create it.

virtual const char *category() const=0;

Query the current category.

virtual bool query(const char *pscKey, const char *&val ue)=0;

Query the vadue of akey in the current category. If the key does not exigt, false will be returned.

virtual bool set(const char *pscKey, const char *pscVal ue)=0;

Set the vaue of akey in the current category. If the key does not exigt, the key will be created. If an
error occurs, false will be returned.

virtual bool erase(const char *pscKey) =0;

Erase akey in the current category. If the key does not exist, false will be returned.

virtual bool erase()=0;

Erase the entire current category.

32

C.5. tsDebug

Header
tsDebug.h

Parent
None

Children
None

Methods
no public methods

Description

tsDebug wraps the debugging interface. Currently dl public exported functiondity is provided through
themacros TS DEBUG LOG and TSTRACE.

Notes

None
M ethods

C.6. tskvent

Header
tsEvent.h
Parent
tsRef

Children
None

Methods
static tsEvent create(bool fSet, bool fAutoReset=true, const char
*pscNanme=NULL) ;
bool created() const;
bool set();
bool reset();
bool wait();

Description
Creates a Win32-gyle event object which can be used for synchronization. Unlike condition variables,
events require no externa mutex. Events come in two types - manual and auto. Manua events require

reset to be called manudly for the event to go from the set to the reset sate. Auto events automaticaly
go into reset dtate as soon as any waiting threads have been resumed.

Notes

None
M ethods

static tsEvent create(bool fSet, bool fAutoReset=true, const char
*pscNanme=NULL) ;

Create an event object. Creation options include creating the object set (fSet=true), or creating an auto
event (FAutoReset=true). Events can be process-local (pscName=NULL) or process-shared
(pscName=some name). If creation fails, aNULL tsRef will be returned and the last error status can be
queried with tsLastError.

bool created() const;
Returnstrueif this particular object created the internd referenced event, or fseif it didn't and

someone else had created it first. Note thisis only relevant for process-shared events. Process-locd
events aways return true.

bool set();

Set the event. Any waiting threads will be released. If the event is an auto-reset event, after waiting
threads have been released the event will be reset. Returns false in case of an error, and last error status
can be queried with tsLastError.

bool reset();

Resets the event. Returns false in case of an error, and last error status can be queried with tsLastError.

bool wait();

Causes the current thread to walit for the event to be set. If the event isin the set state dready, the
calling code will return immediately. If the event isin the reset sate, the calling thread will be suspended
until the event is set. Returnsfalse in case of an error, and last error status can be queried with
tsLastError.

C.7. tsFileDB

Header

tsConfigDB.h
Parent

tsConfigDB
Children

None

Methods

tsFil eDB(const char *pscFile);

Description

A concrete implementation of the tsConfigDB interface. It reads and writes configuration information
from afile

Notes

The configuration file format has two header lines and then lines following with [categories] in brackets
and key=vadue pairs.

Ti meSys Confi g Dat abase

Version=1.0

[Secti ons]

t hr eadt est . cpp=f al se

[Debug]

Debug=t rue

Methods
tsFi |l eDB(const char *pscFile);

Creates afile database object that reads and writes from the passed file.

C.8. tsGrabLock

Header
tsSpinLock.h

Parent
None

Children
None

Methods
t sGrabLock(tsSpi nLock &spl);
~tsGrabLock();

Description

A convenience class that grabs a spinlock's lock in the constructor and releasesiit in the destructor.
Notes

Sampleuse
t sSpi nLock g_sonelLock;

{
t sGrabLock | ock(g_soneLock); // |ock grabbed

// do stuff

} /1 destructor called, |ock rel eased

Methods
t sGrabLock(tsSpi nLock &spl);

Grabs the spinlock.

~tsGrabLock();

Releases the spinlock.

37

C.9. tsLog

Header
tsLog.h

Parent
None

Children
tsMemLog
tsNullLog

Methods
virtual void |log(const char *pscFormat, ...)=0;

Description
Abstract interface for log output.

Notes

None
M ethods

virtual void |log(const char *pscFormat, ...)=0;

Supports printf-style arguments. Sends formatted output to alogica logging device.

