Interval Method for Analysis and Design of Hybrid Uncertain Systems.

Leang-San Shieh and Guanrong Chen

Most practical dynamical systems are formulated by hybrid uncertain delayed systems that consist of mixed continuous and discrete uncertain subsystems with state and/or input delays. For improving the performance of the delayed hybrid systems, well-established control theory and design methods are available in the continuous-time domain to find analog controllers. The resulting analog controller is required to be replaced by a digital controller for better reliability lower cost, smaller size, more flexibility and better performance.

In this research, we have successfully accomplished the following research subjects: (1) Digital/analog model conversions of linear hybrid interval systems with unknown-but-bounded uncertain parameters; (2) Digital modeling and control of linear continuous-time systems with state, input and output delays; (3) Development of digital redesign techniques for digital control of cascaded linear hybrid interval systems; (4) Development of PAM (Pulse-Amplitude-Modulated) and PWM (Pulse-Width-Modulated) digital controllers for linear hybrid interval systems; (5) Design of digital PAM tracker for nominal chaotic orbits; (6) Interval Kalman filtering for linear stochastic uncertain systems; (7) Fuzzy-model-based self-tuning controller for nominal chaotic systems; (8) Model conversions and optimal control of 2D (2 Dimensional) nominal systems; (9) GA (Genetic Algorithm)-based optimal digital controllers for linear hybrid interval systems.
MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office
ATTN: AMSRL-RO-BI (TR)
P.O. Box 12211
Research Triangle Park, NC 27709-2211

☐ Reprint (Orig + 2 copies) ☐ Technical Report (Orig + 2 copies)
☐ Manuscript (1 copy) ☑ Final Progress Report (Orig + 2 copies)
 ☐ Related Materials, Abstracts, Theses (1 copy)

REPORT TITLE:
"Interval Method for Analysis and Design of Hybrid Uncertain Systems."
is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

[Signature]

Enclosure 3
Interval Method for Analysis and Design of Hybrid Uncertain Systems

(1) Summary of Research Results

(14). Guanrong Chen, Zhongying Chen and Yuesheng Xu, "Numerical Computation of a Damped Slewing Beam with Tip Mass," Communications in Numerical Methods in

(30). Guan, Z.H., G. Chen and Y. Qin, "On Equilibria, Stability and Instability of Hopfield
(II) Scientific Personnel
1. L. S. Shieh (PI)
2. G. Chen (CO-PI)
3. H. Zhang (Ph.D. student)
4. S. M. Guo (Ph.D. student and Visiting Scientist)
5. Z. Lu (Ph.D. student)
6. S. Sundaresan (MS student)
7. Y. Zhang (Ph.D. student)
8. S.H.J. Tsai (Visiting Scientist)
9. Z. G. Weng (Visiting Scientist)
10. Z. Fan (MS student)

(III) Report of Inventions
None