C.10. tsMapDwToDw

Header
tsCal.h

Parent
None

Children
None

Methods
t sMapDwWToDwW(ui nt 32 nmapsi ze = DEF_MAP_SI ZE) ;
~t sMapDwToDwW() ;
bool set At (uint32 key, uint32 value);
bool | ookup(uint32 key, uint32 &val ue);
uint 32 renove();
bool renoveAt (uint32 key);
void removeAl |l ();
position firstAssoc() const;
position | ast Assoc() const;
ui nt 32 next Assoc(position &pos, uint32 &key) const;
ui nt 32 prevAssoc(position &pos, uint32 &key) const;
bool isEnpty() const;
uint32 numtens() const;
bool isValidPos(position pos) const;

Description

An generic hash table class. It is recommend you use the MAKE_DWMAP and
MAKE_SIZED DWMAP macros, ingtead of using this class directly. The macros create "poor man's
template” versons of the maps that cast from specified types automaticaly.

Notes

Iteration over the map example:
t sMapDwToDw map;
position pos = map.firstAssoc();
whi | e(pos !'= NULL)

{
ui nt 32 val ue, key;
val ue = next Assoc(pos, key);
/1 do sonething with key/val ue
}
Methods

t sMapDwWToDwW(ui nt 32 mapsi ze = DEF_MAP_SI ZE) ;
Create a hash table with DEF_MAP_SIZE entries. DEF_ MAP_SIZE should be a prime number. This
class does not grow the hash table, so performance will degrade when there are more than mapsize
elements stored in the table.

~t sMapDwToDwW() ;

Destroy the hashtable. Note that if the values are pointers to structures, the destructor does not free up
their memory.
bool set At (uint32 key, uint32 value);

Set the value a akey. If there dready exiss avaue a that key, setAt will return false. To set the vaue
of akey with an exiging vaue, use removeAt fird, then setAt.

bool | ookup(uint32 key, uint32 &val ue);

Lookup the value at akey. If the key is not in the map, it will return false, and the contents of valueis
undefined. If the key isin the map, value will contain the vaue.

ui nt 32 renove();

Remove an arbitrary value in the map and return the vaue. The hash table is unordered so thereis no
way of knowing which key/vaue par will be removed.

bool renoveAt (uint32 key);

Remove the key/vaue pair from the map. If the key does not exi<t, false will be returned.

voi d rermoveAl |l ();

Remove dl key/vaue pairs from the map.

position firstAssoc() const;

Return a generic pogtion vaue for the first association in the map, for iteration over the map. Iterations
are not guaranteed to be in any specific order. If the map is empty, NULL will be returned.

position | ast Assoc() const;

Return a generic position vaue for the last association in the map, for reverse iteration over the map.
Iterations are not guaranteed to be in any specific order. If the map is empty, NULL will be returned.

ui nt 32 next Assoc(position &pos, uint32 &key) const;
Iterate the next key/vaue pair given a postion. Position will be updated for the next dement, key will

contain the current key, and nextAssoc will return the vaue at that key. The position may become
NULL after thiscdl, thisindicates the current key/vadue pair isthe last pair in the map.

ui nt 32 prevAssoc(position &pos, uint32 &key) const;
Reverse iterate the next key/vaue pair given a position. Position will be updated for the previous

element, key will contain the current key, and prevAssoc will return the vaue a thet key. The position
may become NULL after this call, thisindicates the current key/value pair isthe lagt pair in the ma.

bool isEmpty() const;

Returnstrue if the map is empty, faseif it isnot.

uint32 numtens() const;

Returns the number of key/vaue pairsin the map.

bool isValidPos(position pos) const;

Returnstrueif the passed postion isvdid, faseif not.

a4

C.11. tsMapStringToDw

Header
tsCol.h

Parent
None

Children
None

Methods
tsMapStri ngToDw(ui nt 32 mapsi ze = DEF_MAP_SI ZE) ;
~t sMapStri ngToDw() ;
bool setAt(const char *key, uint32 value);
bool | ookup(const char *key, uint32 &val ue);
uint 32 renove();
bool renoveAt(const char *key);
void removeAl |l ();
position firstAssoc() const;
position | ast Assoc() const;
const char *keyAt (position pos) const;
ui nt 32 next Assoc(position &pos) const;
ui nt 32 prevAssoc(position &pos) const;
bool isEnpty() const;
uint32 numtens() const;
bool isValidPos(position pos) const;

Description

An generic hash table class for mapping strings to dwords (32 bit vaues). Strings are duplicated with
strdup for storage in the class. It is recommend you use the MAKE_STRMAP and

MAKE_SIZED STRMAP macros, instead of using this class directly. The macros create "poor man's
template” versons of the maps that cast from specified types automaticaly.

Notes

See tsMapDwToDw for adescription of class methods.
tSMapSiringToDw iteration isdightly different. An example:
tsMapStri ngToDw map;
position pos = map.firstAssoc();
whi | e(pos !'= NULL)

{
const char *pscKey = map. keyAt (pos);
ui nt 32 val ue = map. next Assoc(pos);
/1 do sonething with key/val ue
}
Methods

const char *keyAt (position pos) const;

Returns the key at the current position.

&

C.12. tsMemlLog

Header

tsLog.h
Parent

tsLog
Children

None

Methods
t sMenmiog(const char *pscLogNane, uint32 |ogSize);
void wait();
voi d readLock(const char *&p, uint32 &nbytes);
voi d readUnl ock();

Description

A concrete implementation of the tsLog interface. Log output is written to a shared-memory circular
buffer. If the buffer isfull, old data is overwritten. Methods are provided for reading from the shared
buffer.

Notes

The logdebug util gpp will read from the default shared memory circular set up by OSAL and print it to
ether sdout or to afile.

Methods
t sMenmlLog(const char *pscLogNane, uint32 |ogSize);

Initialize the memory log. Open the shared memory region denoted by pscl.ogName. The shared
memory region will be of szelogSize. Note that dl dients of the same shared memory region must
agree on logSize!

void wait();

Wait for datato be available for reading.
voi d readLock(const char *&p, uint32 &nbytes);

Read available data. When this function returns, the circular buffer will be locked and a pointer to the
data to be read will bein p, and the number of bytes to read will be in nbytes. Make your processing in
between calls to readlL ock and readUnlock fast, as writers are prevented from writing to the shared
memory region whileit is locked. For example, instead of saving to afile from these buffers directly,
copy the buffersinto temporary storage first and then unlock the buffer. Then write from your temporary
buffer to afile.

voi d readUnl ock();

Unlock the read buffer. Once you have unlocked data, the span of data returned by readl ock will be
lost forever!

C.13. tsMutex

Header
tsMutex.h

Parent
tsRef

Children
None

Methods
static tsMiutex create(const char *pscName=NULL);
bool 1 ock();
bool unl ock();
bool created() const;

Description
Crestes amutud excluson synchronization objects. Mutexesin OSAL implement the priority
inheritance protocol regardiess of platform. Mutexes can be either process-local or process-shared.

Notes

Mutex locks are freed if the process crashes or terminates unexpectedly.
Methods

static tsMutex create(const char *pscNanme=NULL);

Create a mutex object. Mutexes can be either process-loca (pscName=NULL) or process-shared
(pscName=some name). If cregtion fails, the returned tsRef will be NULL. Cal tsLastError to retrieve
the error value.

bool 1 ock();

Lock the mutex. If thelock fails, false will be returned and error information can be queried with
tsLastError.

bool unl ock();

Unlock the mutex. If the mutex can not be unlocked, false will be returned and error information can be
queried with tsLastError.

bool created() const;

Returnstrueif this particular object created the internd referenced mutex, or fdseif it didn't and
someone ese had created it first. Note thisis only relevant for process-shared mutexes. Process-locd
mutexes alway's return true.

C.14. tsNullLog

Header
tsLog.h

Parent
tsLog

Children
None

Methods
None

Description

A concrete implementation of the tsLog interface. Log output goes nowhere and resultsin a no-op.
Notes

None
M ethods

C.15. tsPeriodicThread

Header
tsThread.h

Parent
tsThread

Children
None

Methods
static tsPeriodi cThread create(tsThreadFunc pFunc, void *pArg,
t sTi meSpec period);
bool period(tsTi neSpec ts);
t sTi meSpec period() const;

Description

Wrappers for periodic threads.
Notes

M ethods

static tsPeriodi cThread create(tsThreadFunc pFunc, void *pArg,
t sTi meSpec period);

Creates a periodic thread with period specified by the third argument. If creation fails, the returned tsRef
will be NULL, and error status can be queried with tsLastError.

bool period(tsTi neSpec ts);

Set the thread's period on the fly. Returns false on error, error satus can be retrieved with tsLastError.

t sTi meSpec period() const;

Query and return the thread's period. If an error occurs atsTimeSpec struct with -1 seconds and -1
nanosecondsis returned and error status can be retrieved with tsLastError.

C.16. tsRecursiveSpinL ock

Header
tsSpinLock.h

Parent
None

Children
None

Methods
void grab();
voi d rel ease();

Description

A spin lock that can be locked recursively. tsRecursveSpinLock maintains a recursion count, so that
repeated calls to lock from the same thread do not deadlock. Note that repeated lock calls must be
balanced by a same number of unlock cdls.

Notes

tsRecursveSpinLock has a higher overhead than tsSpinLock, so useit only in casesthat are absolutely
necessary.
Methods

See the definitions of tsSpinLock's methods. The interface is the same, the only differenceis recurson
will not cause deadlock.

a7

C.17. tsRef

Header
tsRef.h

Parent
None

Children
tsClock (RT-Mach only), tsCondition, tsEvent, tsMitex, tsSemaphore,
t sShar edBuddyAl | oc, tsSharedMenory, tsThread

Methods
tsRef();
t sRef (t sRef Obj ect *pRef);
tsRef (const tsRef & ref);
~tsRef ();
t sRef &operator=(const tsRef &ref);
bool operator==(const tsRef &ref) const;
bool operator<(const tsRef &ref) const;
bool isNull() const;

Description

A envelope object. tsRef wraps the nastiness of reference counting interna implementation objects,
freeing the user from that burden. 1t dso insulates the implementation of various OSAL library classes
from their interface. tsRef objects should dways be passed by vaue or reference, but tsRef *'s should
never be passed.

Notes

None

Methods
t sRef ();

Constructsa NULL tsRef object.

t sRef (t sRef Obj ect *pRef);

Constructs a tsRef object given atsRefObject to point to. Adds areference to pRef.

tsRef (const tsRef & ref);

Copy congtructor. Adds areference.

~t sRef () ;

When atsRef object is destroyed, it removes the reference it had.

t sRef &operator=(const tsRef &ref);

Assgns atsRef object to the current object. Keepstrack of references.

bool operator==(const tsRef &ref) const;

Compares two tsRefs. If they point to the same object, then returns true.

bool operator<(const tsRef &ref) const;

Less than comparison on two tsRefs. Uses a pointer less than comparison.

bool isNull() const;

Returnstrueif thistsRef is NULL. Used mainly to check for error conditions during object creation.

49

C.18. tsRefObject

Header
tsRef.h

Parent
None

Children
interna classes

Methods
voi d addRef ();
voi d rel ease();

Description

Base classfor our letter objects. OSAL makes use of the envel ope-letter pattern, where there are many
smaller envelope objects that wrap around fewer large letter objects. This hides the often platform:
Specific detalls of the interna implementations from the clients usng the envelope (tsRef-derived
clases). It dso automaticaly handles reference counting (a nice Sde benefit).

Notes

addRef and rel ease are thread-safe.

Methods
voi d addRef ();

Add areference to the current object. Increments the internal reference count.

voi d rel ease();

Release areference to the current object. If the reference count becomes zero, delete the object and
associated resources.

C.19. tsSemaphore

Header
tsSemaphore.h

Parent
tsRef

Children
None

Methods
static tsSemaphore create(int initVal, const char *pscNanme=NULL);
bool wait();
bool post();

Description
Implement a semaphore. Semaphores can be process-local or process-shared.
Notes

Currently OSAL's semaphores do not handle priority inverson on any plaiform (yet).
Methods

static tsSemaphore create(int initVal, const char *pscNane=NULL);
Create a semaphore object. The object isinitialized to acount of initVa, and is process-locd

(pscName=NULL) or process-shared(pscName = some name). If creation fails, the returned tsRef will
be NULL. Error information can be queried with tsLastError.

bool wait();

Try to decrement the semaphore vaue. If the valueis zero, block until vaueisincreased. Thisis
commonly known as the () operation. Returns fase if an error arises, use the tsLastError function to
query the error information.

bool post();
Increment the semaphore's vaue. If any threads are blocking on the semaphore, wake one up. Thisis

commonly known asthe V() operation. Returnsfalseif an error arises, use the tsLastError function to
query the error information.

51

C.20. tsSharedBuddyAlloc

Header
tsMemory.h

Parent
tsRef

Children
None
Methods
static tsSharedBuddyAl |l oc create(void *pBase, uint32 offset, uint32
size, uint32 mnAllocSize, bool fCreate);
voi d *base() const;
void *all oc(size_t size);
bool free(void *p);
bool fronmPool (void *p) const;
bool enmpty() const;
bool | ock(void *p);
bool unl ock(void *p);

Description
A memory dlocator for shared memory regions. It uses the buddy system to efficiently dlocate memory
chunks of different Szes.

Notes

None

Methods
stati c tsSharedBuddyAl |l oc create(void *pBase, uint32 offset, uint32
size, uint32 mnAllocSize, bool fCreate);
Create a shared memory allocator. pBase describes the base address of the shared memory region.
Offset isthe offset into the shared memory region the pool should start at. Size isthe sze of the buddy
pool. minAlloc is the minimum alocation Sze to be supported - it should be &t least 8. fCreate indicates

whether the buddy pool should be initidized or just connected to. Returnsa NULL tsRef if creation
fals, error information can be retrieved with tsLastError.

voi d *base() const;

Returns the base address of the shared memory region (note: not of the buddy pool!).

void *alloc(size_t size);

52

Allocates ablock big enough to hold sze bytes. If the dlocation fails it will return NULL.

bool free(void *p);
Frees up the block associated with p. P should be a pointer returned from dloc. If p isnot from this
poal, fase will be returned.

bool fromPool (void *p) const;

Returnstrue if the passed point is insde the buddy pool.

bool enpty() const;

Returnstrue if there are no dlocations in the buddy poal.

bool | ock(void *p);

Unimplemented - wire down the page that dlocationisin.

bool unl ock(void *p);

Unimplemented - unwire the page that dlocation isin.

C.21. tsSharedMemory
Header
tsMemory.h
Parent
tsRef
Children
None
Methods

typedef enum

{
ReadWi t e,

ReadOnl y
} Fl ags;
static tsSharedMenory create(uint32 initSize, uint32 nmaxSize, Flags
flags, const char *pscNane);
voi d *base() const;
ui nt 32 maxSi ze() const;

Description

A named shared memory region. Shared memory regions, by definition, are process-shared. Memory
may not be mapped a the same addressin al processes, so data stored in shared memory should use
no absolute references. OSAL provides a shared memory alocator, tsSharedBuddyAlloc, for easy
management of shared memory. Combined with the macros tsPointer ToOffsat and tsOffset ToPointer,
shared memory data structures are managesble.

Notes

Memory insde the shared memory region is must be committed/decommitted with the tsVAlloc and
tsVFree cdls. Address space should not be dlocated with those cdls, though! All clients of the same
shared memory region must agree on the maxSize parameters!

M ethods

static tsSharedMenory create(uint32 initSize, uint32 nmaxSize, Flags
flags, const char *pscNane);

Creates a shared memory object. The object's total address space used is maxSize bytes, whereas only
the firg initSize bytes are actudly committed to physica memory. The remainder can be managed with
tsVAlloc or tsVFree - or maintained by tsSharedBuddyAlloc (the preferred method). The flags can be
used to protect the memory as read/write or read-only. The name is required, it identifies the shared
memory region. If cregtion fails, create will return aNULL tsRef. Error information can be queried with
tsLastError.

voi d *base() const;

Return the base address of the shared memory region.

ui nt 32 maxSi ze() const;

Return the maximum size of the shared memory region.

C.22. tsSpinLock

Header
tsSpinLock.h

Parent
None

Children
None

Methods
void grab();
voi d rel ease();

Description

A non-blocking synchronization object. tsSpinLock uses atomic operations to try and grab a mutua
excluson varidble. If the variable is dready taken, tsSpinLock will spin. Spinning congsts of repeatedly
polling the excluson variable whilst degping for an exponentidly growing amount of time. Thisisamilar
to the back-off dgorithm of Ethernet. Whileit is not theoreticaly guaranteed to iminate garvetion, in
practice it works very well.

Notes

tsSpinLock can not handle recursion. The same thread grabbing a spinlock twice will cause deadlock.
Use tsRecursiveSpinLock to handle these situations.

Methods
voi d grab();

Atomicdly grab the spinlock. Spins until lock has been grabbed.

voi d rel ease();

Release the spinlock. Note: does not check the make sure current thread owned the lock in the first
place.

C.23. tsSystem

Header
tsSystem.h

Parent
None

Children
None

Methods

None

Description

Static methods for initidizing/exiting OSAL, and some internaly used utility routines. Nothing public
exported as of yet.

Notes

None
M ethods

None

C.24. tsThread

Header
tsThread.h

Parent
tsRef

Children
tsAperiodicThread, tsPeriodicThread

Methods
bool isPeriodic();
voi d sl eep(uint32 ns);
void priority(uintl6 pri);
uintleé priority() const;
static tsThread current();

Description

Base thread wrapper class, provides functionaity common to periodic and gperiodic threads.
Notes

Max priority = 255, min priority = 0. Higher priorities are favored as far as scheduling goes.
Methods

bool isPeriodic();

Returnstrueif thisthread is periodic and can be safely cast into atsPeriodicThread object. If false, it
can be safely cast into atsAperiodicThread object.

voi d sl eep(uint32 ns);

Sleep for ms milliseconds.

void priority(uintlé pri);
uintl6 priority() const;

Changelretrieve the thread's base priority.

static tsThread current();

Retrieve the currently running threed.

57

